Effect of spring nitrogen fertilization on bearing and branching behaviors of young apple trees
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37141246
PubMed Central
PMC10159155
DOI
10.1371/journal.pone.0285194
PII: PONE-D-22-26472
Knihovny.cz E-zdroje
- MeSH
- dusík MeSH
- fertilizace MeSH
- květy MeSH
- listy rostlin MeSH
- Malus * MeSH
- stromy MeSH
- výhonky rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dusík MeSH
The total aboveground biomass production, nutritional status, bearing and branching behaviors of the central leader and one year old shoots of young apple trees have been analyzed. The shoots were further characterized according to the length, shoot demography, and the production of terminal and lateral flowers. All the characteristics are described in connection with nitrogen supply and cultivar. Nitrogen represents one of the major macronutrients involved in the growth and development of the fruit trees. The understanding of the effect of nitrogen supply for flower bud formation can be further improved by detailed analyses of tree architecture. While the biomass production was cultivar specific, the trees within particular cultivar were characterized by almost similar growth with respect to the nitrogen supply. Cultivar ´Rubinola´ exhibited similar branching pattern, but higher vigor than ´Topaz´. As a result of higher apical dominance, ´Rubinola´ produced higher proportion of long shoots, but a lower quality of short shoots than ´Topaz´. Consequently, cultivar ´Rubinola´ produced only few terminal flowers on short shoots and lateral flowers dominantly in the distal zone, while ´Topaz´ was characterized by intensive terminal flowering, but the lateral flowers were more abundant in the median zone. Even a lower dose of spring nitrogen improved the flower bud formation on both terminal and lateral positions extending the flowering zone on one-year-old shoots. This further changed the branching and bearing behavior of the apple trees, which particularly allows to optimize their fertilization management. However, this effect appears to be further regulated by mechanism connected with apical dominance.
Zobrazit více v PubMed
Wang Q., Liu Ch., Huang D., Dong Q., LI P., Nocker S., et al.. Physiological evaluation of nitrogen use efficiency of different apple cultivars under various nitrogen and water supply conditions. J. of Integ. Agric. 2020; 19(3): 709–720 doi: 10.1016/S2095-3119(19)62848-0 DOI
Costes E., Guédon Y. Modelling branching patterns on 1-year-old trunks of six apple cultivars. Ann. Bot. 2002; 89: 513–524. doi: 10.1093/aob/mcf078 PubMed DOI PMC
Segura V., Durel Ch-E., Costes E. Dissecting apple tree architecture into genetic, ontogenetic and environmental effects: QTL mapping. Tree Genet. Genomes. 2008; 5: 165–179. PubMed
Lespinasse, Y. Breeding apple tree: aims and methods. Proc. Joint Conf. of the EAPR Breeding and varietal assessment section and the Eucarpia Potato section. 1992; 103–110.
Lauri P-E., Térouanne E., Lespinasse J-M., Regnard J-L., Kelner J-J. Genotypic differences in axillary bud growth and fruiting pattern of apple fruiting branches over several years–an approach to regulation of fruit bearing. Sci. Hortic. 1995; 64(4): 265–281. doi: 10.1016/0304-4238(95)00836-5 DOI
Costes E., Lauri P-E., Regnard J-L. Analyzing Fruit Tree Architecture: Implications for Tree Management and Fruit Production. Hort. Rev. 2006; 32: 1–61. doi: 10.1002/9780470767986.ch1 DOI
Barthélémy D. and Caraglio Y. Plant Architecture: A Dynamic, Multilevel and Comprehensive Approach to Plant Form, Structure and Ontogeny. Ann. Bot. 2007; 99: 375–407. doi: 10.1093/aob/mcl260 PubMed DOI PMC
Costes E., Crespel L., Denoyes B., Morel P., Demene M-N., Lauri P-E., et al.. Bud structure, position and fate generate various branching patterns along shoots of closely related Rosaceae species: a review. Front. Plant Sci. 2014; 5: 1–11. doi: 10.3389/fpls.2014.00666 PubMed DOI PMC
Guédon Y., Barthélémy D., Caraglio Y., and Costes E. Pattern analysis in branching and axillary flowering sequences. J. Theor. Biol. 2001; 212: 481–520. doi: 10.1006/jtbi.2001.2392 PubMed DOI
Lauri P-E., Lespinasse J-M., Térouanne E. Vegetative growth and reproductive strategies in apple fruiting branches–an investigation into various cultivars. Acta Hort. 1997; 451: 717–724. doi: 10.13140/2.1.5159.0403 DOI
Lauri P-E., Hucbourg B., Ramonguilhem M., Méry D. An architectural-based tree training and pruning–identification of key features in the apple. Acta Hort. 2011; 903: 589–596. doi: 10.13140/2.1.4880.5129 DOI
Kviklys D., Lanauskas J., Uselis N., Viškelis J., Viškelienė A., Buskienė L., et al.. Rootstock vigour and leaf colour affect apple tree nutrition. Zemdirbyste-Agriculture. 2017; 104 (2): 185–190. doi: 10.13080/z-a.2017.104.024 DOI
Tagliavini M., Quartieri M., Millard P. Remobilized nitrogen and root uptake of nitrate for leaf growth, flowers and developing fruits of pear (P. communis) trees. Plant Soil. 1997; 195: 137–142.
Sutton M.A., Erisman J.W., Dentener F., Möller D. Ammonia in the environment: from ancient times to the present. Envir. Pollut. 156; 583–604. doi: 10.1016/j.envpol.2008.03.013 PubMed DOI
Neilsen D., Millard P., Herbert L.C., Neilsen G.H., Hogue E.J., Parchomchuk P., et al.. Remobilization and uptake of N by newly planted apple (Malus domestica) trees in response to irrigation method and timing of N application. Tree Physiol. 2001; 21: 513–521. doi: 10.1093/treephys/21.8.513 PubMed DOI
Grassi G., Millard P., Gioacchini P., Tagliavini M. Recycling of nitrogen in the xylem of Prunus avium trees starts when spring remobilization of internal reserves declines. Tree Physiol. 2003; 23(15): 1061–1068. doi: 10.1093/treephys/23.15.1061 PubMed DOI
Neto C., Carranca C., Clemente J., De Varennes A. Nitrogen distribution, remobilization and re-cycling in young orchard of non-bearing ‘Rocha’ pear trees. Sci. Hortic. 2008; 118: 299–307. doi: 10.1016/j.scienta.2008.06.023 DOI
Cheng L., Fuchigami L.H. Growth of young apple trees in relation to reserve nitrogen and carbohydrates. Tree Physiol. 2002; 22(18): 1297–1303. doi: 10.1093/treephys/22.18.1297 PubMed DOI
Neilsen D., Millard P., Neilsen G.H., and Hogue E.J. Sources of N for leaf growth in a high density apple (Malus domestica) orchard irrigated with an ammonium nitrate solution. Tree Physiol. 1997; 17: 733–739. doi: 10.1093/treephys/17.11.733 PubMed DOI
Millard P. Ecophysiology of the internal cycling of nitrogen for tree growth. J. Plant Nutr. Soil Sci. 1996; 159: 1–10. doi: 10.1002/jpln.1996.3581590102 DOI
Forshey C.G., Elfving D.C. The relationship between vegetative growth and fruiting in apple trees. Hort. Rev. 1989; 11: 229–287.
Koutinas N., Pepelyankov G., Lichev V. Flower induction and flower bud development in apple and sweet cherry. Biotech. & Biotech. Equip. 2010, 24(1): 1549–1558. doi: 10.2478/V10133-010-0003-9 DOI
Zydlik Z., & Pacholak E. Fertigation Effects on the Concentration of Mineral Components in the Soil and Leaves, and the Yield and Quality of Fruits in Two Apple-Tree Cultivars. Acta Hort. 2000; 564:457–463.
Wrona D. The influence of nitrogen fertilization on growth, yield and fruit size of ‘Jonagored’ apple trees. Acta Sci. Pol. Hort. Cul. 2011; 10(2): 3–10.
Jordan M.O., Vercambre G., Le Bot J., Adamowicz S., Gomez L., Pagès L. Autumn nitrogen nutrition affects the C and N storage and architecture of young peach trees. Trees–Struc. and Func. 2011; 25(2): 333–344. doi: 10.1007/s00468-010-0509-7 DOI
Luo L., Zhang Y., Xu G. How does nitrogen shape plant architecture? J. Exp. Bot. 2020; 71(15): 4415–4427. doi: 10.1093/jxb/eraa187 PubMed DOI PMC
Patzak J., Paprštein F., Henychová A. Identification of apple scab and powdery mildew resistance genes in Czech apple (Malus × domestica) genetic resources by PCR molecular markers. Czech J. Genet. Plant Breed. 2011; 47(4): 156–165. doi: 10.17221/140/2011-CJGPB DOI
Mehlich A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil. Science and Plant Analysis 15 (12):1409–16. doi: 10.1080/00103628409367568 DOI
Bremner, J.M. Nitrogen-Total. In: autoři, Methods of soil analysis. Part 3. Chemical methods. Madison: Soil Science Society of America and American Society of Agronomy, 1996. Online ISBN:9780891188667.
Meier U. Growth Stages of Mono-and Dicotyledonous Plants. BBCH Monograph, 2. Edition. Federal Biological Research Centre for Agriculture and Forestry, Germany; 2001. 10.1093/oxfordjournals.aob.a087746 DOI
Walinga I., van der Lee J.J., Houba V.G.J., van Vark W., Novozámský I. Plant Analysis Manual. Kluwer Academic Publisher. 1995, Method PANA-A1.
ZBÍRAL J. Analýza rostlinného materiálu: jednotné pracovní postupy. 3. Edition. Brno: ÚKZÚZ, 2014. ISBN 978-80-7401-082-8.
AOAC 2015. Official method of analysis of AOAC International. Maryland: Gaithersburg.
R Development Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. 2010. http://www.R-project.org/
Fallahi E., Colt W.M., and Fallahi B. Optimum ranges of leaf N for yield, fruit quality and photosynthesis in ‘BC-2 Fuji’ apple. J. Amer. Pomol. Soc. 2001; 55:68–75.
Mészáros M., Bělíková H., Čonka P., Náměstek J. Effect of hail nets and fertilization management on nutritional status, growth and production of apple trees. Sci. Hortic. 2019; 255: 134–144. doi: 10.1016/j.scienta.2019.04.079 DOI
Neilsen G.H., Meheriuk M., and Hogue E.J. The effect of orchard floor and N fertilizer on nutrient uptake and fruit quality of ‘Golden Delicious’ apple trees. HortSci. 1984; 19:547–550.
Xia G., Cheng L., Lakso A., Goffinet M. Effect of nitrogen supply on source-sink balance and fruit size of „Gala”apple trees. J. Amer. Soc. Hort. Sci. 2009; 134: 126–133. doi: 10.21273/JASHS.134.1.126 DOI
Neilsen G.H., Neilsen D. Nutritional requirements of apple. In: Apples: Botany, Production and Uses. CAB International. 2003, ISBN 9780851995922.
Bangerth K.F. Floral induction in mature perennial angiosperm fruit trees: Similarities and discrepancies with annual/biennial plants and the involvement of plant hormones. Scientia Hort. 2009; 122(2): 153–163. doi: 10.1016/j.scienta.2009.06.014 DOI
Mason M.G., Ross J.J., Babst B.A., Wienclaw B.N., Beverige Ch.A. Sugars demand, not auxins, is the initial regulator of apical dominance. Proc. Natl. Acad. Sci. USA. 2014; 111(16): 6092–6097. doi: 10.1073/pnas.1322045111 PubMed DOI PMC
Hanke M-V., Flachowsky H., Peil A., Hättasch C. No flower no fruit–Genetic potentials to trigger flowering in fruit trees. Genes, Genomes and Genomics 2007; 1(1): 1–20.
Zhu L.H., Borsboom O., Tromp J. The Effect of temperature on flower-bud formation in apple including some morphological aspects. Sci. Hortic. 1997; 70: 1–8. doi: 10.1016/S0304-4238(97)00018-6 DOI
Cook N.C., Rabe E., Keulemans J., Jacobs G. The expression of acrotony in deciduous fruit trees: A study of apple rootstock M.9. J. Amer. Soc. Hort. Sci. 1998; 123(1): 30–34. doi: 10.21273/JASHS.123.1.30 DOI