Glutamate indicators with improved activation kinetics and localization for imaging synaptic transmission
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 NS112365
NINDS NIH HHS - United States
U19 NS107466
NINDS NIH HHS - United States
U19 NS123717
NINDS NIH HHS - United States
U24 EB028942
NIBIB NIH HHS - United States
PubMed
37142767
PubMed Central
PMC10250197
DOI
10.1038/s41592-023-01863-6
PII: 10.1038/s41592-023-01863-6
Knihovny.cz E-zdroje
- MeSH
- kinetika MeSH
- kyselina glutamová * metabolismus MeSH
- myši MeSH
- nervový přenos * MeSH
- neurony fyziologie MeSH
- synapse fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyselina glutamová * MeSH
The fluorescent glutamate indicator iGluSnFR enables imaging of neurotransmission with genetic and molecular specificity. However, existing iGluSnFR variants exhibit low in vivo signal-to-noise ratios, saturating activation kinetics and exclusion from postsynaptic densities. Using a multiassay screen in bacteria, soluble protein and cultured neurons, we generated variants with improved signal-to-noise ratios and kinetics. We developed surface display constructs that improve iGluSnFR's nanoscopic localization to postsynapses. The resulting indicator iGluSnFR3 exhibits rapid nonsaturating activation kinetics and reports synaptic glutamate release with decreased saturation and increased specificity versus extrasynaptic signals in cultured neurons. Simultaneous imaging and electrophysiology at individual boutons in mouse visual cortex showed that iGluSnFR3 transients report single action potentials with high specificity. In vibrissal sensory cortex layer 4, we used iGluSnFR3 to characterize distinct patterns of touch-evoked feedforward input from thalamocortical boutons and both feedforward and recurrent input onto L4 cortical neuron dendritic spines.
Allen Institute for Neural Dynamics Seattle WA USA
Department of Biological Sciences Dartmouth College Hanover NH USA
Department of Physics University of California San Diego La Jolla CA USA
Department of Physiology 2nd Faculty of Medicine Charles University Prague Czech Republic
Institute of Neuroscience and Cluster for Systems Neurology Munich Germany
Janelia Research Campus Howard Hughes Medical Institute Ashburn VA USA
Neurosciences Graduate Program University of California San Diego La Jolla CA USA
Section of Neurobiology University of California San Diego La Jolla CA USA
Zobrazit více v PubMed
DeFelipe J, Marco P, Busturia I, Merchán-Pérez A. Estimation of the number of synapses in the cerebral cortex: methodological considerations. Cereb. Cortex. 1999;9:722–732. PubMed
Calì C, et al. The effects of aging on neuropil structure in mouse somatosensory cortex—a 3D electron microscopy analysis of layer 1. PLoS ONE. 2018;13:e0198131. PubMed PMC
Rusakov DA, Stewart MG. Synaptic environment and extrasynaptic glutamate signals: the quest continues. Neuropharmacology. 2021;195:108688. PubMed
Clements JD, Feltz A, Sahara Y, Westbrook GL. Activation kinetics of AMPA receptor channels reveal the number of functional agonist binding sites. J. Neurosci. 1998;18:119–127. PubMed PMC
Ramsey AM, et al. Subsynaptic positioning of AMPARs by LRRTM2 controls synaptic strength. Sci. Adv. 2021;7:eabf3126. PubMed PMC
Iacaruso MF, Gasler IT, Hofer SB. Synaptic organization of visual space in primary visual cortex. Nature. 2017;547:449–452. PubMed PMC
Kerlin A, et al. Functional clustering of dendritic activity during decision-making. eLife8, e46966 (2019). PubMed PMC
Harvey CD, Svoboda K. Locally dynamic synaptic learning rules in pyramidal neuron dendrites. Nature. 2007;450:1195–1200. PubMed PMC
Stock CH, Harvey SE, Ocko SA, Ganguli S. Synaptic balancing: a biologically plausible local learning rule that provably increases neural network noise robustness without sacrificing task performance. PLoS Comput. Biol. 2022;18:e1010418. PubMed PMC
Adoff MD, et al. The functional organization of excitatory synaptic input to place cells. Nat. Commun. 2021;12:3558. PubMed PMC
Goetz L, Roth A, Häusser M. Active dendrites enable strong but sparse inputs to determine orientation selectivity. Proc. Natl Acad. Sci. USA. 2021;118:e2017339118. PubMed PMC
Soares C, Trotter D, Longtin A, Béïque J-C, Naud R. Parsing out the variability of transmission at central synapses using optical quantal analysis. Front. Syn. Neurosci. 2019;11:22. PubMed PMC
Hao Y, Toulmé E, König B, Rosenmund C, Plested AJR. Targeted sensors for glutamatergic neurotransmission. eLife. 2023;12:e84029. PubMed PMC
Farsi Z, Walde M, Klementowicz AE, Paraskevopoulou F, Woehler A. Single synapse glutamate imaging reveals multiple levels of release mode regulation in mammalian synapses. iScience. 2021;24:101909. PubMed PMC
Vevea, J. D. & Chapman, E. R. Acute disruption of the synaptic vesicle membrane protein synaptotagmin 1 using knockoff in mouse hippocampal neurons. eLife9, e56469 (2020). PubMed PMC
Jensen TP, et al. Multiplex imaging relates quantal glutamate release to presynaptic Ca2+ homeostasis at multiple synapses in situ. Nat. Commun. 2019;10:1414. PubMed PMC
Wilkie, C. M. et al. The effect of GLT-1 upregulation on extracellular glutamate dynamics. Front. Cell Neurosci.https://www.frontiersin.org/articles/10.3389/fncel.2021.661412/full (2021). PubMed DOI PMC
Kazemipour A, et al. Kilohertz frame-rate two-photon tomography. Nat. Methods. 2019;16:778–786. PubMed PMC
Marvin JS, et al. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat. Methods. 2013;10:162–170. PubMed PMC
Marvin JS, et al. Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR. Nat. Methods. 2018;15:936–939. PubMed PMC
Matthews E. A. et al. Optical analysis of glutamate spread in the neuropil. Cereb Cortex. 32, 3669–368 (2022). PubMed PMC
Helassa N, et al. Ultrafast glutamate sensors resolve high-frequency release at Schaffer collateral synapses. Proc. Natl Acad. Sci. USA. 2018;115:5594–5599. PubMed PMC
Mohr MA, et al. jYCaMP: an optimized calcium indicator for two-photon imaging at fiber laser wavelengths. Nat. Methods. 2020;17:694–697. PubMed PMC
Wardill TJ, et al. A neuron-based screening platform for optimizing genetically-encoded calcium indicators. PLoS ONE. 2013;8:e77728. PubMed PMC
van der Linden FH, et al. A turquoise fluorescence lifetime-based biosensor for quantitative imaging of intracellular calcium. Nat. Commun. 2021;12:7159. PubMed PMC
Kavalali ET. The mechanisms and functions of spontaneous neurotransmitter release. Nat. Rev. Neurosci. 2015;16:5–16. PubMed
Bekkers J, Stevens C. Quantal analysis of EPSCs recorded from small numbers of synapses in hippocampal cultures. J. Neurophysiol. 1995;73:1145–1156. PubMed
Schiavo G, et al. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature. 1992;359:832–835. PubMed
Schneggenburger R, Neher E. Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature. 2000;406:889–893. PubMed
Ariel P, Ryan T. Optical mapping of release properties in synapses. Front. Neural Circuits. 2010;4:18. PubMed PMC
Nasu Y, et al. A genetically encoded fluorescent biosensor for extracellular l-lactate. Nat. Commun. 2021;12:7058. PubMed PMC
Damstra HG, et al. Visualizing cellular and tissue ultrastructure using ten-fold robust expansion microscopy (TREx) eLife. 2022;11:e73775. PubMed PMC
Liu R, Li Z, Marvin JS, Kleinfeld D. Direct wavefront sensing enables functional imaging of infragranular axons and spines. Nat. Methods. 2019;16:615–618. PubMed PMC
Kleinfeld D, Deschênes M. Neuronal basis for object location in the vibrissa scanning sensorimotor system. Neuron. 2011;72:455–468. PubMed PMC
Motta A, et al. Dense connectomic reconstruction in layer 4 of the somatosensory cortex. Science. 2019;366:eaay3134. PubMed
Lefort S, Tomm C, Floyd Sarria J-C, Petersen CCH. The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron. 2009;61:301–316. PubMed
Oberlaender M, et al. Cell type-specific three-dimensional structure of thalamocortical circuits in a column of rat vibrissal cortex. Cereb. Cortex. 2012;22:2375–2391. PubMed PMC
Madisen L, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 2010;13:133–140. PubMed PMC
Kleinfeld, D. & Mitra, P. P. Spectral methods for functional brain imaging. Cold Spring Harb. Protoc.10.1101/pdb.top081075 (2014). PubMed
Bloodgood, B. L. & Sabatini, B. L. NMDA Receptor-Mediated Calcium Transients in Dendritic Spines. Biology of the NMDA Receptor (CRC Press/Taylor & Francis, 2009). PubMed
Kulkarni RU, Miller EW. Voltage imaging: pitfalls and potential. Biochemistry. 2017;56:5171–5177. PubMed PMC
Armbruster, M., Dulla, C. G. & Diamond, J. S. Effects of fluorescent glutamate indicators on neurotransmitter diffusion and uptake. eLife9, e54441 (2020). PubMed PMC
Gütig R, Sompolinsky H. The tempotron: a neuron that learns spike timing–based decisions. Nat. Neurosci. 2006;9:420–428. PubMed
Zhao H, Giver L, Shao Z, Affholter JA, Arnold FH. Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat. Biotechnol. 1998;16:258–261. PubMed
Bedoukian MA, Whitesell JD, Peterson EJ, Clay CM, Partin KM. The Stargazin C terminus encodes an intrinsic and transferable membrane sorting signal. J. Biol. Chem. 2008;283:1597–1600. PubMed
Mütze J, et al. Excitation spectra and brightness optimization of two-photon excited probes. Biophys. J. 2012;102:934–944. PubMed PMC
Pnevmatikakis EA, et al. Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron. 2016;89:285–299. PubMed PMC
Pachitariu M, et al. Suite2p: beyond 10,000 neurons with standard two-photon microscopy. Preprint at biorXivhttps://www.biorxiv.org/content/10.1101/061507v2 (2017). DOI
Podgorski, K. iGluSnFR3 Code and Data Supplement. figshare10.25378/janelia.21985406.v1 (2023).
Hoppa MB, Lana B, Margas W, Dolphin AC, Ryan TA. α2δ expression sets presynaptic calcium channel abundance and release probability. Nature. 2012;486:122–125. PubMed PMC
Gaisano HY, Sheu L, Foskett JK, Trimble WS. Tetanus toxin light chain cleaves a vesicle-associated membrane protein (VAMP) isoform 2 in rat pancreatic zymogen granules and inhibits enzyme secretion. J. Biol. Chem. 1994;269:17062–17066. PubMed
Studier FW. Protein production by auto-induction in high density shaking cultures. Prot. Exp. Pur. 2005;41:207–234. PubMed
Pnevmatikakis EA, Giovannucci A. NoRMCorre: an online algorithm for piecewise rigid motion correction of calcium imaging data. J. Neurosci. Methods. 2017;291:83–94. PubMed
Mathis A, et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 2018;21:1281–1289. PubMed
Dana H, et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat. Methods. 2019;16:649–657. PubMed
Friedrich J, Zhou P, Paninski L. Fast online deconvolution of calcium imaging data. PLOS Comput Biol. 2017;13:e1005423. PubMed PMC