Glutamate indicators with improved activation kinetics and localization for imaging synaptic transmission

. 2023 Jun ; 20 (6) : 925-934. [epub] 20230504

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37142767

Grantová podpora
R01 NS112365 NINDS NIH HHS - United States
U19 NS107466 NINDS NIH HHS - United States
U19 NS123717 NINDS NIH HHS - United States
U24 EB028942 NIBIB NIH HHS - United States

Odkazy

PubMed 37142767
PubMed Central PMC10250197
DOI 10.1038/s41592-023-01863-6
PII: 10.1038/s41592-023-01863-6
Knihovny.cz E-zdroje

The fluorescent glutamate indicator iGluSnFR enables imaging of neurotransmission with genetic and molecular specificity. However, existing iGluSnFR variants exhibit low in vivo signal-to-noise ratios, saturating activation kinetics and exclusion from postsynaptic densities. Using a multiassay screen in bacteria, soluble protein and cultured neurons, we generated variants with improved signal-to-noise ratios and kinetics. We developed surface display constructs that improve iGluSnFR's nanoscopic localization to postsynapses. The resulting indicator iGluSnFR3 exhibits rapid nonsaturating activation kinetics and reports synaptic glutamate release with decreased saturation and increased specificity versus extrasynaptic signals in cultured neurons. Simultaneous imaging and electrophysiology at individual boutons in mouse visual cortex showed that iGluSnFR3 transients report single action potentials with high specificity. In vibrissal sensory cortex layer 4, we used iGluSnFR3 to characterize distinct patterns of touch-evoked feedforward input from thalamocortical boutons and both feedforward and recurrent input onto L4 cortical neuron dendritic spines.

Zobrazit více v PubMed

DeFelipe J, Marco P, Busturia I, Merchán-Pérez A. Estimation of the number of synapses in the cerebral cortex: methodological considerations. Cereb. Cortex. 1999;9:722–732. PubMed

Calì C, et al. The effects of aging on neuropil structure in mouse somatosensory cortex—a 3D electron microscopy analysis of layer 1. PLoS ONE. 2018;13:e0198131. PubMed PMC

Rusakov DA, Stewart MG. Synaptic environment and extrasynaptic glutamate signals: the quest continues. Neuropharmacology. 2021;195:108688. PubMed

Clements JD, Feltz A, Sahara Y, Westbrook GL. Activation kinetics of AMPA receptor channels reveal the number of functional agonist binding sites. J. Neurosci. 1998;18:119–127. PubMed PMC

Ramsey AM, et al. Subsynaptic positioning of AMPARs by LRRTM2 controls synaptic strength. Sci. Adv. 2021;7:eabf3126. PubMed PMC

Iacaruso MF, Gasler IT, Hofer SB. Synaptic organization of visual space in primary visual cortex. Nature. 2017;547:449–452. PubMed PMC

Kerlin A, et al. Functional clustering of dendritic activity during decision-making. eLife8, e46966 (2019). PubMed PMC

Harvey CD, Svoboda K. Locally dynamic synaptic learning rules in pyramidal neuron dendrites. Nature. 2007;450:1195–1200. PubMed PMC

Stock CH, Harvey SE, Ocko SA, Ganguli S. Synaptic balancing: a biologically plausible local learning rule that provably increases neural network noise robustness without sacrificing task performance. PLoS Comput. Biol. 2022;18:e1010418. PubMed PMC

Adoff MD, et al. The functional organization of excitatory synaptic input to place cells. Nat. Commun. 2021;12:3558. PubMed PMC

Goetz L, Roth A, Häusser M. Active dendrites enable strong but sparse inputs to determine orientation selectivity. Proc. Natl Acad. Sci. USA. 2021;118:e2017339118. PubMed PMC

Soares C, Trotter D, Longtin A, Béïque J-C, Naud R. Parsing out the variability of transmission at central synapses using optical quantal analysis. Front. Syn. Neurosci. 2019;11:22. PubMed PMC

Hao Y, Toulmé E, König B, Rosenmund C, Plested AJR. Targeted sensors for glutamatergic neurotransmission. eLife. 2023;12:e84029. PubMed PMC

Farsi Z, Walde M, Klementowicz AE, Paraskevopoulou F, Woehler A. Single synapse glutamate imaging reveals multiple levels of release mode regulation in mammalian synapses. iScience. 2021;24:101909. PubMed PMC

Vevea, J. D. & Chapman, E. R. Acute disruption of the synaptic vesicle membrane protein synaptotagmin 1 using knockoff in mouse hippocampal neurons. eLife9, e56469 (2020). PubMed PMC

Jensen TP, et al. Multiplex imaging relates quantal glutamate release to presynaptic Ca2+ homeostasis at multiple synapses in situ. Nat. Commun. 2019;10:1414. PubMed PMC

Wilkie, C. M. et al. The effect of GLT-1 upregulation on extracellular glutamate dynamics. Front. Cell Neurosci.https://www.frontiersin.org/articles/10.3389/fncel.2021.661412/full (2021). PubMed DOI PMC

Kazemipour A, et al. Kilohertz frame-rate two-photon tomography. Nat. Methods. 2019;16:778–786. PubMed PMC

Marvin JS, et al. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat. Methods. 2013;10:162–170. PubMed PMC

Marvin JS, et al. Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR. Nat. Methods. 2018;15:936–939. PubMed PMC

Matthews E. A. et al. Optical analysis of glutamate spread in the neuropil. Cereb Cortex. 32, 3669–368 (2022). PubMed PMC

Helassa N, et al. Ultrafast glutamate sensors resolve high-frequency release at Schaffer collateral synapses. Proc. Natl Acad. Sci. USA. 2018;115:5594–5599. PubMed PMC

Mohr MA, et al. jYCaMP: an optimized calcium indicator for two-photon imaging at fiber laser wavelengths. Nat. Methods. 2020;17:694–697. PubMed PMC

Wardill TJ, et al. A neuron-based screening platform for optimizing genetically-encoded calcium indicators. PLoS ONE. 2013;8:e77728. PubMed PMC

van der Linden FH, et al. A turquoise fluorescence lifetime-based biosensor for quantitative imaging of intracellular calcium. Nat. Commun. 2021;12:7159. PubMed PMC

Kavalali ET. The mechanisms and functions of spontaneous neurotransmitter release. Nat. Rev. Neurosci. 2015;16:5–16. PubMed

Bekkers J, Stevens C. Quantal analysis of EPSCs recorded from small numbers of synapses in hippocampal cultures. J. Neurophysiol. 1995;73:1145–1156. PubMed

Schiavo G, et al. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature. 1992;359:832–835. PubMed

Schneggenburger R, Neher E. Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature. 2000;406:889–893. PubMed

Ariel P, Ryan T. Optical mapping of release properties in synapses. Front. Neural Circuits. 2010;4:18. PubMed PMC

Nasu Y, et al. A genetically encoded fluorescent biosensor for extracellular l-lactate. Nat. Commun. 2021;12:7058. PubMed PMC

Damstra HG, et al. Visualizing cellular and tissue ultrastructure using ten-fold robust expansion microscopy (TREx) eLife. 2022;11:e73775. PubMed PMC

Liu R, Li Z, Marvin JS, Kleinfeld D. Direct wavefront sensing enables functional imaging of infragranular axons and spines. Nat. Methods. 2019;16:615–618. PubMed PMC

Kleinfeld D, Deschênes M. Neuronal basis for object location in the vibrissa scanning sensorimotor system. Neuron. 2011;72:455–468. PubMed PMC

Motta A, et al. Dense connectomic reconstruction in layer 4 of the somatosensory cortex. Science. 2019;366:eaay3134. PubMed

Lefort S, Tomm C, Floyd Sarria J-C, Petersen CCH. The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron. 2009;61:301–316. PubMed

Oberlaender M, et al. Cell type-specific three-dimensional structure of thalamocortical circuits in a column of rat vibrissal cortex. Cereb. Cortex. 2012;22:2375–2391. PubMed PMC

Madisen L, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 2010;13:133–140. PubMed PMC

Kleinfeld, D. & Mitra, P. P. Spectral methods for functional brain imaging. Cold Spring Harb. Protoc.10.1101/pdb.top081075 (2014). PubMed

Bloodgood, B. L. & Sabatini, B. L. NMDA Receptor-Mediated Calcium Transients in Dendritic Spines. Biology of the NMDA Receptor (CRC Press/Taylor & Francis, 2009). PubMed

Kulkarni RU, Miller EW. Voltage imaging: pitfalls and potential. Biochemistry. 2017;56:5171–5177. PubMed PMC

Armbruster, M., Dulla, C. G. & Diamond, J. S. Effects of fluorescent glutamate indicators on neurotransmitter diffusion and uptake. eLife9, e54441 (2020). PubMed PMC

Gütig R, Sompolinsky H. The tempotron: a neuron that learns spike timing–based decisions. Nat. Neurosci. 2006;9:420–428. PubMed

Zhao H, Giver L, Shao Z, Affholter JA, Arnold FH. Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat. Biotechnol. 1998;16:258–261. PubMed

Bedoukian MA, Whitesell JD, Peterson EJ, Clay CM, Partin KM. The Stargazin C terminus encodes an intrinsic and transferable membrane sorting signal. J. Biol. Chem. 2008;283:1597–1600. PubMed

Mütze J, et al. Excitation spectra and brightness optimization of two-photon excited probes. Biophys. J. 2012;102:934–944. PubMed PMC

Pnevmatikakis EA, et al. Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron. 2016;89:285–299. PubMed PMC

Pachitariu M, et al. Suite2p: beyond 10,000 neurons with standard two-photon microscopy. Preprint at biorXivhttps://www.biorxiv.org/content/10.1101/061507v2 (2017). DOI

Podgorski, K. iGluSnFR3 Code and Data Supplement. figshare10.25378/janelia.21985406.v1 (2023).

Hoppa MB, Lana B, Margas W, Dolphin AC, Ryan TA. α2δ expression sets presynaptic calcium channel abundance and release probability. Nature. 2012;486:122–125. PubMed PMC

Gaisano HY, Sheu L, Foskett JK, Trimble WS. Tetanus toxin light chain cleaves a vesicle-associated membrane protein (VAMP) isoform 2 in rat pancreatic zymogen granules and inhibits enzyme secretion. J. Biol. Chem. 1994;269:17062–17066. PubMed

Studier FW. Protein production by auto-induction in high density shaking cultures. Prot. Exp. Pur. 2005;41:207–234. PubMed

Pnevmatikakis EA, Giovannucci A. NoRMCorre: an online algorithm for piecewise rigid motion correction of calcium imaging data. J. Neurosci. Methods. 2017;291:83–94. PubMed

Mathis A, et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 2018;21:1281–1289. PubMed

Dana H, et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat. Methods. 2019;16:649–657. PubMed

Friedrich J, Zhou P, Paninski L. Fast online deconvolution of calcium imaging data. PLOS Comput Biol. 2017;13:e1005423. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...