Baicalin alleviates silica-induced lung inflammation and fibrosis by inhibiting TLR4/NF-?B pathway in rats

. 2023 Apr 30 ; 72 (2) : 221-233.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37159856

Silicosis is an occupational lung disease caused by inhaling silica dust. The disease is characterized by early lung inflammation and late irreversible pulmonary fibrosis. Here we report the effect of Baicalin, a main flavonoid compound from the roots of Chinese herbal medicine Huang Qin on silicosis in a rat model. Results showed Baicalin (50 or 100 mg/kg/day) can mitigate the silica-induced lung inflammation and reduce the harm of alveolar structure and the blue region of collagen fibers in rat lung at 28 days after administration. At the same time, Baicalin also diminished the level of interleukin-1beta (IL-1beta, interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta1 (TGF-beta1) in lung tissues. The protein expression of collagen I (Col-1), alpha-smooth muscle actin (alpha-SMA) and vimentin were down-regulated while E-cadherin (E-cad) was increased in Baicalin-treated rats. In addition, the Toll Like Receptor 4 (TLR4)/ nuclear factor kappaB (NF-kappaB) pathway was enabled at 28 days after silica infusion, and the treatment of Baicalin diminished the expression of TLR4 and NF-?B in the lungs of rat with silicosis. These results suggested that Baicalin inhibited the pulmonary inflammatory and fibrosis in a rat model of silicosis, which could be attributed to inhibition of the TLR4/NF-kappaB pathway.

Zobrazit více v PubMed

Liu H, Yu H, Cao Z, Gu J, Pei L, Jia M, Su M. Kaempferol modulates autophagy and alleviates silica-induced pulmonary fibrosis. DNA Cell Biol. 2019;38:1418–1426. doi: 10.1089/dna.2019.4941. PubMed DOI

Fernández Álvarez R, Martínez González C, Quero Martínez A, Blanco Pérez JJ, Carazo Fernández L, Prieto Fernández A. Guidelines for the diagnosis and monitoring of silicosis. Arch Bronconeumol. 2015;51:86–93. https://doi.org/10.1016/j.arbr.2014.07.002, https://doi.org/10.1016/j.arbres.2014.07.010. PubMed DOI

Rimal B, Greenberg AK, Rom WN. Basic pathogenetic mechanisms in silicosis: current understanding. Curr Opin Pulm Med. 2005;11:169–173. doi: 10.1097/01.mcp.0000152998.11335.24. PubMed DOI

Chen S, Cui G, Peng C, Lavin MF, Sun X, Zhang E, Yang Y, Guan Y, Du Z, Shao H. Transplantation of adipose-derived mesenchymal stem cells attenuates pulmonary fibrosis of silicosis via anti-inflammatory and anti-apoptosis effects in rats. Stem Cell Res Ther. 2018;9:110. doi: 10.1186/s13287-018-0846-9. PubMed DOI PMC

Adamcakova J, Mokra D. New insights into pathomechanisms and treatment possibilities for lung silicosis. Int J Mol Sci. 2021;22:4162. doi: 10.3390/ijms22084162. PubMed DOI PMC

Song X, Liu W, Xie S, Wang M, Cao G, Mao C, Lv C. All-transretinoic acid ameliorates bleomycin-induced lung fibrosis by downregulating the TGF-β1/Smad3 signaling pathway in rats. Lab Invest. 2013;93:1219–1231. doi: 10.1038/labinvest.2013.108. PubMed DOI

Yang M, Qian X, Wang N, Ding Y, Li H, Zhao Y, Yao S. Inhibition of MARCO ameliorates silica-induced pulmonary fibrosis by regulating epithelial-mesenchymal transition. Toxicol Lett. 2019;301:64–72. doi: 10.1016/j.toxlet.2018.10.031. PubMed DOI

Komai M, Mihira K, Shimada A, Miyamoto I, Ogihara K, Naya Y, Morita T, Inoue K, Takano H. Pathological study on epithelial-mesenchymal transition in silicotic lung lesions in rat. Vet Sci. 2019;6:70. doi: 10.3390/vetsci6030070. PubMed DOI PMC

Oyanagi J, Ogawa T, Sato H, Higashi S, Miyazaki K. Epithelial-mesenchymal transition stimulates human cancer cells to extend microtubule-based invasive protrusions and suppresses cell growth in collagen gel. PLoS One. 2012;7:e53209. doi: 10.1371/journal.pone.0053209. PubMed DOI PMC

Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4:499–511. doi: 10.1038/nri1391. PubMed DOI

Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34:637–650. doi: 10.1016/j.immuni.2011.05.006. PubMed DOI

Chen F, Lu Y, Demers LM, Rojanasakul Y, Shi X, Vallyathan V, Castranova V. Role of hydroxyl radical in silica-induced NF-kappa B activation in macrophages. Ann Clin Lab Sci. 1998;28:1–13. PubMed

Ye K, Chen QW, Sun YF, Lin JA, Xu JH. Loss of BMI-1 dampens migration and EMT of colorectal cancer in inflammatory microenvironment through TLR4/MD-2/MyD88-mediated NF-κB signaling. J Cell Biochem. 2018;119:1922–1930. doi: 10.1002/jcb.26353. PubMed DOI

Min C, Eddy SF, Sherr DH, Sonenshein GE. NF-kappaB and epithelial to mesenchymal transition of cancer. J Cell Biochem. 2008;104:733–744. doi: 10.1002/jcb.21695. PubMed DOI

Liu B, Ding F, Hu D, Zhou Y, Long C, Shen L, Zhang Y, Zhang D, Wei G. Correction to: Human umbilical cord mesenchymal stem cell conditioned medium attenuates renal fibrosis by reducing inflammation and epithelial-to-mesenchymal transition via the TLR4/NF-κB signaling pathway in vivo and in vitro. Stem Cell Res Ther. 2018;9:76. https://doi.org/10.1186/s13287-018-0845-x, https://doi.org/10.1186/s13287-021-02151-w, https://doi.org/10.1186/s13287-017-0760-6. PubMed DOI PMC

Liu T, Dai W, Li C, Liu F, Chen Y, Weng D, Chen J. Baicalin alleviates silica-induced lung inflammation and fibrosis by inhibiting the Th17 response in C57BL/6 Mice. J Nat Prod. 2015;78:3049–3057. doi: 10.1021/acs.jnatprod.5b00868. PubMed DOI

Guo M, Cao Y, Wang T, Song X, Liu Z, Zhou E, Deng X, Zhang N, Yang Z. Baicalin inhibits Staphylococcus aureus-induced apoptosis by regulating TLR2 and TLR2-related apoptotic factors in the mouse mammary glands. Eur J Pharmacol. 2014;723:481–488. doi: 10.1016/j.ejphar.2013.10.032. PubMed DOI

Wu Y, Wang F, Fan L, Zhang W, Wang T, Du Y, Bai X. Baicalin alleviates atherosclerosis by relieving oxidative stress and inflammatory responses via inactivating the NF-κB and p38 MAPK signaling pathways. Biomed Pharmacother. 2018;97:1673–1679. doi: 10.1016/j.biopha.2017.12.024. PubMed DOI

Jin X, Liu MY, Zhang DF, Zhong X, Du K, Qian P, Yao WF, Gao H, Wei MJ. Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP3 inflammasomes and TLR4/NF-κB signaling pathway. CNS Neurosci Ther. 2019;25:575–590. doi: 10.1111/cns.13086. PubMed DOI PMC

Hou J, Wang J, Zhang P, Li D, Zhang C, Zhao H, Fu J, Wang B, Liu J. Baicalin attenuates proinflammatory cytokine production in oxygen-glucose deprived challenged rat microglial cells by inhibiting TLR4 signaling pathway. Int Immunopharmacol. 2012;14:749–757. doi: 10.1016/j.intimp.2012.10.013. PubMed DOI

Zhao H, Li C, Li L, Liu J, Gao Y, Mu K, Chen D, Lu A, Ren Y, Li Z. Baicalin alleviates bleomycin induced pulmonary fibrosis and fibroblast proliferation in rats via the PI3K/AKT signaling pathway. Mol Med Rep. 2020;21:2321–2334. doi: 10.3892/mmr.2020.11046. PubMed DOI PMC

Matsunaga N, Tsuchimori N, Matsumoto T, Ii M. TAK-242 (resatorvid), a small-molecule inhibitor of Toll-like receptor (TLR) 4 signaling, binds selectively to TLR4 and interferes with interactions between TLR4 and its adaptor molecules. Mol Pharmacol. 2011;79:34–41. doi: 10.1124/mol.110.068064. PubMed DOI

Sai L, Yu G, Bo C, Zhang Y, Du Z, Li C, Zhang Z, Jia Q, Shao H, Peng C. Profiling long non-coding RNA changes in silica-induced pulmonary fibrosis in rat. Toxicol Lett. 2019;310:7–13. doi: 10.1016/j.toxlet.2019.04.003. PubMed DOI

Szapiel SV, Elson NA, Fulmer JD, Hunninghake GW, Crystal RG. Bleomycin-induced interstitial pulmonary disease in the nude, athymic mouse. Am Rev Respir Dis. 1979;120:893–899. PubMed

Guo J, Yang Z, Jia Q, Bo C, Shao H, Zhang Z. Pirfenidone inhibits epithelial-mesenchymal transition and pulmonary fibrosis in the rat silicosis model. Toxicol Lett. 2019;300:59–66. doi: 10.1016/j.toxlet.2018.10.019. PubMed DOI

Lv J, Zhang Y, Yu T, Yang H, Li Y, Xiao J, Li B. A Promising transwell co-culture cell model for silicosis. Toxicol In Vitro. 2022;81:105318. doi: 10.1016/j.tiv.2022.105318. PubMed DOI

Fang S, Guo H, Cheng Y, Zhou Z, Zhang W, Han B, Luo W, Wang J, Xie W, Chao J. circHECTD1 promotes the silica-induced pulmonary endothelial-mesenchymal transition via HECTD1. Cell Death Dis. 2018;9:396. doi: 10.1038/s41419-018-0432-1. PubMed DOI PMC

Zheng L, Zhang C, Li L, Hu C, Hu M, Sidikejiang N, Wang X, Lin M, Rong R. Baicalin ameliorates renal fibrosis via inhibition of transforming growth factor β1 production and downstream signal transduction. Mol Med Rep. 2017;15:1702–1712. doi: 10.3892/mmr.2017.6208. PubMed DOI PMC

Zhang H, Liu B, Jiang S, Wu JF, Qi CH, Mohammadtursun N, Li Q, Li L, Zhang H, Sun J, Dong JC. Baicalin ameliorates cigarette smoke-induced airway inflammation in rats by modulating HDAC2/NF-κB/PAI-1 signalling. Pulm Pharmacol Ther. 2021;70:102061. doi: 10.1016/j.pupt.2021.102061. PubMed DOI

Zhao H, Li C, Li L, Liu J, Gao Y, Mu K, Chen D, Lu A, Ren Y, Li Z. Baicalin alleviates bleomycin induced pulmonary fibrosis and fibroblast proliferation in rats via the PI3K/AKT signaling pathway. Mol Med Rep. 2020;21:2321–2334. doi: 10.3892/mmr.2020.11046. PubMed DOI PMC

Chen J, Yuan CB, Yang B, Zhou X. Baicalin Inhibits EMT through PDK1/AKT Signaling in Human Nonsmall Cell Lung Cancer. J Oncol. 2021;2021:4391581. doi: 10.1155/2021/4391581. PubMed DOI PMC

Pollard KM. Silica, Silicosis, and Autoimmunity. Front Immunol. 2016;7:97. doi: 10.3389/fimmu.2016.00097. PubMed DOI PMC

Feng F, Cheng P, Xu S, Li N, Wang H, Zhang Y, Wang W. Tanshinone IIA attenuates silica-induced pulmonary fibrosis via inhibition of TGF-β1-Smad signaling pathway. Biomed Pharmacother. 2020;121:109586. doi: 10.1016/j.biopha.2019.109586. PubMed DOI

Zhang L, Tao X, Fu Q, Ge C, Li R, Li Z, Zhu Y, Tian H, Li Q, Liu M, Hu H, Zeng B, Lin Z, Li C, Luo R, Song X. Curcumin inhibits cell proliferation and migration in NSCLC through a synergistic effect on the TLR4/MyD88 and EGFR pathways. Oncol Rep. 2019;42:1843–1855. doi: 10.3892/or.2019.7278. PubMed DOI PMC

Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1:a001651. doi: 10.1101/cshperspect.a001651. PubMed DOI PMC

Chan JYW, Tsui JCC, Law PTW, So WKW, Leung DYP, Sham MMK, Tsui SKW, Chan CWH. Regulation of TLR4 in silica-induced inflammation: An underlying mechanism of silicosis. Int J Med Sci. 2018;15:986–991. doi: 10.7150/ijms.24715. PubMed DOI PMC

Cao C, Yin C, Shou S, Wang J, Yu L, Li X, Chai Y. Ulinastatin Protects Against LPS-Induced Acute Lung Injury By Attenuating TLR4/NF-κB Pathway Activation and Reducing Inflammatory Mediators. Shock. 2018;50:595–605. doi: 10.1097/SHK.0000000000001104. PubMed DOI

Wang L, Liu H, Zhang L, Wang G, Zhang M, Yu Y. Neuroprotection of dexmedetomidine against cerebral ischemia-reperfusion injury in rats: involved in inhibition of NF-κB and inflammation response. Biomol Ther (Seoul) 2017;25:383–389. doi: 10.4062/biomolther.2015.180. PubMed DOI PMC

Mitchell JP, Carmody RJ. NF-κB and the transcriptional control of inflammation. Int Rev Cell Mol Biol. 2018;335:41–84. doi: 10.1016/bs.ircmb.2017.07.007. PubMed DOI

Fu YJ, Xu B, Huang SW, Luo X, Deng XL, Luo S, Liu C, Wang Q, Chen JY, Zhou L. Baicalin prevents LPS-induced activation of TLR4/NF-κB p65 pathway and inflammation in mice via inhibiting the expression of CD14. Acta Pharmacol Sin. 2021;42:88–96. doi: 10.1038/s41401-020-0411-9. PubMed DOI PMC

Liu H, Xiong J, He T, Xiao T, Li Y, Yu Y, Huang Y, Xu X, Huang Y, Zhang J, Zhang B, Zhao J. High uric acid-induced epithelial-mesenchymal transition of renal tubular epithelial cells via the TLR4/NF-kB Signaling Pathway. Am J Nephrol. 2017;46:333–342. doi: 10.1159/000481668. PubMed DOI

Ma ZJ, Zhang XN, Li L, Yang W, Wang SS, Guo X, Sun P, Chen LM. Tripterygium glycosides tablet ameliorates renal tubulointerstitial fibrosis via the toll-like receptor 4/nuclear factor kappa B signaling pathway in high-fat diet fed and streptozotocin-induced diabetic rats. J Diabetes Res. 2015;2015:390428. doi: 10.1155/2015/390428. PubMed DOI PMC

Yang B, Bai H, Sa Y, Zhu P, Liu P. Inhibiting EMT, stemness and cell cycle involved in baicalin-induced growth inhibition and apoptosis in colorectal cancer cells. J Cancer. 2020;11:2303–2317. doi: 10.7150/jca.372422. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...