Rooibos (Aspalathus linearis) and its constituent quercetin can suppress ovarian cell functions and their response to FSH

. 2023 Apr 30 ; 72 (2) : 269-280.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37159860

Rooibos (Aspalathus linearis Brum. f) can directly influence female reproduction, but whether rooibos can influence the response of ovarian cells to FSH and whether the rooibos effects are due to the presence of quercetin remain unknown. We compared the influence of rooibos extract and quercetin (both at 10 µg/ml-1) on porcine ovarian granulosa cells cultured with and without FSH (0, 1, 10 or 100 ng/ml-1). The expression of intracellular proliferation (PCNA, cyclin B1) and apoptosis (bax, caspase 3) markers in the cells was detected by immunocytochemistry. The release of progesterone (P), testosterone (T) and estradiol (E) were evaluated with ELISAs. Administration of both rooibos and quercetin reduced the accumulation of proliferation markers and promoted the accumulation of apoptosis markers and the release of T and E. Rooibos stimulated, but quercetin inhibited, P output. Administration of FSH increased the accumulation of proliferation markers, decreased the accumulation of apoptosis markers, promoted the release of P and T, and had a biphasic effect on E output. The addition of both rooibos and quercetin mitigated or prevented the main effects of FSH. The present observations suggest a direct influence of both rooibos and quercetin on basic ovarian functions - proliferation, apoptosis, steroidogenesis and response to FSH. The similarity in the major effects of rooibos and its constituent quercetin indicates that quercetin could be the molecule responsible for the main rooibos effects on the ovary. The potential anti-reproductive effects of rooibos and rooibos constituent quercetin, should be taken into account in animal and human nutrition.

Zobrazit více v PubMed

McKay DL, Blumberg JB. A review of the bioactivity of South African herbal teas: rooibos (Aspalathus linearis) and honeybush (Cyclopia intermedia) Phytother Res. 2007;21:1–16. doi: 10.1002/ptr.1992. PubMed DOI

Sirotkin AV. Rooibos (Aspalathus linearis) influence on health and ovarian functions. J Anim Physiol Anim Nutr (Berl) 2022;106:995–999. doi: 10.1111/jpn.13624. PubMed DOI

Pyrzanowska J. Pharmacological activity of Aspalathus linearis extracts: pre-clinical research in view of prospective neuroprotection. Nutr Neurosci. 2022:1–19. doi: 10.1080/1028415X.2022.2051955. PubMed DOI

Štochmal’ová A, Kádasi A, Alexa R, Bauer M, Harrath A, Sirotkin A. Direct effect of pholyphenol-rich plants, rooibos and ginkgo, on porcine ovarian cell functions. J Anim Physiol Anim Nutr. 2018;102:e550–e557. doi: 10.1111/jpn.12795. PubMed DOI

Sirotkin AV, Macejková M, Tarko A, Fabova Z, Alrezaki A, Alwasel S, Harrath AH. Effects of benzene on gilts ovarian cell functions alone and in combination with buckwheat, rooibos, and vitex. Environmental Science and Pollution Research. 2021;28:3434–3444. doi: 10.1007/s11356-020-10739-7. PubMed DOI

Sirotkin AV, Macejková M, Tarko A, Fabova Z, Alwasel S, Harrath AH. Buckwheat, rooibos, and vitex extracts can mitigate adverse effects of xylene on ovarian cells in vitro. Environ Sci Pollut Res Int. 2021;28:7431–7439. doi: 10.1007/s11356-020-11082-7. PubMed DOI

Sirotkin AV, Alexa R, Stochmalova A, Scsukova S. Plant isoflavones can affect accumulation and impact of silver and titania nanoparticles on ovarian cells. Endocr Regul. 2021;55:52–60. doi: 10.2478/enr-2021-0007. PubMed DOI

Santini SE, Basini G, Bussolati S, Grasselli F. The phytoestrogen quercetin impairs steroidogenesis and angiogenesis in swine granulosa cells in vitro. J Biomed Biotechnol. 2009;2009:419891. doi: 10.1155/2009/419891. PubMed DOI PMC

Santos JS, Escher GB, do Carmo MV, Azevedo L, Marques MB, Daguer H, Molognoni L, Genovese MI, Wen M, Zhang L. A new analytical concept based on chemistry and toxicology for herbal extracts analysis: From phenolic composition to bioactivity. Food Res Int. 2020;132:109090. doi: 10.1016/j.foodres.2020.109090. PubMed DOI

Bramati L, Aquilano F, Pietta P. Unfermented rooibos tea: quantitative characterization of flavonoids by HPLC–UV and determination of the total antioxidant activity. J Agric Food Chem. 2003;51:7472–7474. doi: 10.1021/jf0347721. PubMed DOI

Beelders T, Sigge GO, Joubert E, de Beer D, de Villiers A. Kinetic optimisation of the reversed phase liquid chromatographic separation of rooibos tea (Aspalathus linearis) phenolics on conventional high performance liquid chromatographic instrumentation. J Chromatogr. 2012;1219:128–139. doi: 10.1016/j.chroma.2011.11.012. PubMed DOI

Joubert E, Beelders T, de Beer D, Malherbe CJ, de Villiers AJ, Sigge GO. Variation in phenolic content and antioxidant activity of fermented rooibos herbal tea infusions: Role of production season and quality grade. J Agric Food Chem. 2012;60:9171–9179. doi: 10.1021/jf302583r. PubMed DOI

Sharma A, Kashyap D, Sak K, Tuli HS, Sharma AK. Therapeutic charm of quercetin and its derivatives: a review of research and patents. Pharmaceutical patent analyst. 2018;7:15–32. doi: 10.4155/ppa-2017-0030. PubMed DOI

Yang L, Chen Y, Liu Y, Xing Y, Miao C, Zhao Y, Chang X, Zhang Q. The role of oxidative stress and natural antioxidants in ovarian aging. Front Pharmacol. 2021;11:617843. doi: 10.3389/fphar.2020.617843. PubMed DOI PMC

Beazley KE, Nurminskaya M. Effects of dietary quercetin on female fertility in mice: implication of transglutaminase 2. Reprod Fertil Dev. 2016;28:974–981. doi: 10.1071/RD14155. PubMed DOI PMC

Shu X, Hu X, Zhou S, Xu C, Qiu Q, Nie S, Xie M. Effect of quercetin exposure during the prepubertal period on ovarian development and reproductive endocrinology of mice. (in Chinese) Yao Xue Xue Bao = Acta Pharmaceutica Sinica. 2011;46:1051–1057. PubMed

Elkady M, Shalaby S, Fathi F, El-Mandouh S. Effects of quercetin and rosuvastatin each alone or in combination on cyclophosphamide-induced premature ovarian failure in female albino mice. Hum Exp Toxicol. 2019;38:1283–1295. doi: 10.1177/0960327119865588. PubMed DOI

Chen Z-G, Luo L-L, Xu J-J, Zhuang X-L, Kong X-X, Fu Y-C. Effects of plant polyphenols on ovarian follicular reserve in aging rats. Biochem Cell Biol. 2010;88:737–745. doi: 10.1139/O10-012. PubMed DOI

Olaniyan OT, Bamidele O, Adetunji CO, Priscilla B, Femi A, Ayobami D, Okotie G, Oluwaseun I, Olugbenga E, Mali PC. Quercetin modulates granulosa cell mRNA androgen receptor gene expression in dehydroepiandrosterone-induced polycystic ovary in Wistar rats via metabolic and hormonal pathways. J Basic Clin Physiol Pharmacol. 2020;31:20190076. doi: 10.1515/jbcpp-2019-0076. PubMed DOI

Nna VU, Usman UZ, Ofutet EO, Owu DU. Quercetin exerts preventive, ameliorative and prophylactic effects on cadmium chloride-induced oxidative stress in the uterus and ovaries of female Wistar rats. Food Chem Toxicol. 2017;102:143–155. doi: 10.1016/j.fct.2017.02.010. PubMed DOI

Naseer Z, Ahmad E, Epikmen ET, Uçan U, Boyacioğlu M, İpek E, Akosy M. Quercetin supplemented diet improves follicular development, oocyte quality, and reduces ovarian apoptosis in rabbits during summer heat stress. Theriogenology. 2017;96:136–141. doi: 10.1016/j.theriogenology.2017.03.029. PubMed DOI

Jahan S, Abid A, Khalid S, Afsar T, Shaheen G, Almajwal A, Razak S. Therapeutic potentials of Quercetin in management of polycystic ovarian syndrome using Letrozole induced rat model: a histological and a biochemical study. J Ovarian Res. 2018;11:1–10. doi: 10.1186/s13048-018-0400-5. PubMed DOI PMC

Pourteymour Fard Tabrizi F, Hajizadeh-Sharafabad F, Vaezi M, Jafari-Vayghan H, Alizadeh M, Maleki V. Quercetin and polycystic ovary syndrome, current evidence and future directions: a systematic review. J Ovarian Res. 2020;13:1–10. doi: 10.1186/s13048-020-0616-z. PubMed DOI PMC

Cerezetti MB, González SM, Ferraz CR, Verri WA, Rabelo EA, Seneda MM, Morotti F. Impact of the antioxidant quercetin on morphological integrity and follicular development in the in vitro culture of Bos indicus female ovarian fragments. In Vitro Cell Dev Biol Anim. 2021;57:856–864. doi: 10.1007/s11626-021-00629-8. PubMed DOI

Zheng S, Ma M, Chen Y, Li M. Effects of quercetin on ovarian function and regulation of the ovarian PI3K/Akt/FoxO3a signalling pathway and oxidative stress in a rat model of cyclophosphamide-induced premature ovarian failure. Basic Clin Pharmacol Toxicol. 2022;130:240–253. doi: 10.1111/bcpt.13696. PubMed DOI

Zheng S, Chen Y, Ma M, Li M. Mechanism of quercetin on the improvement of ovulation disorder and regulation of ovarian CNP/NPR2 in PCOS model rats. J Formosan Med Assoc. 2022;121:1081–1092. doi: 10.1016/j.jfma.2021.08.015. PubMed DOI

Tarko A, Štochmalova A, Hrabovszka S, Vachanova A, Harrath AH, Alwasel S, Grossman R, Sirotkin AV. Can xylene and quercetin directly affect basic ovarian cell functions? Res Vet Sci. 2018;119:308–312. doi: 10.1016/j.rvsc.2018.07.010. PubMed DOI

Tarko A, Štochmal’ová A, Jedličková K, Hrabovszká S, Vachanová A, Harrath AH, Alwasel S, Alrezaki A, Kotwica J, Baláži A. Effects of benzene, quercetin, and their combination on porcine ovarian cell proliferation, apoptosis, and hormone release. Arch Anim Breed. 2019;62:345–351. doi: 10.5194/aab-62-345-2019. PubMed DOI PMC

Sirotkin AV, Štochmal’ová A, Alexa R, Kadasi A, Bauer M, Grossmann R, Alrezaki A, Alwasel S, Harrath AH. Quercetin directly inhibits basal ovarian cell functions and their response to the stimulatory action of FSH. Eur J Pharmacol. 2019;860:172560. doi: 10.1016/j.ejphar.2019.172560. PubMed DOI

Sirotkin AV, Hrabovszká S, Štochmal’ová A, Grossmann R, Alwasel S, Harrath AH. Effect of quercetin on ovarian cells of pigs and cattle. Anim Reprod Sci. 2019;205:44–51. doi: 10.1016/j.anireprosci.2019.04.002. PubMed DOI

Kolesarova A, Roychoudhury S, Klinerova B, Packova D, Michalcova K, Halenar M, Kopcekova J, Mnahoncakova E, Galik B. Dietary bioflavonoid quercetin modulates porcine ovarian granulosa cell functions in vitro. J Environ Sci Health B. 2019;54:533–537. doi: 10.1080/03601234.2019.1586034. PubMed DOI

Sirotkin AV. Regulators of Ovarian Functions. 2nd Edition ed. Nova Science Publishers; New York: 2014.

Sirotkin AV, Dekanová P, Harrath AH. FSH, oxytocin and IGF-I regulate the expression of sirtuin 1 in porcine ovarian granulosa cells. Physiol Res. 2020;69:461–466. doi: 10.33549/physiolres.934424. PubMed DOI PMC

Subramaniam G, Campsteijn C, Thompson EM. Co-expressed Cyclin D variants cooperate to regulate proliferation of germline nuclei in a syncytium. Cell Cycle. 2015;14:2129–2141. doi: 10.1080/15384101.2015.1041690. PubMed DOI PMC

Mansilla SF, De La Vega MB, Calzetta NL, Siri SO, Gottifredi V. CDK-independent and PCNA-dependent functions of p21 in DNA replication. Genes. 2020;11:593. doi: 10.3390/genes11060593. PubMed DOI PMC

Edlich F. BCL-2 proteins and apoptosis: Recent insights and unknowns. Biochem Biophys Res Commun. 2018;500:26–34. doi: 10.1016/j.bbrc.2017.06.190. PubMed DOI

Nordenström K, Rosberg S, Roos P. Effects of FSH and LH on adenylate cyclase activity in rat granulosa cell membranes during follicular maturation. Eur J Endocrinol. 1985;109:258–265. doi: 10.1530/acta.0.1090258. PubMed DOI

Adashi EY, Resnick CE, Hurwitz A, Ricciarelli E, Hernandez ER, Rosenfeld RG. Ovarian granulosa cell-derived insulin-like growth factor binding proteins: modulatory role of follicle-stimulating hormone. Endocrinology. 1991;128:754–760. doi: 10.1210/endo-128-2-754. PubMed DOI

Thomas FH, Ethier J-F, Shimasaki S, Vanderhyden BC. Follicle-stimulating hormone regulates oocyte growth by modulation of expression of oocyte and granulosa cell factors. Endocrinology. 2005;146:941–949. doi: 10.1210/en.2004-0826. PubMed DOI

Cao Y, Zhuang M-F, Yang Y, Xie S-W, Cui J-G, Cao L, Zhang T-T, Zhu Y. Preliminary study of quercetin affecting the hypothalamic-pituitary-gonadal axis on rat endometriosis model. Evid Based Complement Alternat Med. 2014;2014:78168. doi: 10.1155/2014/781684. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...