Androgen Receptor Imaging in the Management of Hormone-Dependent Cancers with Emphasis on Prostate Cancer

. 2023 May 04 ; 24 (9) : . [epub] 20230504

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37175938

Prostate cancer is dependent on the action of steroid hormones on the receptors. Endocrine therapy inhibits hormone production or blocks the receptors, thus providing clinical benefit to many, but not all, oncological patients. It is difficult to predict which patient will benefit from endocrine therapy and which will not. Positron Emission Tomography (PET) imaging of androgen receptors (AR) may provide functional information on the likelihood of endocrine therapy response in individual patients. In this article, we review the utility of [18F]FDHT-PET imaging in prostate, breast, and other hormone-dependent cancers expressing AR. The methodologies, development, and new possibilities are discussed as well.

Zobrazit více v PubMed

Wadosky K., Koochekpour S. Therapeutic rationales, progresses, failures, and future directions for advanced prostate cancer. Int. J. Biol. Sci. 2016;12:409–426. doi: 10.7150/ijbs.14090. PubMed DOI PMC

Shore N.D., Abrahamsson P.A., Anderson J., Crawford E.D., Lange P. New considerations for ADT in advanced prostate cancer and the emerging role of GnRH antagonists. Prostate Cancer Prostatic Dis. 2013;16:7–15. doi: 10.1038/pcan.2012.25. PubMed DOI

Pejcic T., Todorovic Z., Ðuraševic S., Popovic L. Mechanisms of prostate cancer cells survival and their therapeutic targeting. Int. J. Mol. Sci. 2023;24:2939. doi: 10.3390/ijms24032939. PubMed DOI PMC

Crawford E.D., Heidenreich A., Lawrentschuk N., Tombal B., Pompeo A.C.L., Mendoza-Valdes A., Miller K., Debruyne F.M.J., Klotz L. Androgen-targeted therapy in men with prostate cancer: Evolving practice and future considerations. Prostate Cancer Prostatic Dis. 2019;22:24–38. doi: 10.1038/s41391-018-0079-0. PubMed DOI PMC

Lilja H., Ulmert D., Vickers A.J. Prostate-specific antigen and prostate cancer: Prediction, detection and monitoring. Nat. Rev. Cancer. 2008;8:268–278. doi: 10.1038/nrc2351. PubMed DOI

Bardin C.W., Brown T., Isomaa V.V., Jänne O.A. Progestins can mimic, inhibit and potentiate the actions of androgens. Pharmacol. Ther. 1983;23:443–459. doi: 10.1016/0163-7258(83)90023-2. PubMed DOI

Raudrant D., Rabe T. Progestogens with antiandrogenic properties. Drugs. 2003;63:463–492. doi: 10.2165/00003495-200363050-00003. PubMed DOI

Scher H.I., Beer T.M., Higano C.S., Anand A., Taplin M.E., Efstathiou E., Rathkopf D., Shelkey J., Yu E.Y., Alumkal J., et al. Anti- tumour activity of MDV3100 in castration-resistant prostate cancer: A phase 1-2 study. Lancet. 2010;375:1437–1446. doi: 10.1016/S0140-6736(10)60172-9. PubMed DOI PMC

Scher H.I., Fizazi K., Saad F., Taplin M.E., Sternberg C.N., Miller K., de Wit R., Mulders P., Chi K.N., Shore N.D., et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 2012;367:1187–1197. doi: 10.1056/NEJMoa1207506. PubMed DOI

Stanbrough M., Bubley G.J., Ross K., Golub T.R., Rubin M.A., Penning T.M., Febbo P.G., Balk S.P. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res. 2006;66:2815–2825. doi: 10.1158/0008-5472.CAN-05-4000. PubMed DOI

Chen C.D., Welsbie D.S., Tran C., Baek S.H., Chen R., Vessella R., Rosenfeld M.G., Sawyers C.L. Molecular determinants of resistance to antiandrogen therapy. Nat. Med. 2004;10:33–39. doi: 10.1038/nm972. PubMed DOI

Montironi R., Cimadamore A., Lopez-Beltran A., Scarpelli M., Aurilio G., Santoni M., Massari F., Cheng L. Morphologic, Molecular and Clinical Features of Aggressive Variant Prostate Cancer. Cells. 2020;9:1073. doi: 10.3390/cells9051073. PubMed DOI PMC

Kiesewetter D.O., Kilbourn M.R., Landvatter S.W., Heiman D.F., Katzenellenbogen J.A., Welch M.J. Preparation of four fluorine-18-labeled estrogens and their selective uptakes in target tissues of immature rats. J. Nucl. Med. 1984;25:1212–1221. PubMed

Dehdashti F., Picus J., Michalski J.M., Dence C.S., Siegel B.A., Katzenellenbogen J.A., Welch M.J. Positron tomographic assessment of androgen receptors in prostatic carcinoma. Eur. J. Nucl. Med. Mol. Imaging. 2005;32:344–350. doi: 10.1007/s00259-005-1764-5. PubMed DOI

Dehdashti F., Laforest R., Gao F., Aft R.L., Dence C.S., Zhou D., Shoghi K.I., Siegel B.A., Katzenellenbogen J.A., Welch M.J. Assessment of progesterone receptors in breast carcinoma by PET with 21-18F-fluoro-16alpha,17alpha-[(R)-(1′-alpha-furylmethylidene)dioxy]-19-norpregn-4-ene-3,20-dione. J. Nucl. Med. 2012;53:363–370. doi: 10.2967/jnumed.111.098319. PubMed DOI PMC

Ghanadian R., Waters S., Chisholm G. Investigations into the use of 77Br labelled 5α-dihydrotestosterone for scanning the prostate. Eur. J. Nucl. Med. 1977;2:155–157. doi: 10.1007/BF00257273. PubMed DOI

Eakins M., Waters S. The synthesis of 77Br-labelled 5α-dihydrotestosterone and a comparison of its distribution in rats with 77Br-bromide. Int. J. Appl. Radiat. Isot. 1979;30:701–703. doi: 10.1016/0020-708X(79)90112-1. PubMed DOI

Tarle M., Padovan R., Spaventi Š. The uptake of radioiodinated 5 α -dihydrotestosterone by the prostate of intact and castrated rats. Eur. J. Nucl. Med. 1981;6:79–83. doi: 10.1007/BF00253718. PubMed DOI

Hoyte R., Rosner W., Hochberg R. Synthesis of 16α-[125I] iodo-5α-dihydrotestosterone and evaluation of its affinity for the androgen receptor. J. Steroid Biochem. 1982;16:621–628. doi: 10.1016/0022-4731(82)90097-8. PubMed DOI

Hoyte R.M., MacLusky N.J., Hochberg R.B. The synthesis and testing of E-17α-(2-iodovinyl)-5 α-dihydrotestosterone and Z-17α-(2-iodovinyl)-5 α-dihydrotestosterone as γ-emitting ligands for the androgen receptor. J. Steroid Biochem. 1990;36:125–132. doi: 10.1016/0022-4731(90)90122-9. PubMed DOI

Ali H., Rousseau J., Ahmed N., Guertin V., Hochberg R.B., van Lier J.E. Synthesis of the 7α-cyano (17α, 20E/Z)-[125I] iodovinyl-19-nortestosterones: Potential radioligands for androgen and progesterone receptors. Steroids. 2003;68:1163–1171. doi: 10.1016/j.steroids.2003.08.011. PubMed DOI

Katzenellenbogen J.A. PET Imaging Agents (FES, FFNP, and FDHT) for Estrogen, Androgen, and Progesterone Receptors to Improve Management of Breast and Prostate Cancers by Functional Imaging. Cancers. 2020;12:2020. doi: 10.3390/cancers12082020. PubMed DOI PMC

Carlson K.E., Katzenellenbogen J.A. A comparative study of the selectivity and efficiency of target tissue uptake of five tritium-labeled androgens in the rat. J. Steroid Biochem. 1990;36:549–561. doi: 10.1016/0022-4731(90)90172-O. PubMed DOI

Liu A., Katzenellenbogen J.A., VanBrocklin H.F., Mathias C.J., Welch M.J. 20-[18F] fluoromibolerone, a positron-emitting radiotracer for androgen receptors: Synthesis and tissue distribution studies. J. Nucl. Med. 1991;32:81–88. PubMed

Choe Y.S., Lidstroem P.J., Chi D.Y., Bonasera T.A., Welch M.J., Katzenellenbogen J.A. Synthesis of 11-beta-[18F] Fluoro-5-alpha-dihydrotestosterone and 11-beta.-[18F] Fluoro-19-nor-5.alpha-dihydrotestosterone: Preparation via halofluorination-reduction, receptor binding, and tissue distribution. J. Med. Chem. 1995;38:816–825. doi: 10.1021/jm00005a009. PubMed DOI

Liu A., Dence C.S., Welch M.J., Katzenellenbogen J.A. Fluorine-18-labeled androgens: Radiochemical synthesis and tissue distribution studies on six fluorine-substituted androgens, potential imaging agents for prostatic cancer. J. Nucl. Med. 1992;33:724–734. PubMed

Bonasera T.A., O’Neil J.P., Xu M., Dobkin J.A., Cutler P.D., Lich L.L., Choe Y.S., Katzenellenbogen J.A., Welch M.J. Preclinical evaluation of fluorine-18-labeled androgen receptor ligands in baboons. J. Nucl. Med. 1996;37:1009–1015. PubMed

Larson S.M., Morris M., Gunther I., Beattie B., Humm J.L., Akhurst T.A., Finn R.D., Erdi Y., Pentlow K., Dyke J., et al. Tumor localization of 16_-18F-fluoro-5alpha-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J. Nucl. Med. 2004;45:366–373. PubMed

Fox J.J., Schöder H., Larson S.M. Molecular imaging of prostate cancer. Curr. Opin. Urol. 2012;22:320–327. doi: 10.1097/MOU.0b013e32835483d5. PubMed DOI PMC

Vargas H.A., Wassberg C., Fox J.J., Wibmer A.G., Goldman D.A., Kuk D., Gonen M., Larson S., Morris M.J., Scher H.I., et al. Bone Metastases in Castration-Resistant Prostate Cancer: Associations between Morphologic CT Patterns, Glycolytic Activity, and Androgen Receptor Expression on PET and Overall Survival. Radiology. 2014;271:220–229. doi: 10.1148/radiol.13130625. PubMed DOI PMC

Wibmer A.G., Burger I.A., Sala E., Hricak H., Weber W.A., Vargas H.A. Molecular Imaging of Prostate Cancer. Radiographics. 2016;36:142–159. doi: 10.1148/rg.2016150059. PubMed DOI PMC

Zanzonico P.B., Finn R., Pentlow K.S., Erdi Y., Beattie B., Akhurst T., Squire O., Morris M., Scher H., McCarthy T., et al. PET-based radiation dosimetry in man of 18 F-fluorodihydrotestosterone, a new radiotracer for imaging prostate cancer. J. Nucl. Med. 2004;45:1966–1971. PubMed

Fox J.J., Autran-Blanc E., Morris M.J., Gavane S., Nehmeh S., Van Nuffel A., Gönen M., Schöder H., Humm J.L., Scher H.I., et al. Practical approach for comparative analysis of multilesion molecular imaging using a semiautomated program for PET/CT. J. Nucl. Med. 2011;52:1727–1732. doi: 10.2967/jnumed.111.089326. PubMed DOI PMC

Fox J.J., Gavane S.C., Blanc-Autran E., Nehmeh S., Gönen M., Beattie B., Vargas H.A., Schöder H., Humm J.L., Fine S.W., et al. Positron Emission Tomography/Computed Tomography-Based Assessments of Androgen Receptor Expression and Glycolytic Activity as a Prognostic Biomarker for Metastatic Castration-Resistant Prostate Cancer. JAMA Oncol. 2018;4:217–224. doi: 10.1001/jamaoncol.2017.3588. PubMed DOI PMC

Al Jalali V., Wasinger G., Rasul S., Grubmueller B., Wulkersdorfer B., Balber T., Mitterhauser M., Simon J., Hacker M., Shariat S., et al. Consecutive PSMA and AR PET imaging shows positive correlation to AR and PSMA protein expression in primary hormone naïve prostate cancer. J. Nucl. Med. 2023 doi: 10.2967/jnumed.122.264981. ahead of print . PubMed DOI

Cysouw M.C.F., Kramer G.M., Heijtel D., Schuit R.C., Morris M.J., van den Eertwegh A.J.M., Voortman J., Hoekstra O.S., Oprea-Lager D.E., Boellaard R. Sensitivity of 18F-fluorodihydrotestosterone PET-CT to count statistics and reconstruction protocol in metastatic castration-resistant prostate cancer. EJNMMI Res. 2019;9:70. doi: 10.1186/s13550-019-0531-8. PubMed DOI PMC

Jansen B.H.E., Kramer G.M., Cysouw M.C.F., Yaqub M.M., de Keizer B., Lavalaye J., Booij J., Vargas H.A., Morris M.J., Vis A.N., et al. Healthy Tissue Uptake of 68Ga-Prostate-Specific Membrane Antigen, 18F-DCFPyL, 18F-Fluoromethylcholine, and 18F-Dihydrotestosterone. J. Nucl. Med. 2019;60:1111–1117. doi: 10.2967/jnumed.118.222505. PubMed DOI PMC

Kramer G.M., Yaqub M., Vargas H.A., Schuit R.C., Windhorst A.D., van den Eertwegh A.J.M., van der Veldt A.A.M., Bergman A.M., Burnazi E.M., Lewis J.S., et al. Assessment of Simplified Methods for Quantification of 18F-FDHT Uptake in Patients with Metastatic Castration-Resistant Prostate Cancer. J. Nucl. Med. 2019;60:1221–1227. doi: 10.2967/jnumed.118.220111. PubMed DOI PMC

McHugh D.J., Chudow J., DeNunzio M., Slovin S.F., Danila D.C., Morris M.J., Scher H.I., Rathkopf D.E. A Phase I Trial of IGF-1R Inhibitor Cixutumumab and mTOR Inhibitor Temsirolimus in Metastatic Castration-resistant Prostate Cancer. Clin. Genitourin. Cancer. 2020;18:171–178e2. doi: 10.1016/j.clgc.2019.10.013. PubMed DOI PMC

Parent E.E., Dence C.S., Sharp T.L., Welch M.J., Katzenellenbogen J.A. Synthesis and biological evaluation of a fluorine-18-labeled nonsteroidal androgen receptor antagonist, N-(3-[18F]fluoro-4-nitronaphthyl)-cis-5-norbornene-endo-2, 3-dicarboxylic imide. Nucl. Med. Biol. 2006;33:615–624. doi: 10.1016/j.nucmedbio.2006.04.003. PubMed DOI

Parent E.E., Jenks C., Sharp T., Welch M.J., Katzenellenbogen J.A. Synthesis and biological evaluation of an nonsteroidal bromine-76-labeled androgen receptor ligand 3-[76Br] bromo-hydroxyflutamide. Nucl. Med. Biol. 2006;33:705–713. doi: 10.1016/j.nucmedbio.2006.05.009. PubMed DOI

Parent E.E., Dence C.S., Jenks C., Sharp T.L., Welch M.J., Katzenellenbogen J.A. Synthesis and biological evaluation of [18F] bicalutamide, 4-[76Br] bromobicalutamide, and 4-[76Br] bromo-thiobicalutamide as non-steroidal androgens for prostate cancer imaging. J. Med. Chem. 2007;50:1028–1040. doi: 10.1021/jm060847r. PubMed DOI

Antunes I.F., Rutger J., Dost R.J., Hoving H.D., van Waarde A., Dierckx R.A.J.O., Samplonius D.F., Helfrich W., Elsinga P.H., de Vries E.F.J., et al. Synthesis and Evaluation of 18F-Enzalutamide, a New Radioligand for PET Imaging of Androgen Receptors: A Comparison with 16β-18F-Fluoro-5α-Dihydrotestosterone. J. Nucl. Med. 2021;62:1140–1145. doi: 10.2967/jnumed.120.253641. PubMed DOI

Miladinova D. Molecular Imaging in Breast Cancer. Nucl. Med. Mol. Imaging. 2019;53:313–319. doi: 10.1007/s13139-019-00614-w. PubMed DOI PMC

Vaalavirta L., Rasulova N., Partanen K., Joensuu T., Kairemo K. [18F]-Estradiol PET/CT Imaging in Breast Cancer Patients. J. Diagn. Imaging Ther. 2014;1:59–72. doi: 10.17229/jdit.2014-1007-004. DOI

Venema C.M., Mammatas L.H., Schröder C.P., van Kruchten M., Apollonio G., Glaudemans A.W.J.M., Bongaerts A.H.H., Hoekstra O.S., Verheul H.M.W., Boven E., et al. Androgen and Estrogen Receptor Imaging in Metastatic Breast Cancer Patients as a Surrogate for Tissue Biopsies. J. Nucl. Med. 2017;58:1906–1912. doi: 10.2967/jnumed.117.193649. PubMed DOI

Gemignani M.L., Patil S., Seshan V.E., Sampson M., Humm J.L., Lewis J.S., Brogi E., Larson S.M., Morrow M., Pandit-Taskar N. Feasibility and predictability of perioperative PET and estrogen receptor ligand in patients with invasive breast cancer. J. Nucl. Med. 2013;54:1697–1702. doi: 10.2967/jnumed.112.113373. PubMed DOI PMC

Jacene H., Liu M., Cheng S.C., Abbott A., Dubey S., McCall K., Young D., Johnston M., Van den Abbeele A.D., Overmoyer B. Imaging Androgen Receptors in Breast Cancer with 18F-Fluoro-5α-Dihydrotestosterone PET: A Pilot Study. J. Nucl. Med. 2022;63:22–28. doi: 10.2967/jnumed.121.262068. PubMed DOI PMC

Boers J., Venema C.M., de Vries E.F.J., Hospers G.A.P., Boersma H.H., Rikhof B., Dorbritz C., Glaudemans A.W.J.M., Schröder C.P. Serial [18F]-FDHT-PET to predict bicalutamide efficacy in patients with androgen receptor positive metastatic breast cancer. Eur. J. Cancer. 2021;144:151–161. doi: 10.1016/j.ejca.2020.11.008. PubMed DOI

Mammatas L.H., Venema C.M., Schröder C.P., de Vet H.C.W., van Kruchten M., Glaudemans A.W.J.M., Yaqub M.M., Verheul H.M.W., van der Vegt B., de Vries E.F.J., et al. Visual and quantitative evaluation of [18F]FES and [18F]FDHT PET in patients with metastatic breast cancer: An interobserver variability study. EJNMMI Res. 2020;10:40. doi: 10.1186/s13550-020-00627-z. PubMed DOI PMC

Khayum M.A., Doorduin J., Antunes I.F., Kwizera C., Zijlma R., den Boer J.A., Dierckx R.A.J.O., de Vries E.F.J. In vivo imaging of brain androgen receptors in rats: A [18F]FDHT PET study. Nucl. Med. Biol. 2015;42:561–569. doi: 10.1016/j.nucmedbio.2015.02.003. PubMed DOI

Orevi M., Shamni O., Zalcman N., Chicheportiche A., Mordechai A., Moscovici S., Shoshan Y., Shahar T., Charbit H., Gutreiman M., et al. [18F]-FDHT PET/CT as a tool for imaging androgen receptor expression in high-grade glioma. Neuro Oncol. Adv. 2021;3:vdab019. doi: 10.1093/noajnl/vdab019. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...