Effect of vacancy defect and strain on the structural, electronic and magnetic properties of carbon nitride 2D monolayers by DFTB method
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
37183456
DOI
10.1088/1361-648x/acd293
Knihovny.cz E-zdroje
- Klíčová slova
- 2D material, DFTB method, carbon nitride, electronic and magnetic properties, strain, vacancy defects,
- Publikační typ
- časopisecké články MeSH
We investigate the electronic and magnetic properties of CnNm(C6N6, C2N, C3N and C3N4) using density functional tight-binding (DFTB) method. We find that these compounds are dynamically stable and their electronic band gaps are in the range of 0.59-3.28 eV. We show that the electronic structure is modulated by strain and the semiconducting behavior is well preserved except for C3N at +5% biaxial strain, where a transition from semiconductor to metal was observed. Under +3% biaxial strain, C3N4undergoes a transition from an indirect (K-Γ) to a direct (Γ-Γ) band gap. Moreover, band gap of C2N transforms from direct (Γ-Γ) to indirect (M-Γ) under +4% biaxial strain. However, no change in the nature of the band gap of C6N6. Further, when the studied materials under uniaxial tensile strain, their bandgaps reduce. Our theoretical study showed that an indirect-to-direct nature transition may occur for C6N6and for C3N4, which broadens their applications. On the other hand, magnetism is observed in all N-vacancy defected CnNm, which encourages its application in spintronic. Moreover, calculations of formation energies indicate that N-vacancy is energetically more favorable than C-vacancy in both C2N and C3N4. Opposite behavior found for C6N6and C3N.
Citace poskytuje Crossref.org