Narcolepsy risk loci outline role of T cell autoimmunity and infectious triggers in narcolepsy
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P50 NS023724
NINDS NIH HHS - United States
R01 AI144798
NIAID NIH HHS - United States
RC2 MH089916
NIMH NIH HHS - United States
PubMed
37188663
PubMed Central
PMC10185546
DOI
10.1038/s41467-023-36120-z
PII: 10.1038/s41467-023-36120-z
Knihovny.cz E-zdroje
- MeSH
- autoimunita genetika MeSH
- autoimunitní nemoci * epidemiologie genetika MeSH
- chřipka lidská * epidemiologie genetika MeSH
- lidé MeSH
- narkolepsie * chemicky indukované genetika MeSH
- vakcíny proti chřipce * škodlivé účinky MeSH
- virus chřipky A, podtyp H1N1 * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- vakcíny proti chřipce * MeSH
Narcolepsy type 1 (NT1) is caused by a loss of hypocretin/orexin transmission. Risk factors include pandemic 2009 H1N1 influenza A infection and immunization with Pandemrix®. Here, we dissect disease mechanisms and interactions with environmental triggers in a multi-ethnic sample of 6,073 cases and 84,856 controls. We fine-mapped GWAS signals within HLA (DQ0602, DQB1*03:01 and DPB1*04:02) and discovered seven novel associations (CD207, NAB1, IKZF4-ERBB3, CTSC, DENND1B, SIRPG, PRF1). Significant signals at TRA and DQB1*06:02 loci were found in 245 vaccination-related cases, who also shared polygenic risk. T cell receptor associations in NT1 modulated TRAJ*24, TRAJ*28 and TRBV*4-2 chain-usage. Partitioned heritability and immune cell enrichment analyses found genetic signals to be driven by dendritic and helper T cells. Lastly comorbidity analysis using data from FinnGen, suggests shared effects between NT1 and other autoimmune diseases. NT1 genetic variants shape autoimmunity and response to environmental triggers, including influenza A infection and immunization with Pandemrix®.
Center for Applied Biomedical Research St Orsola Malpighi University Hospital Bologna Italy
Center for Genomic Medicine Massachusetts General Hospital Boston MA USA
Center for Sleep Medicine and Sleep Research Clinic Barmelweid AG Barmelweid Switzerland
Charité Universitätsmedizin Berlin Einstein Center for Neurosciences Berlin 10117 Berlin Germany
Coliseum on Majorstua Clinic Oslo Norway
Department of Biology Stanford University Stanford CA 94305 USA
Department of Biomedical Data Science Administration Stanford University Palo Alto CA USA
Department of Clinical Neurophysiology Institute of Psychiatry and Neurology Warsaw Poland
Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
Department of Clinical Neurosciences University of Helsinki Helsinki Finland
Department of Genetics Stanford University Stanford CA 94305 USA
Department of Human Genetics Graduate School of Medicine The University of Tokyo Tokyo Japan
Department of Medical Sciences and Science for Life Laboratory Uppsala University Uppsala Sweden
Department of Neurology Barcelona Spain
Department of Neurology Charité Universitätsmedizin 10117 Berlin Germany
Department of Neurology Emory University School of Medicine Atlanta GA USA
Department of Neurology Inselspital Bern University Hospital and University of Bern Bern Switzerland
Department of Neurology Leiden University Medical Center Leiden The Netherlands
Department of Neurology Medical University Innsbruck Innsbruck Austria
Department of Neurology The Peking University People's Hospital Beijing China
Department of Neuropsychiatry Akita University Graduate School of Medicine Akita Japan
Department of Neuroscience University of Copenhagen Copenhagen Denmark
Department of Psychiatry and Behavioral Sciences Stanford University Palo Alto CA USA
Department of Psychiatry and Psychotherapy University of Regensburg Regensburg Germany
Department of Psychiatry St Vincent's Hospital The Catholic University of Korea Suwon Korea
Department of Sleep Medicine Strasbourg University Hospital Strasbourg University Strasbourg France
Dept Epidemiology and Biostatistics UCSF 513 Parnassus Avenue San Francisco CA 94117 USA
Division of Child and Adolescent Psychiatry Karolinska Institutet Stockholm Sweden
Division of Research Kaiser Permanente Northern California Oakland CA USA
Division of Sleep Medicine The Peking University People's Hospital Beijing China
Eindhoven University of Technology Eindhoven The Netherlands
Faculty of Health Sciences Hasan Kalyoncu University Gaziantep Turkey
Helsinki Sleep Clinic Vitalmed Research Centre Helsinki Finland
Hephata Klinik Schimmelpfengstr 6 34613 Schwalmstadt Germany
Hormone Laboratory Department of Medical Biochemistry Oslo University Hospital Oslo Norway
Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona Spain
Institute for Molecular Medicine Finland HiLIFE University of Helsinki Helsinki Finland
International Institute for Integrative Sleep Medicine University of Tsukuba Tsukuba Japan
IRCCS Institute of Neurological Sciences Bologna Italy
Mater Private Hospital Dublin 7 Ireland
Mental Illness Research Education Clinical Centers VA Palo Alto Palo Alto CA USA
Multidisciplinary Sleep Disorders Unit Barcelona Spain
Munich Cluster for Systems Neurology Munich Germany
Neurology Department EOC Ospedale Regionale di Lugano Lugano Ticino Switzerland
Neurology Service Institut de Neurociències Hospital Clínic University of Barcelona Barcelona Spain
Philipps Universität Marburg Baldinger Str 35043 Marburg Germany
Seiwa Hospital Neuropsychiatric Research Institute Tokyo Japan
Shaare Zedek Medical Center Jerusalem Israel
Sleep Medicine Center Kempenhaeghe P O Box 61 5590 AB Heeze The Netherlands
Sleep Unit Medical Center Valencia Valencia Spain
Stichting Epilepsie Instellingen Nederland Sleep Wake Centre Heemstede The Netherlands
Swiss Institute of Bioinformatics Lausanne Switzerland
Universidade Federal de São Paulo Departamento de Psicobiologia São Paulo Brazil
Zobrazit více v PubMed
Hublin C, Partinen M, Kaprio J, Koskenvuo M, Guilleminault C. Epidemiology of narcolepsy. Sleep. 1994;17:S7–S12. doi: 10.1093/sleep/17.suppl_8.S7. PubMed DOI
Ohayon MM, Priest RG, Zulley J, Smirne S, Paiva T. Prevalence of narcolepsy symptomatology and diagnosis in the European general population. Neurology. 2002;58:1826–1833. doi: 10.1212/WNL.58.12.1826. PubMed DOI
Silber MH, Krahn LE, Olson EJ, Pankratz VS. The epidemiology of narcolepsy in Olmsted County, Minnesota: a population-based study. Sleep. 2002;25:197–202. doi: 10.1093/sleep/25.2.197. PubMed DOI
Peyron C, et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat. Med. 2000;6:991–997. doi: 10.1038/79690. PubMed DOI
Mignot E, et al. Complex HLA-DR and -DQ interactions confer risk of narcolepsy-cataplexy in three ethnic groups. Am. J. Hum. Genet. 2001;68:686–699. doi: 10.1086/318799. PubMed DOI PMC
Ollila HM, et al. HLA-DPB1 and HLA class I confer risk of and protection from narcolepsy. Am. J. Hum. Genet. 2015;96:136–146. doi: 10.1016/j.ajhg.2014.12.010. PubMed DOI PMC
Faraco J, et al. ImmunoChip study implicates antigen presentation to T cells in narcolepsy. PLOS Genet. 2013;9:e1003270. doi: 10.1371/journal.pgen.1003270. PubMed DOI PMC
Hallmayer J, et al. Narcolepsy is strongly associated with the T-cell receptor alpha locus. Nat. Genet. 2009;41:708–711. doi: 10.1038/ng.372. PubMed DOI PMC
Han F, et al. Genome wide analysis of narcolepsy in China implicates novel immune loci and reveals changes in association prior to versus after the 2009 H1N1 influenza pandemic. PLoS Genet. 2013;9:e1003880. doi: 10.1371/journal.pgen.1003880. PubMed DOI PMC
Kornum BR, et al. Common variants in P2RY11 are associated with narcolepsy. Nat. Genet. 2011;43:66–71. doi: 10.1038/ng.734. PubMed DOI PMC
Cogswell AC, et al. Children with Narcolepsy type 1 have increased T-cell responses to orexins. Ann. Clin. Transl. Neurol. 2019;6:2566–2572. doi: 10.1002/acn3.50908. PubMed DOI PMC
Jiang W, et al. In vivo clonal expansion and phenotypes of hypocretin-specific CD4(+) T cells in narcolepsy patients and controls. Nat. Commun. 2019;10:5247. doi: 10.1038/s41467-019-13234-x. PubMed DOI PMC
Latorre D, et al. T cells in patients with narcolepsy target self-antigens of hypocretin neurons. Nature. 2018;562:63–68. doi: 10.1038/s41586-018-0540-1. PubMed DOI
Luo G, et al. Autoimmunity to hypocretin and molecular mimicry to flu in type 1 narcolepsy. Proc. Natl Acad. Sci. USA. 2018;115:E12323–E12332. doi: 10.1073/pnas.1818150116. PubMed DOI PMC
Pedersen NW, et al. CD8(+) T cells from patients with narcolepsy and healthy controls recognize hypocretin neuron-specific antigens. Nat. Commun. 2019;10:837. doi: 10.1038/s41467-019-08774-1. PubMed DOI PMC
Han F, et al. Narcolepsy onset is seasonal and increased following the 2009 H1N1 pandemic in China. Ann. Neurol. 2011;70:410–417. doi: 10.1002/ana.22587. PubMed DOI
Weibel D, et al. Narcolepsy and adjuvanted pandemic influenza A (H1N1) 2009 vaccines—Multi-country assessment. Vaccine. 2018;36:6202–6211. doi: 10.1016/j.vaccine.2018.08.008. PubMed DOI PMC
Ambati A, et al. Increased beta-haemolytic group A streptococcal M6 serotype and streptodornase B-specific cellular immune responses in Swedish narcolepsy cases. J. Intern. Med. 2015;278:264–276. doi: 10.1111/joim.12355. PubMed DOI
Aran A, et al. Elevated anti-streptococcal antibodies in patients with recent narcolepsy onset. Sleep. 2009;32:979–983. doi: 10.1093/sleep/32.8.979. PubMed DOI PMC
Edwards K, et al. Meeting report narcolepsy and pandemic influenza vaccination: What we know and what we need to know before the next pandemic? A report from the 2nd IABS meeting. Biologicals. 2019;60:1–7. doi: 10.1016/j.biologicals.2019.05.005. PubMed DOI PMC
Partinen M, et al. Increased incidence and clinical picture of childhood narcolepsy following the 2009 H1N1 pandemic vaccination campaign in Finland. PLoS ONE. 2012;7:e33723. doi: 10.1371/journal.pone.0033723. PubMed DOI PMC
Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011;88:76–82. doi: 10.1016/j.ajhg.2010.11.011. PubMed DOI PMC
Mignot E. Genetic and familial aspects of narcolepsy. Neurology. 1998;50:S16–S22. doi: 10.1212/WNL.50.2_Suppl_1.S16. PubMed DOI
Feketeova E, et al. Narcolepsy in Slovakia—epidemiology, clinical and polysomnographic features, comorbid diagnoses: a case-control study. Sleep. Med. 2020;67:15–22. doi: 10.1016/j.sleep.2019.10.012. PubMed DOI
Martinez-Orozco FJ, Vicario JL, De Andres C, Fernandez-Arquero M, Peraita-Adrados R. Comorbidity of narcolepsy type 1 with autoimmune diseases and other immunopathological disorders: a case-control study. J. Clin. Med. Res. 2016;8:495–505. doi: 10.14740/jocmr2569w. PubMed DOI PMC
Barateau L, et al. Comorbidity between central disorders of hypersomnolence and immune-based disorders. Neurology. 2017;88:93–100. doi: 10.1212/WNL.0000000000003432. PubMed DOI
Chen TY, et al. The association between asthma and narcolepsy: a nationwide case-control study in Taiwan. Nat. Sci. Sleep. 2021;13:1631–1640. doi: 10.2147/NSS.S317746. PubMed DOI PMC
Simmons KM, et al. Failed genetic protection: type 1 diabetes in the presence of HLA-DQB1*06:02. Diabetes. 2020;69:1763–1769. doi: 10.2337/db20-0038. PubMed DOI PMC
Darlay R, et al. Amino acid residues in five separate HLA genes can explain most of the known associations between the MHC and primary biliary cholangitis. PLoS Genet. 2018;14:e1007833. doi: 10.1371/journal.pgen.1007833. PubMed DOI PMC
Zheng X, et al. HIBAG–HLA genotype imputation with attribute bagging. Pharmacogenomics J. 2014;14:192–200. doi: 10.1038/tpj.2013.18. PubMed DOI PMC
Dilthey A, et al. Multi-population classical HLA type imputation. PLoS Comput. Biol. 2013;9:e1002877. doi: 10.1371/journal.pcbi.1002877. PubMed DOI PMC
Hor H, et al. Genome-wide association study identifies new HLA class II haplotypes strongly protective against narcolepsy. Nat. Genet. 2010;42:786–789. doi: 10.1038/ng.647. PubMed DOI
Ollila HM, Fernandez-Vina M, Mignot E. HLA-DQ allele competition in narcolepsy: a comment on Tafti et al. DQB1 locus alone explains most of the risk and protection in narcolepsy with cataplexy in Europe. Sleep. 2015;38:147–151. doi: 10.5665/sleep.4342. PubMed DOI PMC
Finucane HK, et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 2015;47:1228–1235. doi: 10.1038/ng.3404. PubMed DOI PMC
Sharon E, et al. Genetic variation in MHC proteins is associated with T cell receptor expression biases. Nat. Genet. 2016;48:995–1002. doi: 10.1038/ng.3625. PubMed DOI PMC
Kornum BR. Narcolepsy Type I as an autoimmune disorder. Handb. Clin. Neurol. 2021;181:161–172. doi: 10.1016/B978-0-12-820683-6.00012-9. PubMed DOI
Hu X, et al. Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk. Nat. Genet. 2015;47:898–905. doi: 10.1038/ng.3353. PubMed DOI PMC
Miyadera H, Tokunaga K. Associations of human leukocyte antigens with autoimmune diseases: challenges in identifying the mechanism. J. Hum. Genet. 2015;60:697–702. doi: 10.1038/jhg.2015.100. PubMed DOI
Tsutsumi C, et al. Class II HLA genotype in fulminant type 1 diabetes: A nationwide survey with reference to glutamic acid decarboxylase antibodies. J. Diabetes Investig. 2012;3:62–69. doi: 10.1111/j.2040-1124.2011.00139.x. PubMed DOI PMC
Perisic Nanut M, Sabotic J, Jewett A, Kos J. Cysteine cathepsins as regulators of the cytotoxicity of NK and T cells. Front. Immunol. 2014;5:616. PubMed PMC
Bernard-Valnet R. CD8 T cell-mediated killing of orexinergic neurons induces a narcolepsy-like phenotype in mice. Proc. Natl Acad. SCi. USA. 2016;113:10956–10961. doi: 10.1073/pnas.1603325113. PubMed DOI PMC
Dauvilliers Y, et al. Hypothalamic immunopathology in anti-Ma-associated diencephalitis with narcolepsy-cataplexy. JAMA Neurol. 2013;70:1305–1310. PubMed
Wallenius M, et al. Autoantibodies in Pandemrix(®)-induced narcolepsy: Nine candidate autoantigens fail the conformational autoantibody test. Autoimmunity. 2019;52:185–191. doi: 10.1080/08916934.2019.1643843. PubMed DOI
Bomfim IL, et al. The immunogenetics of narcolepsy associated with A(H1N1)pdm09 vaccination (Pandemrix) supports a potent gene-environment interaction. Genes Immun. 2017;18:75–81. doi: 10.1038/gene.2017.1. PubMed DOI
Heier MS, et al. Incidence of narcolepsy in Norwegian children and adolescents after vaccination against H1N1 influenza A. Sleep. Med. 2013;14:867–871. doi: 10.1016/j.sleep.2013.03.020. PubMed DOI
O’Flanagan D, et al. Investigation of an association between onset of narcolepsy and vaccination with pandemic influenza vaccine, Ireland April 2009-December 2010. Eur. Surveill. 2014;19:15–25. doi: 10.2807/1560-7917.ES2014.19.17.20789. PubMed DOI
Ollila, H. M. et al. Genetics of vaccination-related narcolepsy. 10.1101/169623 (2017).
Nicolazzi EL, Iamartino D, Williams JL. AffyPipe: an open-source pipeline for Affymetrix Axiom genotyping workflow. Bioinformatics. 2014;30:3118–3119. doi: 10.1093/bioinformatics/btu486. PubMed DOI PMC
Howie B, Marchini J, Stephens M. Genotype imputation with thousands of genomes. G3 (Bethesda) 2011;1:457–470. doi: 10.1534/g3.111.001198. PubMed DOI PMC
Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat. Genet. 2012;44:955–959. doi: 10.1038/ng.2354. PubMed DOI PMC
Wellcome Trust Case Control C. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–678. doi: 10.1038/nature05911. PubMed DOI PMC
Liu JZ, et al. Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat. Genet. 2010;42:436–440. doi: 10.1038/ng.572. PubMed DOI PMC
Lee SH, Wray NR, Goddard ME, Visscher PM. Estimating missing heritability for disease from genome-wide association studies. Am. J. Hum. Genet. 2011;88:294–305. doi: 10.1016/j.ajhg.2011.02.002. PubMed DOI PMC
Plagnol V, Smyth DJ, Todd JA, Clayton DG. Statistical independence of the colocalized association signals for type 1 diabetes and RPS26 gene expression on chromosome 12q13. Biostatistics. 2009;10:327–334. doi: 10.1093/biostatistics/kxn039. PubMed DOI PMC
Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 2017;8:1826. doi: 10.1038/s41467-017-01261-5. PubMed DOI PMC
Choi, S. W. & O’Reilly, P. F. PRSice-2: Polygenic Risk Score software for biobank-scale data. Gigascience8, giz082 (2019). PubMed PMC
Wang C, et al. High-throughput, high-fidelity HLA genotyping with deep sequencing. Proc. Natl Acad. Sci. USA. 2012;109:8676–8681. doi: 10.1073/pnas.1206614109. PubMed DOI PMC
Chang CC, et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7. doi: 10.1186/s13742-015-0047-8. PubMed DOI PMC
Westra HJ, et al. Cell specific eQTL analysis without sorting cells. PLoS Genet. 2015;11:e1005223. doi: 10.1371/journal.pgen.1005223. PubMed DOI PMC
Consortium GT. Human genomics. The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348:648–660. doi: 10.1126/science.1262110. PubMed DOI PMC
Iotchkova V, et al. GARFIELD classifies disease-relevant genomic features through integration of functional annotations with association signals. Nat. Genet. 2019;51:343–353. doi: 10.1038/s41588-018-0322-6. PubMed DOI PMC
Ye CJ, et al. Genetic analysis of isoform usage in the human anti-viral response reveals influenza-specific regulation of ERAP2 transcripts under balancing selection. Genome Res. 2018;28:1812–1825. doi: 10.1101/gr.240390.118. PubMed DOI PMC
Pertea M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015;33:290–295. doi: 10.1038/nbt.3122. PubMed DOI PMC
Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 2016;34:525–527. doi: 10.1038/nbt.3519. PubMed DOI
Steijger T, et al. Assessment of transcript reconstruction methods for RNA-seq. Nat. Methods. 2013;10:1177–1184. doi: 10.1038/nmeth.2714. PubMed DOI PMC
Shabalin AA. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics. 2012;28:1353–1358. doi: 10.1093/bioinformatics/bts163. PubMed DOI PMC
Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA. 2003;100:9440–9445. doi: 10.1073/pnas.1530509100. PubMed DOI PMC
Battle A, et al. Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals. Genome Res. 2014;24:14–24. doi: 10.1101/gr.155192.113. PubMed DOI PMC