Narcolepsy risk loci outline role of T cell autoimmunity and infectious triggers in narcolepsy

. 2023 May 15 ; 14 (1) : 2709. [epub] 20230515

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37188663

Grantová podpora
P50 NS023724 NINDS NIH HHS - United States
R01 AI144798 NIAID NIH HHS - United States
RC2 MH089916 NIMH NIH HHS - United States

Odkazy

PubMed 37188663
PubMed Central PMC10185546
DOI 10.1038/s41467-023-36120-z
PII: 10.1038/s41467-023-36120-z
Knihovny.cz E-zdroje

Narcolepsy type 1 (NT1) is caused by a loss of hypocretin/orexin transmission. Risk factors include pandemic 2009 H1N1 influenza A infection and immunization with Pandemrix®. Here, we dissect disease mechanisms and interactions with environmental triggers in a multi-ethnic sample of 6,073 cases and 84,856 controls. We fine-mapped GWAS signals within HLA (DQ0602, DQB1*03:01 and DPB1*04:02) and discovered seven novel associations (CD207, NAB1, IKZF4-ERBB3, CTSC, DENND1B, SIRPG, PRF1). Significant signals at TRA and DQB1*06:02 loci were found in 245 vaccination-related cases, who also shared polygenic risk. T cell receptor associations in NT1 modulated TRAJ*24, TRAJ*28 and TRBV*4-2 chain-usage. Partitioned heritability and immune cell enrichment analyses found genetic signals to be driven by dendritic and helper T cells. Lastly comorbidity analysis using data from FinnGen, suggests shared effects between NT1 and other autoimmune diseases. NT1 genetic variants shape autoimmunity and response to environmental triggers, including influenza A infection and immunization with Pandemrix®.

Anesthesia Critical Care and Pain Medicine Massachusetts General Hospital and Harvard Medical School Boston MA USA

Center for Advanced Research in Sleep Medicine Hôpital du Sacré Coeur and Department of Neurosciences University of Montréal Montréal QC Canada

Center for Applied Biomedical Research St Orsola Malpighi University Hospital Bologna Italy

Center for Genomic Medicine Massachusetts General Hospital Boston MA USA

Center for Sleep Medicine and Sleep Research Clinic Barmelweid AG Barmelweid Switzerland

Charité Universitätsmedizin Berlin Einstein Center for Neurosciences Berlin 10117 Berlin Germany

Coliseum on Majorstua Clinic Oslo Norway

Danish Center for Sleep Medicine Department of Clinical Neurophysiology University of Copenhagen Glostrup Hospital Glostrup Denmark

Department of Biology Stanford University Stanford CA 94305 USA

Department of Biomedical and Neuromotor Sciences University of Bologna Via Ugo Foscolo 7 40123 Bologna Italy

Department of Biomedical Data Science Administration Stanford University Palo Alto CA USA

Department of Child Psychiatry and Sleep Center Chang Gung Memorial Hospital and University Taoyuan Taiwan

Department of Clinical Neurophysiology Institute of Psychiatry and Neurology Warsaw Poland

Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden

Department of Clinical Neurosciences University of Helsinki Helsinki Finland

Department of Epidemiology and Biostatistics Institute for Human Genetics University of California San Francisco San Francisco CA USA

Department of Genetics Stanford University Stanford CA 94305 USA

Department of Human Genetics Graduate School of Medicine The University of Tokyo Tokyo Japan

Department of Medical Sciences and Science for Life Laboratory Uppsala University Uppsala Sweden

Department of Neurology and Centre of Clinical Neurosciences 1st Faculty of Medicine Charles University and General University Hosptal Prague Czech Republic

Department of Neurology Barcelona Spain

Department of Neurology Charité Universitätsmedizin 10117 Berlin Germany

Department of Neurology Emory University School of Medicine Atlanta GA USA

Department of Neurology Inselspital Bern University Hospital and University of Bern Bern Switzerland

Department of Neurology Leiden University Medical Center Leiden The Netherlands

Department of Neurology Medical University Innsbruck Innsbruck Austria

Department of Neurology The Peking University People's Hospital Beijing China

Department of Neuropsychiatry Akita University Graduate School of Medicine Akita Japan

Department of Neuroscience University of Copenhagen Copenhagen Denmark

Department of Pediatric Genetics Amrita Institute of Medical Sciences and Research Centre Kerala India

Department of Psychiatry and Behavioral Sciences Stanford University Palo Alto CA USA

Department of Psychiatry and Behavioral Sciences Tokyo Metropolitan Institute of Medical Science Tokyo Japan

Department of Psychiatry and Psychotherapy University of Regensburg Regensburg Germany

Department of Psychiatry St Vincent's Hospital The Catholic University of Korea Suwon Korea

Department of Sleep Medicine Strasbourg University Hospital Strasbourg University Strasbourg France

Dept Epidemiology and Biostatistics UCSF 513 Parnassus Avenue San Francisco CA 94117 USA

Division of Child and Adolescent Psychiatry Karolinska Institutet Stockholm Sweden

Division of Research Kaiser Permanente Northern California Oakland CA USA

Division of Sleep Medicine The Peking University People's Hospital Beijing China

Eindhoven University of Technology Eindhoven The Netherlands

Faculty of Health Sciences Hasan Kalyoncu University Gaziantep Turkey

Helsinki Sleep Clinic Vitalmed Research Centre Helsinki Finland

Hephata Klinik Schimmelpfengstr 6 34613 Schwalmstadt Germany

Hormone Laboratory Department of Medical Biochemistry Oslo University Hospital Oslo Norway

Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona Spain

Institute for Molecular Medicine Finland HiLIFE University of Helsinki Helsinki Finland

Institute of Neurogenomics Helmholtz Zentrum München German Research Centre for Environmental Health Neuherberg Germany

International Institute for Integrative Sleep Medicine University of Tsukuba Tsukuba Japan

IRCCS Institute of Neurological Sciences Bologna Italy

Mater Private Hospital Dublin 7 Ireland

Mental Illness Research Education Clinical Centers VA Palo Alto Palo Alto CA USA

Multidisciplinary Sleep Disorders Unit Barcelona Spain

Munich Cluster for Systems Neurology Munich Germany

Neurologische Klinik und Poliklinik Klinikum rechts der Isar der Technischen Universität München Munich Germany

Neurology Department EOC Ospedale Regionale di Lugano Lugano Ticino Switzerland

Neurology Department Medical Faculty of P J Safarik University University Hospital of L Pasteur Kosice Kosice Slovak Republic

Neurology Service Institut de Neurociències Hospital Clínic University of Barcelona Barcelona Spain

Norwegian Centre of Expertise for Neurodevelopment Disorders and Hypersomnias Department of Rare Disorders Oslo University Hospital and University of Oslo Oslo Norway

Pediatric Sleep Center and National Reference Center for Narcolepsy and Idiopathic Hypersomnia Hospital Robert Debre Paris France

Philipps Universität Marburg Baldinger Str 35043 Marburg Germany

Seiwa Hospital Neuropsychiatric Research Institute Tokyo Japan

Shaare Zedek Medical Center Jerusalem Israel

Sleep and Epilepsy Unit Clinical Neurophysiology Service Gregorio Marañón University General Hospital and Research Institute University Complutense of Madrid Madrid Spain

Sleep Disorder Unit Pitié Salpêtrière Hospital Assistance Publique Hopitaux de Paris 75013 Paris France

Sleep Disorders Center Division of Neuroscience Ospedale San Raffaele Università Vita Salute Milan Italy

Sleep Medicine Center Kempenhaeghe P O Box 61 5590 AB Heeze The Netherlands

Sleep Unit Clinical Neurophysiology Service San Carlos University Hospital University Complutense of Madrid Madrid Spain

Sleep Unit Medical Center Valencia Valencia Spain

Sleep Wake Disorders Center National Reference Network for Narcolepsy Department of Neurology Gui de Chauliac Hospital CHU Montpellier; Institute for Neurosciences of Montpellier INSERM Université Montpellier 1 Montpellier France

Stanford University Center for Sleep Sciences and Medicine Department of Psychiatry and Behavioral Sciences Palo Alto CA 94304 USA

Stichting Epilepsie Instellingen Nederland Sleep Wake Centre Heemstede The Netherlands

Swiss Institute of Bioinformatics Lausanne Switzerland

Universidade Federal de São Paulo Departamento de Psicobiologia São Paulo Brazil

University Center for Primary Care and Public Health University of Lausanne Lausanne Switzerland Lausanne 1010 Switzerland

University of Helsinki Institute for Molecular Medicine Finland and Diabetes and Obesity Research Program University of Tartu Estonian Genome Center Tartu Estonia

Uppsala Clinical Research Center Uppsala Sweden

Zobrazit více v PubMed

Hublin C, Partinen M, Kaprio J, Koskenvuo M, Guilleminault C. Epidemiology of narcolepsy. Sleep. 1994;17:S7–S12. doi: 10.1093/sleep/17.suppl_8.S7. PubMed DOI

Ohayon MM, Priest RG, Zulley J, Smirne S, Paiva T. Prevalence of narcolepsy symptomatology and diagnosis in the European general population. Neurology. 2002;58:1826–1833. doi: 10.1212/WNL.58.12.1826. PubMed DOI

Silber MH, Krahn LE, Olson EJ, Pankratz VS. The epidemiology of narcolepsy in Olmsted County, Minnesota: a population-based study. Sleep. 2002;25:197–202. doi: 10.1093/sleep/25.2.197. PubMed DOI

Peyron C, et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat. Med. 2000;6:991–997. doi: 10.1038/79690. PubMed DOI

Mignot E, et al. Complex HLA-DR and -DQ interactions confer risk of narcolepsy-cataplexy in three ethnic groups. Am. J. Hum. Genet. 2001;68:686–699. doi: 10.1086/318799. PubMed DOI PMC

Ollila HM, et al. HLA-DPB1 and HLA class I confer risk of and protection from narcolepsy. Am. J. Hum. Genet. 2015;96:136–146. doi: 10.1016/j.ajhg.2014.12.010. PubMed DOI PMC

Faraco J, et al. ImmunoChip study implicates antigen presentation to T cells in narcolepsy. PLOS Genet. 2013;9:e1003270. doi: 10.1371/journal.pgen.1003270. PubMed DOI PMC

Hallmayer J, et al. Narcolepsy is strongly associated with the T-cell receptor alpha locus. Nat. Genet. 2009;41:708–711. doi: 10.1038/ng.372. PubMed DOI PMC

Han F, et al. Genome wide analysis of narcolepsy in China implicates novel immune loci and reveals changes in association prior to versus after the 2009 H1N1 influenza pandemic. PLoS Genet. 2013;9:e1003880. doi: 10.1371/journal.pgen.1003880. PubMed DOI PMC

Kornum BR, et al. Common variants in P2RY11 are associated with narcolepsy. Nat. Genet. 2011;43:66–71. doi: 10.1038/ng.734. PubMed DOI PMC

Cogswell AC, et al. Children with Narcolepsy type 1 have increased T-cell responses to orexins. Ann. Clin. Transl. Neurol. 2019;6:2566–2572. doi: 10.1002/acn3.50908. PubMed DOI PMC

Jiang W, et al. In vivo clonal expansion and phenotypes of hypocretin-specific CD4(+) T cells in narcolepsy patients and controls. Nat. Commun. 2019;10:5247. doi: 10.1038/s41467-019-13234-x. PubMed DOI PMC

Latorre D, et al. T cells in patients with narcolepsy target self-antigens of hypocretin neurons. Nature. 2018;562:63–68. doi: 10.1038/s41586-018-0540-1. PubMed DOI

Luo G, et al. Autoimmunity to hypocretin and molecular mimicry to flu in type 1 narcolepsy. Proc. Natl Acad. Sci. USA. 2018;115:E12323–E12332. doi: 10.1073/pnas.1818150116. PubMed DOI PMC

Pedersen NW, et al. CD8(+) T cells from patients with narcolepsy and healthy controls recognize hypocretin neuron-specific antigens. Nat. Commun. 2019;10:837. doi: 10.1038/s41467-019-08774-1. PubMed DOI PMC

Han F, et al. Narcolepsy onset is seasonal and increased following the 2009 H1N1 pandemic in China. Ann. Neurol. 2011;70:410–417. doi: 10.1002/ana.22587. PubMed DOI

Weibel D, et al. Narcolepsy and adjuvanted pandemic influenza A (H1N1) 2009 vaccines—Multi-country assessment. Vaccine. 2018;36:6202–6211. doi: 10.1016/j.vaccine.2018.08.008. PubMed DOI PMC

Ambati A, et al. Increased beta-haemolytic group A streptococcal M6 serotype and streptodornase B-specific cellular immune responses in Swedish narcolepsy cases. J. Intern. Med. 2015;278:264–276. doi: 10.1111/joim.12355. PubMed DOI

Aran A, et al. Elevated anti-streptococcal antibodies in patients with recent narcolepsy onset. Sleep. 2009;32:979–983. doi: 10.1093/sleep/32.8.979. PubMed DOI PMC

Edwards K, et al. Meeting report narcolepsy and pandemic influenza vaccination: What we know and what we need to know before the next pandemic? A report from the 2nd IABS meeting. Biologicals. 2019;60:1–7. doi: 10.1016/j.biologicals.2019.05.005. PubMed DOI PMC

Partinen M, et al. Increased incidence and clinical picture of childhood narcolepsy following the 2009 H1N1 pandemic vaccination campaign in Finland. PLoS ONE. 2012;7:e33723. doi: 10.1371/journal.pone.0033723. PubMed DOI PMC

Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011;88:76–82. doi: 10.1016/j.ajhg.2010.11.011. PubMed DOI PMC

Mignot E. Genetic and familial aspects of narcolepsy. Neurology. 1998;50:S16–S22. doi: 10.1212/WNL.50.2_Suppl_1.S16. PubMed DOI

Feketeova E, et al. Narcolepsy in Slovakia—epidemiology, clinical and polysomnographic features, comorbid diagnoses: a case-control study. Sleep. Med. 2020;67:15–22. doi: 10.1016/j.sleep.2019.10.012. PubMed DOI

Martinez-Orozco FJ, Vicario JL, De Andres C, Fernandez-Arquero M, Peraita-Adrados R. Comorbidity of narcolepsy type 1 with autoimmune diseases and other immunopathological disorders: a case-control study. J. Clin. Med. Res. 2016;8:495–505. doi: 10.14740/jocmr2569w. PubMed DOI PMC

Barateau L, et al. Comorbidity between central disorders of hypersomnolence and immune-based disorders. Neurology. 2017;88:93–100. doi: 10.1212/WNL.0000000000003432. PubMed DOI

Chen TY, et al. The association between asthma and narcolepsy: a nationwide case-control study in Taiwan. Nat. Sci. Sleep. 2021;13:1631–1640. doi: 10.2147/NSS.S317746. PubMed DOI PMC

Simmons KM, et al. Failed genetic protection: type 1 diabetes in the presence of HLA-DQB1*06:02. Diabetes. 2020;69:1763–1769. doi: 10.2337/db20-0038. PubMed DOI PMC

Darlay R, et al. Amino acid residues in five separate HLA genes can explain most of the known associations between the MHC and primary biliary cholangitis. PLoS Genet. 2018;14:e1007833. doi: 10.1371/journal.pgen.1007833. PubMed DOI PMC

Zheng X, et al. HIBAG–HLA genotype imputation with attribute bagging. Pharmacogenomics J. 2014;14:192–200. doi: 10.1038/tpj.2013.18. PubMed DOI PMC

Dilthey A, et al. Multi-population classical HLA type imputation. PLoS Comput. Biol. 2013;9:e1002877. doi: 10.1371/journal.pcbi.1002877. PubMed DOI PMC

Hor H, et al. Genome-wide association study identifies new HLA class II haplotypes strongly protective against narcolepsy. Nat. Genet. 2010;42:786–789. doi: 10.1038/ng.647. PubMed DOI

Ollila HM, Fernandez-Vina M, Mignot E. HLA-DQ allele competition in narcolepsy: a comment on Tafti et al. DQB1 locus alone explains most of the risk and protection in narcolepsy with cataplexy in Europe. Sleep. 2015;38:147–151. doi: 10.5665/sleep.4342. PubMed DOI PMC

Finucane HK, et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 2015;47:1228–1235. doi: 10.1038/ng.3404. PubMed DOI PMC

Sharon E, et al. Genetic variation in MHC proteins is associated with T cell receptor expression biases. Nat. Genet. 2016;48:995–1002. doi: 10.1038/ng.3625. PubMed DOI PMC

Kornum BR. Narcolepsy Type I as an autoimmune disorder. Handb. Clin. Neurol. 2021;181:161–172. doi: 10.1016/B978-0-12-820683-6.00012-9. PubMed DOI

Hu X, et al. Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk. Nat. Genet. 2015;47:898–905. doi: 10.1038/ng.3353. PubMed DOI PMC

Miyadera H, Tokunaga K. Associations of human leukocyte antigens with autoimmune diseases: challenges in identifying the mechanism. J. Hum. Genet. 2015;60:697–702. doi: 10.1038/jhg.2015.100. PubMed DOI

Tsutsumi C, et al. Class II HLA genotype in fulminant type 1 diabetes: A nationwide survey with reference to glutamic acid decarboxylase antibodies. J. Diabetes Investig. 2012;3:62–69. doi: 10.1111/j.2040-1124.2011.00139.x. PubMed DOI PMC

Perisic Nanut M, Sabotic J, Jewett A, Kos J. Cysteine cathepsins as regulators of the cytotoxicity of NK and T cells. Front. Immunol. 2014;5:616. PubMed PMC

Bernard-Valnet R. CD8 T cell-mediated killing of orexinergic neurons induces a narcolepsy-like phenotype in mice. Proc. Natl Acad. SCi. USA. 2016;113:10956–10961. doi: 10.1073/pnas.1603325113. PubMed DOI PMC

Dauvilliers Y, et al. Hypothalamic immunopathology in anti-Ma-associated diencephalitis with narcolepsy-cataplexy. JAMA Neurol. 2013;70:1305–1310. PubMed

Wallenius M, et al. Autoantibodies in Pandemrix(®)-induced narcolepsy: Nine candidate autoantigens fail the conformational autoantibody test. Autoimmunity. 2019;52:185–191. doi: 10.1080/08916934.2019.1643843. PubMed DOI

Bomfim IL, et al. The immunogenetics of narcolepsy associated with A(H1N1)pdm09 vaccination (Pandemrix) supports a potent gene-environment interaction. Genes Immun. 2017;18:75–81. doi: 10.1038/gene.2017.1. PubMed DOI

Heier MS, et al. Incidence of narcolepsy in Norwegian children and adolescents after vaccination against H1N1 influenza A. Sleep. Med. 2013;14:867–871. doi: 10.1016/j.sleep.2013.03.020. PubMed DOI

O’Flanagan D, et al. Investigation of an association between onset of narcolepsy and vaccination with pandemic influenza vaccine, Ireland April 2009-December 2010. Eur. Surveill. 2014;19:15–25. doi: 10.2807/1560-7917.ES2014.19.17.20789. PubMed DOI

Ollila, H. M. et al. Genetics of vaccination-related narcolepsy. 10.1101/169623 (2017).

Nicolazzi EL, Iamartino D, Williams JL. AffyPipe: an open-source pipeline for Affymetrix Axiom genotyping workflow. Bioinformatics. 2014;30:3118–3119. doi: 10.1093/bioinformatics/btu486. PubMed DOI PMC

Howie B, Marchini J, Stephens M. Genotype imputation with thousands of genomes. G3 (Bethesda) 2011;1:457–470. doi: 10.1534/g3.111.001198. PubMed DOI PMC

Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat. Genet. 2012;44:955–959. doi: 10.1038/ng.2354. PubMed DOI PMC

Wellcome Trust Case Control C. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–678. doi: 10.1038/nature05911. PubMed DOI PMC

Liu JZ, et al. Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat. Genet. 2010;42:436–440. doi: 10.1038/ng.572. PubMed DOI PMC

Lee SH, Wray NR, Goddard ME, Visscher PM. Estimating missing heritability for disease from genome-wide association studies. Am. J. Hum. Genet. 2011;88:294–305. doi: 10.1016/j.ajhg.2011.02.002. PubMed DOI PMC

Plagnol V, Smyth DJ, Todd JA, Clayton DG. Statistical independence of the colocalized association signals for type 1 diabetes and RPS26 gene expression on chromosome 12q13. Biostatistics. 2009;10:327–334. doi: 10.1093/biostatistics/kxn039. PubMed DOI PMC

Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 2017;8:1826. doi: 10.1038/s41467-017-01261-5. PubMed DOI PMC

Choi, S. W. & O’Reilly, P. F. PRSice-2: Polygenic Risk Score software for biobank-scale data. Gigascience8, giz082 (2019). PubMed PMC

Wang C, et al. High-throughput, high-fidelity HLA genotyping with deep sequencing. Proc. Natl Acad. Sci. USA. 2012;109:8676–8681. doi: 10.1073/pnas.1206614109. PubMed DOI PMC

Chang CC, et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7. doi: 10.1186/s13742-015-0047-8. PubMed DOI PMC

Westra HJ, et al. Cell specific eQTL analysis without sorting cells. PLoS Genet. 2015;11:e1005223. doi: 10.1371/journal.pgen.1005223. PubMed DOI PMC

Consortium GT. Human genomics. The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348:648–660. doi: 10.1126/science.1262110. PubMed DOI PMC

Iotchkova V, et al. GARFIELD classifies disease-relevant genomic features through integration of functional annotations with association signals. Nat. Genet. 2019;51:343–353. doi: 10.1038/s41588-018-0322-6. PubMed DOI PMC

Ye CJ, et al. Genetic analysis of isoform usage in the human anti-viral response reveals influenza-specific regulation of ERAP2 transcripts under balancing selection. Genome Res. 2018;28:1812–1825. doi: 10.1101/gr.240390.118. PubMed DOI PMC

Pertea M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015;33:290–295. doi: 10.1038/nbt.3122. PubMed DOI PMC

Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 2016;34:525–527. doi: 10.1038/nbt.3519. PubMed DOI

Steijger T, et al. Assessment of transcript reconstruction methods for RNA-seq. Nat. Methods. 2013;10:1177–1184. doi: 10.1038/nmeth.2714. PubMed DOI PMC

Shabalin AA. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics. 2012;28:1353–1358. doi: 10.1093/bioinformatics/bts163. PubMed DOI PMC

Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA. 2003;100:9440–9445. doi: 10.1073/pnas.1530509100. PubMed DOI PMC

Battle A, et al. Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals. Genome Res. 2014;24:14–24. doi: 10.1101/gr.155192.113. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...