Identification of inhibitors for the transmembrane Trypanosoma cruzi eIF2α kinase relevant for parasite proliferation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
204697/Z/16/Z
Wellcome Trust - United Kingdom
MR/M026248/1
Medical Research Council - United Kingdom
MR/M026248
Medical Research Council - United Kingdom
PubMed
37230387
PubMed Central
PMC10300260
DOI
10.1016/j.jbc.2023.104857
PII: S0021-9258(23)01885-9
Knihovny.cz E-zdroje
- Klíčová slova
- T.cruzi EIF2AK2, chagas disease, chemical inhibitor, eIF2α, invasion, protein kinase, proteome, recombinant protein,
- MeSH
- Chagasova nemoc * farmakoterapie parazitologie MeSH
- dasatinib MeSH
- kinasa eIF-2 genetika metabolismus MeSH
- lidé MeSH
- paraziti * MeSH
- proliferace buněk MeSH
- savci metabolismus MeSH
- Trypanosoma cruzi * genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dasatinib MeSH
- kinasa eIF-2 MeSH
The TcK2 protein kinase of Trypanosoma cruzi, the causative agent of Chagas disease, is structurally similar to the human kinase PERK, which phosphorylates the initiation factor eIF2α and, in turn, inhibits translation initiation. We have previously shown that absence of TcK2 kinase impairs parasite proliferation within mammalian cells, positioning it as a potential target for treatment of Chagas disease. To better understand its role in the parasite, here we initially confirmed the importance of TcK2 in parasite proliferation by generating CRISPR/Cas9 TcK2-null cells, albeit they more efficiently differentiate into infective forms. Proteomics indicates that the TcK2 knockout of proliferative forms expresses proteins including trans-sialidases, normally restricted to infective and nonproliferative trypomastigotes explaining decreased proliferation and better differentiation. TcK2 knockout cells lost phosphorylation of eukaryotic initiation factor 3 and cyclic AMP responsive-like element, recognized to promote growth, likely explaining both decreased proliferation and augmented differentiation. To identify specific inhibitors, a library of 379 kinase inhibitors was screened by differential scanning fluorimetry using a recombinant TcK2 encompassing the kinase domain and selected molecules were tested for kinase inhibition. Only Dasatinib and PF-477736, inhibitors of Src/Abl and ChK1 kinases, showed inhibitory activity with IC50 of 0.2 ± 0.02 mM and 0.8 ± 0.1, respectively. In infected cells Dasatinib inhibited growth of parental amastigotes (IC50 = 0.6 ± 0.2 mM) but not TcK2 of depleted parasites (IC50 > 34 mM) identifying Dasatinib as a potential lead for development of therapeutics for Chagas disease targeting TcK2.
Zobrazit více v PubMed
Jackson R.J., Hellen C.U., Pestova T.V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 2010;11:113–127. PubMed PMC
Pakos-Zebrucka K., Koryga I., Mnich K., Ljujic M., Samali A., Gorman A.M. The integrated stress response. EMBO Rep. 2016;17:1374–1395. PubMed PMC
Donnelly N., Gorman A.M., Gupta S., Samali A. The eIF2alpha kinases: their structures and functions. Cell Mol. Life Sci. 2013;70:3493–3511. PubMed PMC
Coura J.R., Borges-Pereira J. Chagas disease: 100 years after its discovery. A systemic review. Acta Tropica (Basel) 2010;115:5–13. PubMed
Franco C.H., Alcantara L.M., Chatelain E., Freitas-Junior L., Moraes C.B. Drug discovery for chagas disease: impact of different host cell lines on assay performance and hit compound selection. Trop. Med. Infect. Dis. 2019;4:82. PubMed PMC
Parsons M., Worthey E.A., Ward P.N., Mottram J.C. Comparative analysis of the kinomes of three pathogenic trypanosomatids: leishmania major, Trypanosoma brucei and Trypanosoma cruzi. BMC Genomics. 2005;6:127. PubMed PMC
Malvezzi A.M., Aricó M., Souza-Melo N., dos Santos G.P., Bittencourt-Cunha P., Holetz F.B., et al. GCN2-Like kinase modulates stress granule formation during nutritional stress in Trypanosoma cruzi. Front. Cell Infect. Microbiol. 2020;10:149. PubMed PMC
da Silva Augusto L., Moretti N.S., Ramos T.C., de Jesus T.C., Zhang M., Castilho B.A., et al. A membrane-bound eIF2 alpha kinase located in endosomes is regulated by heme and controls differentiation and ROS levels in Trypanosoma cruzi. PLoS Pathog. 2015;11 PubMed PMC
Moraes M.C., Jesus T.C., Hashimoto N.N., Dey M., Schwartz K.J., Alves V.S., et al. Novel membrane-bound eIF2alpha kinase in the flagellar pocket of Trypanosoma brucei. Eukaryot. Cell. 2007;6:1979–1991. PubMed PMC
Tonelli R.R., Augusto L.d.S., Castilho B.A., Schenkman S. Protein synthesis attenuation by phosphorylation of eIF2alpha Is required for the differentiation of Trypanosoma cruzi into infective forms. PLoS One. 2011;6 PubMed PMC
Castro Machado F., Bittencourt-Cunha P., Malvezzi A.M., Arico M., Radio S., Smircich P., et al. EIF2alpha phosphorylation is regulated in intracellular amastigotes for the generation of infective Trypanosoma cruzi trypomastigote forms. Cell Microbiol. 2020;22 PubMed
Kratz J.M. Drug discovery for chagas disease: a viewpoint. Acta tropica. 2019;198 PubMed
Maguire B.J., Dahal P., Rashan S., Ngu R., Boon A., Forsyth C., et al. The chagas disease study landscape: a systematic review of clinical and observational antiparasitic treatment studies to assess the potential for establishing an individual participant-level data platform. PLoS Negl. Trop. Dis. 2021;15 PubMed PMC
Moraes C.B., Witt G., Kuzikov M., Ellinger B., Calogeropoulou T., Prousis K.C., et al. Accelerating drug discovery efforts for trypanosomatidic infections using an integrated transnational academic drug discovery platform. SLAS Discov. 2019;24:346–361. PubMed PMC
Burle-Caldas G.A., Dos Santos N.S.A., de Castro J.T., Mugge F.L.B., Grazielle-Silva V., Oliveira A.E.R., et al. Disruption of active trans-sialidase genes impairs egress from mammalian host cells and generates highly attenuated Trypanosoma cruzi parasites. mBio. 2022;13 PubMed PMC
Aslett M., Aurrecoechea C., Berriman M., Brestelli J., Brunk B.P., Carrington M., et al. TriTrypDB: a functional genomic resource for the trypanosomatidae. Nucl. Acids Res. 2010;38:D457–D462. PubMed PMC
Callejas-Hernandez F., Rastrojo A., Poveda C., Girones N., Fresno M. Genomic assemblies of newly sequenced Trypanosoma cruzi strains reveal new genomic expansion and greater complexity. Sci. Rep. 2018;8 PubMed PMC
Reis-Cunha J.L., Baptista R.P., Rodrigues-Luiz G.F., Coqueiro-Dos-Santos A., Valdivia H.O., de Almeida L.V., et al. Whole genome sequencing of Trypanosoma cruzi field isolates reveals extensive genomic variability and complex aneuploidy patterns within TcII DTU. BMC Genomics. 2018;19:816. PubMed PMC
Ferreira L.R.P., Dossin F.D.M., Ramos T.C., Freymueller E., Schenkman S. Active transcription and ultrastructural changes during Trypanosoma cruzi metacyclogenesis. Anais Da Academia Brasileira De Ciencias. 2008;80:157–166. PubMed
Dos Santos G.P., Abukawa F.M., Souza-Melo N., Alcantara L.M., Bittencourt-Cunha P., Moraes C.B., et al. Cyclophilin 19 secreted in the host cell cytosol by Trypanosoma cruzi promotes ROS production required for parasite growth. Cell Microbiol. 2021;23 PubMed PMC
de Godoy L.M., Marchini F.K., Pavoni D.P., Rampazzo Rde C., Probst C.M., Goldenberg S., et al. Quantitative proteomics of Trypanosoma cruzi during metacyclogenesis. Proteomics. 2012;12:2694–2703. PubMed
Freitas L.M., dos Santos S.L., Rodrigues-Luiz G.F., Mendes T.A., Rodrigues T.S., Gazzinelli R.T., et al. Genomic analyses, gene expression and antigenic profile of the trans-sialidase superfamily of Trypanosoma cruzi reveal an undetected level of complexity. PLoS One. 2011;6 PubMed PMC
Schenkman S., Chaves L.B., Pontes de Carvalho L., Eichinger D. A proteolytic fragment of Trypanosoma cruzi trans-sialidase lacking the carboxy-terminal domain is active, monomeric and generates antibodies that inhibit enzymatic activity. J. Biol. Chem. 1994;269:7970–7975. PubMed
Hinnebusch A.G. The scanning mechanism of eukaryotic translation initiation. Annu. Rev. Biochem. 2014;83:779–812. PubMed
Sunter J.D., Gull K. The flagellum attachment zone: 'the cellular ruler' of trypanosome morphology. Trends Parasitol. 2016;32:309–324. PubMed PMC
Komar A.A., Merrick W.C. A retrospective on eIF2A-and not the alpha subunit of eIF2. Int. J. Mol. Sci. 2020;21:2054. PubMed PMC
Smircich P., Eastman G., Bispo S., Duhagon M.A., Guerra-Slompo E.P., Garat B., et al. Ribosome profiling reveals translation control as a key mechanism generating differential gene expression in Trypanosoma cruzi. BMC Genomics. 2015;16:443. PubMed PMC
Dickhut C., Feldmann I., Lambert J., Zahedi R.P. Impact of digestion conditions on phosphoproteomics. J. Proteome Res. 2014;13:2761–2770. PubMed
Amorim J.C., Batista M., da Cunha E.S., Lucena A.C.R., Lima C.V.P., Sousa K., et al. Quantitative proteome and phosphoproteome analyses highlight the adherent population during Trypanosoma cruzi metacyclogenesis. Sci. Rep. 2017;7:9899. PubMed PMC
Marchini F.K., de Godoy L.M., Rampazzo R.C., Pavoni D.P., Probst C.M., Gnad F., et al. Profiling the Trypanosoma cruzi phosphoproteome. PLoS One. 2011;6 PubMed PMC
Queiroz R.M.L., Charneau S., Mandacaru S.C., Schwämmle V., Lima B.D., Roepstorff P., et al. Quantitative proteomic and phosphoproteomic analysis of Trypanosoma cruzi amastigogenesis. Mol. Cell Proteomics. 2014;13:3457–3472. PubMed PMC
Chang A.Y., Wang M. Molecular mechanisms of action and potential biomarkers of growth inhibition of dasatinib (BMS-354825) on hepatocellular carcinoma cells. BMC Cancer. 2013;13:267. PubMed PMC
Jung H.J., Kwon H.J. Target deconvolution of bioactive small molecules: the heart of chemical biology and drug discovery. Arch. Pharm. Res. 2015;38:1627–1641. PubMed
Schenone M., Dancik V., Wagner B.K., Clemons P.A. Target identification and mechanism of action in chemical biology and drug discovery. Nat. Chem. Biol. 2013;9:232–240. PubMed PMC
Cui W., Li J., Ron D., Sha B. The structure of the PERK kinase domain suggests the mechanism for its activation. Acta Crystallogr. D Biol. Crystallogr. 2011;67:423–428. PubMed PMC
Akizuki K., Toyama T., Yamashita M., Sugiyama Y., Ishida A., Kameshita I., et al. Facile preparation of highly active casein kinase 1 using Escherichia coli constitutively expressing lambda phosphatase. Anal. Biochem. 2018;549:99–106. PubMed
Radío S., Garat B., Sotelo-Silveira J., Smircich P. Upstream ORFs influence translation efficiency in the parasite Trypanosoma cruzi. Front. Genet. 2020;11:166. PubMed PMC
Belew A.T., Junqueira C., Rodrigues-Luiz G.F., Valente B.M., Oliveira A.E.R., Polidoro R.B., et al. Comparative transcriptome profiling of virulent and non-virulent Trypanosoma cruzi underlines the role of surface proteins during infection. PLoS Pathog. 2017;13 PubMed PMC
Minning T.A., Weatherly D.B., Atwood J., 3rd, Orlando R., Tarleton R.L. The steady-state transcriptome of the four major life-cycle stages of Trypanosoma cruzi. BMC Genomics. 2009;10:370. PubMed PMC
Barison M.J., Rapado L.N., Merino E.F., Furusho Pral E.M., Mantilla B.S., Marchese L., et al. Metabolomic profiling reveals a finely tuned, starvation-induced metabolic switch in Trypanosoma cruzi epimastigotes. J. Biol. Chem. 2017;292:8964–8977. PubMed PMC
Caradonna K., Engel J., Jacobi D., Lee C.-H., Burleigh B. Host metabolism regulates intracellular growth of Trypanosoma cruzi. Cell Host Microbe. 2013;13:108–117. PubMed PMC
Mattos E.C., Canuto G., Manchola N.C., Magalhaes R.D.M., Crozier T.W.M., Lamont D.J., et al. Reprogramming of Trypanosoma cruzi metabolism triggered by parasite interaction with the host cell extracellular matrix. PLoS Negl. Trop. Dis. 2019;13 PubMed PMC
Yin J.Y., Zhang J.T., Zhang W., Zhou H.H., Liu Z.Q. eIF3a: a new anticancer drug target in the eIF family. Cancer Lett. 2018;412:81–87. PubMed
Damoc E., Fraser C.S., Zhou M., Videler H., Mayeur G.L., Hershey J.W., et al. Structural characterization of the human eukaryotic initiation factor 3 protein complex by mass spectrometry. Mol. Cell Proteomics. 2007;6:1135–1146. PubMed
Bochler A., Querido J.B., Prilepskaja T., Soufari H., Simonetti A., Del Cistia M.L., et al. Structural differences in translation initiation between pathogenic trypanosomatids and their mammalian hosts. Cell Rep. 2020;33 PubMed PMC
Meleppattu S., Kamus-Elimeleh D., Zinoviev A., Cohen-Mor S., Orr I., Shapira M. The eIF3 complex of Leishmania-subunit composition and mode of recruitment to different cap-binding complexes. Nucl. Acids Res. 2015;43:6222–6235. PubMed PMC
Rezende A.M., Assis L.A., Nunes E.C., da Costa Lima T.D., Marchini F.K., Freire E.R., et al. The translation initiation complex eIF3 in trypanosomatids and other pathogenic excavates--identification of conserved and divergent features based on orthologue analysis. BMC Genomics. 2014;15:1175. PubMed PMC
Cayla M., McDonald L., MacGregor P., Matthews K. An atypical DYRK kinase connects quorum-sensing with posttranscriptional gene regulation in Trypanosoma brucei. Elife. 2020;9 PubMed PMC
Jager A.V., De Gaudenzi J.G., Mild J.G., Mc Cormack B., Pantano S., Altschuler D.L., et al. Identification of novel cyclic nucleotide binding proteins in Trypanosoma cruzi. Mol. Biochem. Parasitol. 2014;198:104–112. PubMed PMC
Takagi Y., Sindkar S., Ekonomidis D., Hall M.P., Ho C.K. Trypanosoma brucei encodes a bifunctional capping enzyme essential for cap 4 formation on the spliced leader RNA. J. Biol. Chem. 2007;282:15995–16005. PubMed
Clayton C. Regulation of gene expression in trypanosomatids: living with polycistronic transcription. Open Biol. 2019;9 PubMed PMC
Shah N.P., Tran C., Lee F.Y., Chen P., Norris D., Sawyers C.L. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science. 2004;305:399–401. PubMed
Shi H., Zhang C.J., Chen G.Y., Yao S.Q. Cell-based proteome profiling of potential dasatinib targets by use of affinity-based probes. J. Am. Chem. Soc. 2012;134:3001–3014. PubMed
Blasina A., Hallin J., Chen E., Arango M.E., Kraynov E., Register J., et al. Breaching the DNA damage checkpoint via PF-00477736, a novel small-molecule inhibitor of checkpoint kinase 1. Mol. Cancer Ther. 2008;7:2394–2404. PubMed
Wu Q., Peng Z., Zhang Y., Yang J. COACH-D: improved protein-ligand binding sites prediction with refined ligand-binding poses through molecular docking. Nucl. Acids Res. 2018;46:W438–W442. PubMed PMC
Yang J., Roy A., Zhang Y. Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics. 2013;29:2588–2595. PubMed PMC
Luo F.R., Yang Z., Camuso A., Smykla R., McGlinchey K., Fager K., et al. Dasatinib (BMS-354825) pharmacokinetics and pharmacodynamic biomarkers in animal models predict optimal clinical exposure. Clin. Cancer Res. 2006;12:7180–7186. PubMed
Camargo E.P. Growth and differentiation in Trypanosoma cruzi. I. Origin of metacyclic trypanosomes in liquid media. Rev. Inst. Med. Trop Sao Paulo. 1964;6:93–100. PubMed
Contreras V.T., Araujo-Jorge T.C., Bonaldo M.C., Thomaz N., Barbosa H.S., Meirelles M.N., et al. Biological aspects of the Dm 28c clone of Trypanosoma cruzi after metacyclogenesis in chemically defined media. Memorias do Instituto Oswaldo Cruz. 1988;83:123–133. PubMed
Moraes C.B., Giardini M.A., Kim H., Franco C.H., Araujo-Junior A.M., Schenkman S., et al. Nitroheterocyclic compounds are more efficacious than CYP51 inhibitors against Trypanosoma cruzi: implications for chagas disease drug discovery and development. Sci. Rep. 2014;4:4703. PubMed PMC
Medina-Acosta E., Cross G.A.M. Rapid isolation of DNA from trypanosomatid protozoa using a simple `mini-prep' procedure. Mol. Biochem. Parasitol. 1993;59:327–330. PubMed
Shrestha A., Hamilton G., O'Neill E., Knapp S., Elkins J.M. Analysis of conditions affecting auto-phosphorylation of human kinases during expression in bacteria. Protein Expr. Purif. 2012;81:136–143. PubMed PMC
Bangs J.D., Brouch E.M., Ransom D.M., Roggy J.L. A soluble secretory reporter system in Trypanosoma brucei. Studies on endoplasmic reticulum targeting. J. Biol. Chem. 1996;271:18387–18393. PubMed
Lander N., Li Z.H., Niyogi S., Docampo R. CRISPR/Cas9-Induced disruption of paraflagellar rod protein 1 and 2 genes in Trypanosoma cruzi reveals their role in flagellar attachment. mBio. 2015;6 PubMed PMC
Pacheco-Lugo L., Diaz-Olmos Y., Saenz-Garcia J., Probst C.M., DaRocha W.D. Effective gene delivery to Trypanosoma cruzi epimastigotes through nucleofection. Parasitol. Int. 2017;66:236–239. PubMed
Peng D., Kurup S.P., Yao P.Y., Minning T.A., Tarleton R.L. CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi. mBio. 2014;6 PubMed PMC
Jiang L., Schlesinger F., Davis C.A., Zhang Y., Li R., Salit M., et al. Synthetic spike-in standards for RNA-seq experiments. Genome Res. 2011;21:1543–1551. PubMed PMC
Cock P.J., Fields C.J., Goto N., Heuer M.L., Rice P.M. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucl. Acids Res. 2010;38:1767–1771. PubMed PMC
Cox J., Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. PubMed
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Met. 2016;13:731–740. PubMed
Vizcaino J.A., Csordas A., Del-Toro N., Dianes J.A., Griss J., Lavidas I., et al. 2016 update of the PRIDE database and its related tools. Nucl. Acids Res. 2016;44 PubMed PMC