Identification of inhibitors for the transmembrane Trypanosoma cruzi eIF2α kinase relevant for parasite proliferation

. 2023 Jul ; 299 (7) : 104857. [epub] 20230523

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37230387

Grantová podpora
204697/Z/16/Z Wellcome Trust - United Kingdom
MR/M026248/1 Medical Research Council - United Kingdom
MR/M026248 Medical Research Council - United Kingdom

Odkazy

PubMed 37230387
PubMed Central PMC10300260
DOI 10.1016/j.jbc.2023.104857
PII: S0021-9258(23)01885-9
Knihovny.cz E-zdroje

The TcK2 protein kinase of Trypanosoma cruzi, the causative agent of Chagas disease, is structurally similar to the human kinase PERK, which phosphorylates the initiation factor eIF2α and, in turn, inhibits translation initiation. We have previously shown that absence of TcK2 kinase impairs parasite proliferation within mammalian cells, positioning it as a potential target for treatment of Chagas disease. To better understand its role in the parasite, here we initially confirmed the importance of TcK2 in parasite proliferation by generating CRISPR/Cas9 TcK2-null cells, albeit they more efficiently differentiate into infective forms. Proteomics indicates that the TcK2 knockout of proliferative forms expresses proteins including trans-sialidases, normally restricted to infective and nonproliferative trypomastigotes explaining decreased proliferation and better differentiation. TcK2 knockout cells lost phosphorylation of eukaryotic initiation factor 3 and cyclic AMP responsive-like element, recognized to promote growth, likely explaining both decreased proliferation and augmented differentiation. To identify specific inhibitors, a library of 379 kinase inhibitors was screened by differential scanning fluorimetry using a recombinant TcK2 encompassing the kinase domain and selected molecules were tested for kinase inhibition. Only Dasatinib and PF-477736, inhibitors of Src/Abl and ChK1 kinases, showed inhibitory activity with IC50 of 0.2 ± 0.02 mM and 0.8 ± 0.1, respectively. In infected cells Dasatinib inhibited growth of parental amastigotes (IC50 = 0.6 ± 0.2 mM) but not TcK2 of depleted parasites (IC50 > 34 mM) identifying Dasatinib as a potential lead for development of therapeutics for Chagas disease targeting TcK2.

Zobrazit více v PubMed

Jackson R.J., Hellen C.U., Pestova T.V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 2010;11:113–127. PubMed PMC

Pakos-Zebrucka K., Koryga I., Mnich K., Ljujic M., Samali A., Gorman A.M. The integrated stress response. EMBO Rep. 2016;17:1374–1395. PubMed PMC

Donnelly N., Gorman A.M., Gupta S., Samali A. The eIF2alpha kinases: their structures and functions. Cell Mol. Life Sci. 2013;70:3493–3511. PubMed PMC

Coura J.R., Borges-Pereira J. Chagas disease: 100 years after its discovery. A systemic review. Acta Tropica (Basel) 2010;115:5–13. PubMed

Franco C.H., Alcantara L.M., Chatelain E., Freitas-Junior L., Moraes C.B. Drug discovery for chagas disease: impact of different host cell lines on assay performance and hit compound selection. Trop. Med. Infect. Dis. 2019;4:82. PubMed PMC

Parsons M., Worthey E.A., Ward P.N., Mottram J.C. Comparative analysis of the kinomes of three pathogenic trypanosomatids: leishmania major, Trypanosoma brucei and Trypanosoma cruzi. BMC Genomics. 2005;6:127. PubMed PMC

Malvezzi A.M., Aricó M., Souza-Melo N., dos Santos G.P., Bittencourt-Cunha P., Holetz F.B., et al. GCN2-Like kinase modulates stress granule formation during nutritional stress in Trypanosoma cruzi. Front. Cell Infect. Microbiol. 2020;10:149. PubMed PMC

da Silva Augusto L., Moretti N.S., Ramos T.C., de Jesus T.C., Zhang M., Castilho B.A., et al. A membrane-bound eIF2 alpha kinase located in endosomes is regulated by heme and controls differentiation and ROS levels in Trypanosoma cruzi. PLoS Pathog. 2015;11 PubMed PMC

Moraes M.C., Jesus T.C., Hashimoto N.N., Dey M., Schwartz K.J., Alves V.S., et al. Novel membrane-bound eIF2alpha kinase in the flagellar pocket of Trypanosoma brucei. Eukaryot. Cell. 2007;6:1979–1991. PubMed PMC

Tonelli R.R., Augusto L.d.S., Castilho B.A., Schenkman S. Protein synthesis attenuation by phosphorylation of eIF2alpha Is required for the differentiation of Trypanosoma cruzi into infective forms. PLoS One. 2011;6 PubMed PMC

Castro Machado F., Bittencourt-Cunha P., Malvezzi A.M., Arico M., Radio S., Smircich P., et al. EIF2alpha phosphorylation is regulated in intracellular amastigotes for the generation of infective Trypanosoma cruzi trypomastigote forms. Cell Microbiol. 2020;22 PubMed

Kratz J.M. Drug discovery for chagas disease: a viewpoint. Acta tropica. 2019;198 PubMed

Maguire B.J., Dahal P., Rashan S., Ngu R., Boon A., Forsyth C., et al. The chagas disease study landscape: a systematic review of clinical and observational antiparasitic treatment studies to assess the potential for establishing an individual participant-level data platform. PLoS Negl. Trop. Dis. 2021;15 PubMed PMC

Moraes C.B., Witt G., Kuzikov M., Ellinger B., Calogeropoulou T., Prousis K.C., et al. Accelerating drug discovery efforts for trypanosomatidic infections using an integrated transnational academic drug discovery platform. SLAS Discov. 2019;24:346–361. PubMed PMC

Burle-Caldas G.A., Dos Santos N.S.A., de Castro J.T., Mugge F.L.B., Grazielle-Silva V., Oliveira A.E.R., et al. Disruption of active trans-sialidase genes impairs egress from mammalian host cells and generates highly attenuated Trypanosoma cruzi parasites. mBio. 2022;13 PubMed PMC

Aslett M., Aurrecoechea C., Berriman M., Brestelli J., Brunk B.P., Carrington M., et al. TriTrypDB: a functional genomic resource for the trypanosomatidae. Nucl. Acids Res. 2010;38:D457–D462. PubMed PMC

Callejas-Hernandez F., Rastrojo A., Poveda C., Girones N., Fresno M. Genomic assemblies of newly sequenced Trypanosoma cruzi strains reveal new genomic expansion and greater complexity. Sci. Rep. 2018;8 PubMed PMC

Reis-Cunha J.L., Baptista R.P., Rodrigues-Luiz G.F., Coqueiro-Dos-Santos A., Valdivia H.O., de Almeida L.V., et al. Whole genome sequencing of Trypanosoma cruzi field isolates reveals extensive genomic variability and complex aneuploidy patterns within TcII DTU. BMC Genomics. 2018;19:816. PubMed PMC

Ferreira L.R.P., Dossin F.D.M., Ramos T.C., Freymueller E., Schenkman S. Active transcription and ultrastructural changes during Trypanosoma cruzi metacyclogenesis. Anais Da Academia Brasileira De Ciencias. 2008;80:157–166. PubMed

Dos Santos G.P., Abukawa F.M., Souza-Melo N., Alcantara L.M., Bittencourt-Cunha P., Moraes C.B., et al. Cyclophilin 19 secreted in the host cell cytosol by Trypanosoma cruzi promotes ROS production required for parasite growth. Cell Microbiol. 2021;23 PubMed PMC

de Godoy L.M., Marchini F.K., Pavoni D.P., Rampazzo Rde C., Probst C.M., Goldenberg S., et al. Quantitative proteomics of Trypanosoma cruzi during metacyclogenesis. Proteomics. 2012;12:2694–2703. PubMed

Freitas L.M., dos Santos S.L., Rodrigues-Luiz G.F., Mendes T.A., Rodrigues T.S., Gazzinelli R.T., et al. Genomic analyses, gene expression and antigenic profile of the trans-sialidase superfamily of Trypanosoma cruzi reveal an undetected level of complexity. PLoS One. 2011;6 PubMed PMC

Schenkman S., Chaves L.B., Pontes de Carvalho L., Eichinger D. A proteolytic fragment of Trypanosoma cruzi trans-sialidase lacking the carboxy-terminal domain is active, monomeric and generates antibodies that inhibit enzymatic activity. J. Biol. Chem. 1994;269:7970–7975. PubMed

Hinnebusch A.G. The scanning mechanism of eukaryotic translation initiation. Annu. Rev. Biochem. 2014;83:779–812. PubMed

Sunter J.D., Gull K. The flagellum attachment zone: 'the cellular ruler' of trypanosome morphology. Trends Parasitol. 2016;32:309–324. PubMed PMC

Komar A.A., Merrick W.C. A retrospective on eIF2A-and not the alpha subunit of eIF2. Int. J. Mol. Sci. 2020;21:2054. PubMed PMC

Smircich P., Eastman G., Bispo S., Duhagon M.A., Guerra-Slompo E.P., Garat B., et al. Ribosome profiling reveals translation control as a key mechanism generating differential gene expression in Trypanosoma cruzi. BMC Genomics. 2015;16:443. PubMed PMC

Dickhut C., Feldmann I., Lambert J., Zahedi R.P. Impact of digestion conditions on phosphoproteomics. J. Proteome Res. 2014;13:2761–2770. PubMed

Amorim J.C., Batista M., da Cunha E.S., Lucena A.C.R., Lima C.V.P., Sousa K., et al. Quantitative proteome and phosphoproteome analyses highlight the adherent population during Trypanosoma cruzi metacyclogenesis. Sci. Rep. 2017;7:9899. PubMed PMC

Marchini F.K., de Godoy L.M., Rampazzo R.C., Pavoni D.P., Probst C.M., Gnad F., et al. Profiling the Trypanosoma cruzi phosphoproteome. PLoS One. 2011;6 PubMed PMC

Queiroz R.M.L., Charneau S., Mandacaru S.C., Schwämmle V., Lima B.D., Roepstorff P., et al. Quantitative proteomic and phosphoproteomic analysis of Trypanosoma cruzi amastigogenesis. Mol. Cell Proteomics. 2014;13:3457–3472. PubMed PMC

Chang A.Y., Wang M. Molecular mechanisms of action and potential biomarkers of growth inhibition of dasatinib (BMS-354825) on hepatocellular carcinoma cells. BMC Cancer. 2013;13:267. PubMed PMC

Jung H.J., Kwon H.J. Target deconvolution of bioactive small molecules: the heart of chemical biology and drug discovery. Arch. Pharm. Res. 2015;38:1627–1641. PubMed

Schenone M., Dancik V., Wagner B.K., Clemons P.A. Target identification and mechanism of action in chemical biology and drug discovery. Nat. Chem. Biol. 2013;9:232–240. PubMed PMC

Cui W., Li J., Ron D., Sha B. The structure of the PERK kinase domain suggests the mechanism for its activation. Acta Crystallogr. D Biol. Crystallogr. 2011;67:423–428. PubMed PMC

Akizuki K., Toyama T., Yamashita M., Sugiyama Y., Ishida A., Kameshita I., et al. Facile preparation of highly active casein kinase 1 using Escherichia coli constitutively expressing lambda phosphatase. Anal. Biochem. 2018;549:99–106. PubMed

Radío S., Garat B., Sotelo-Silveira J., Smircich P. Upstream ORFs influence translation efficiency in the parasite Trypanosoma cruzi. Front. Genet. 2020;11:166. PubMed PMC

Belew A.T., Junqueira C., Rodrigues-Luiz G.F., Valente B.M., Oliveira A.E.R., Polidoro R.B., et al. Comparative transcriptome profiling of virulent and non-virulent Trypanosoma cruzi underlines the role of surface proteins during infection. PLoS Pathog. 2017;13 PubMed PMC

Minning T.A., Weatherly D.B., Atwood J., 3rd, Orlando R., Tarleton R.L. The steady-state transcriptome of the four major life-cycle stages of Trypanosoma cruzi. BMC Genomics. 2009;10:370. PubMed PMC

Barison M.J., Rapado L.N., Merino E.F., Furusho Pral E.M., Mantilla B.S., Marchese L., et al. Metabolomic profiling reveals a finely tuned, starvation-induced metabolic switch in Trypanosoma cruzi epimastigotes. J. Biol. Chem. 2017;292:8964–8977. PubMed PMC

Caradonna K., Engel J., Jacobi D., Lee C.-H., Burleigh B. Host metabolism regulates intracellular growth of Trypanosoma cruzi. Cell Host Microbe. 2013;13:108–117. PubMed PMC

Mattos E.C., Canuto G., Manchola N.C., Magalhaes R.D.M., Crozier T.W.M., Lamont D.J., et al. Reprogramming of Trypanosoma cruzi metabolism triggered by parasite interaction with the host cell extracellular matrix. PLoS Negl. Trop. Dis. 2019;13 PubMed PMC

Yin J.Y., Zhang J.T., Zhang W., Zhou H.H., Liu Z.Q. eIF3a: a new anticancer drug target in the eIF family. Cancer Lett. 2018;412:81–87. PubMed

Damoc E., Fraser C.S., Zhou M., Videler H., Mayeur G.L., Hershey J.W., et al. Structural characterization of the human eukaryotic initiation factor 3 protein complex by mass spectrometry. Mol. Cell Proteomics. 2007;6:1135–1146. PubMed

Bochler A., Querido J.B., Prilepskaja T., Soufari H., Simonetti A., Del Cistia M.L., et al. Structural differences in translation initiation between pathogenic trypanosomatids and their mammalian hosts. Cell Rep. 2020;33 PubMed PMC

Meleppattu S., Kamus-Elimeleh D., Zinoviev A., Cohen-Mor S., Orr I., Shapira M. The eIF3 complex of Leishmania-subunit composition and mode of recruitment to different cap-binding complexes. Nucl. Acids Res. 2015;43:6222–6235. PubMed PMC

Rezende A.M., Assis L.A., Nunes E.C., da Costa Lima T.D., Marchini F.K., Freire E.R., et al. The translation initiation complex eIF3 in trypanosomatids and other pathogenic excavates--identification of conserved and divergent features based on orthologue analysis. BMC Genomics. 2014;15:1175. PubMed PMC

Cayla M., McDonald L., MacGregor P., Matthews K. An atypical DYRK kinase connects quorum-sensing with posttranscriptional gene regulation in Trypanosoma brucei. Elife. 2020;9 PubMed PMC

Jager A.V., De Gaudenzi J.G., Mild J.G., Mc Cormack B., Pantano S., Altschuler D.L., et al. Identification of novel cyclic nucleotide binding proteins in Trypanosoma cruzi. Mol. Biochem. Parasitol. 2014;198:104–112. PubMed PMC

Takagi Y., Sindkar S., Ekonomidis D., Hall M.P., Ho C.K. Trypanosoma brucei encodes a bifunctional capping enzyme essential for cap 4 formation on the spliced leader RNA. J. Biol. Chem. 2007;282:15995–16005. PubMed

Clayton C. Regulation of gene expression in trypanosomatids: living with polycistronic transcription. Open Biol. 2019;9 PubMed PMC

Shah N.P., Tran C., Lee F.Y., Chen P., Norris D., Sawyers C.L. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science. 2004;305:399–401. PubMed

Shi H., Zhang C.J., Chen G.Y., Yao S.Q. Cell-based proteome profiling of potential dasatinib targets by use of affinity-based probes. J. Am. Chem. Soc. 2012;134:3001–3014. PubMed

Blasina A., Hallin J., Chen E., Arango M.E., Kraynov E., Register J., et al. Breaching the DNA damage checkpoint via PF-00477736, a novel small-molecule inhibitor of checkpoint kinase 1. Mol. Cancer Ther. 2008;7:2394–2404. PubMed

Wu Q., Peng Z., Zhang Y., Yang J. COACH-D: improved protein-ligand binding sites prediction with refined ligand-binding poses through molecular docking. Nucl. Acids Res. 2018;46:W438–W442. PubMed PMC

Yang J., Roy A., Zhang Y. Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics. 2013;29:2588–2595. PubMed PMC

Luo F.R., Yang Z., Camuso A., Smykla R., McGlinchey K., Fager K., et al. Dasatinib (BMS-354825) pharmacokinetics and pharmacodynamic biomarkers in animal models predict optimal clinical exposure. Clin. Cancer Res. 2006;12:7180–7186. PubMed

Camargo E.P. Growth and differentiation in Trypanosoma cruzi. I. Origin of metacyclic trypanosomes in liquid media. Rev. Inst. Med. Trop Sao Paulo. 1964;6:93–100. PubMed

Contreras V.T., Araujo-Jorge T.C., Bonaldo M.C., Thomaz N., Barbosa H.S., Meirelles M.N., et al. Biological aspects of the Dm 28c clone of Trypanosoma cruzi after metacyclogenesis in chemically defined media. Memorias do Instituto Oswaldo Cruz. 1988;83:123–133. PubMed

Moraes C.B., Giardini M.A., Kim H., Franco C.H., Araujo-Junior A.M., Schenkman S., et al. Nitroheterocyclic compounds are more efficacious than CYP51 inhibitors against Trypanosoma cruzi: implications for chagas disease drug discovery and development. Sci. Rep. 2014;4:4703. PubMed PMC

Medina-Acosta E., Cross G.A.M. Rapid isolation of DNA from trypanosomatid protozoa using a simple `mini-prep' procedure. Mol. Biochem. Parasitol. 1993;59:327–330. PubMed

Shrestha A., Hamilton G., O'Neill E., Knapp S., Elkins J.M. Analysis of conditions affecting auto-phosphorylation of human kinases during expression in bacteria. Protein Expr. Purif. 2012;81:136–143. PubMed PMC

Bangs J.D., Brouch E.M., Ransom D.M., Roggy J.L. A soluble secretory reporter system in Trypanosoma brucei. Studies on endoplasmic reticulum targeting. J. Biol. Chem. 1996;271:18387–18393. PubMed

Lander N., Li Z.H., Niyogi S., Docampo R. CRISPR/Cas9-Induced disruption of paraflagellar rod protein 1 and 2 genes in Trypanosoma cruzi reveals their role in flagellar attachment. mBio. 2015;6 PubMed PMC

Pacheco-Lugo L., Diaz-Olmos Y., Saenz-Garcia J., Probst C.M., DaRocha W.D. Effective gene delivery to Trypanosoma cruzi epimastigotes through nucleofection. Parasitol. Int. 2017;66:236–239. PubMed

Peng D., Kurup S.P., Yao P.Y., Minning T.A., Tarleton R.L. CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi. mBio. 2014;6 PubMed PMC

Jiang L., Schlesinger F., Davis C.A., Zhang Y., Li R., Salit M., et al. Synthetic spike-in standards for RNA-seq experiments. Genome Res. 2011;21:1543–1551. PubMed PMC

Cock P.J., Fields C.J., Goto N., Heuer M.L., Rice P.M. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucl. Acids Res. 2010;38:1767–1771. PubMed PMC

Cox J., Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. PubMed

Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Met. 2016;13:731–740. PubMed

Vizcaino J.A., Csordas A., Del-Toro N., Dianes J.A., Griss J., Lavidas I., et al. 2016 update of the PRIDE database and its related tools. Nucl. Acids Res. 2016;44 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...