Cerebral Projection of Mirrored Touch via sLORETA Imaging
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37240846
PubMed Central
PMC10221079
DOI
10.3390/life13051201
PII: life13051201
Knihovny.cz E-zdroje
- Klíčová slova
- Brodmann areas, EEG, haptic contact, mirror neurons, mirror therapy, neuroplasticity, sLORETA, sensorimotor, touch,
- Publikační typ
- časopisecké články MeSH
Touch is one of the primary communication tools. Interestingly, the sensation of touch can also be experienced when observed in another person. Due to the system of mirror neurons, it is, in fact, being mapped on the somatosensory cortex of the observer. This phenomenon can be triggered not only by observing touch in another individual, but also by a mirror reflection of the contralateral limb. Our study aims to evaluate and localize changes in the intracerebral source activity via sLORETA imaging during the haptic stimulation of hands, while modifying this contact by a mirror illusion. A total of 10 healthy volunteers aged 23-42 years attended the experiment. The electrical brain activity was detected via scalp EEG. First, we registered the brain activity during resting state with open and with closed eyes, each for 5 min. Afterwards, the subjects were seated at a table with a mirror reflecting their left hand and occluding their right hand. The EEG was then recorded in 2 min sequencies during four modifications of the experiment (haptic contact on both hands, stimulation of the left hand only, right hand only and without any tactile stimuli). We randomized the order of the modifications for each participant. The obtained EEG data were converted into the sLORETA program and evaluated statistically at the significance level of p ≤ 0.05. The subjective experience of all the participants was registered using a survey. A statistically significant difference in source brain activity occurred during all four modifications of our experiment in the beta-2, beta-3 and delta frequency bands, resulting in the activation of 10 different Brodmann areas varying by modification. The results suggest that the summation of stimuli secured by interpersonal haptic contact modified by mirror illusion can activate the brain areas integrating motor, sensory and cognitive functions and further areas related to communication and understanding processes, including the mirror neuron system. We believe these findings may have potential for therapy.
Zobrazit více v PubMed
Bolognini N., Rossetti A., Fusaro M., Vallar G., Miniussi C. Sharing Social Touch in the Primary Somatosensory Cortex. Curr. Biol. 2014;24:1513–1517. doi: 10.1016/j.cub.2014.05.025. PubMed DOI
Kelly M.A., Nixon L., McClurg C., Scherpbier A., King N., Dornan T. Experience of Touch in Health Care: A Meta-Ethnography Across the Health Care Professions. Qual. Health Res. 2017;28:200–212. doi: 10.1177/1049732317707726. PubMed DOI
Muramatsu T., Washizawa Y., Hiyoshi K. EEG Analysis of Nursing Touch for Frustrating Work; Proceedings of the 2020 IEEE 2nd Global Conference on Life Sciences and Technologies (LifeTech); Kyoto, Japan. 10–12 March 2020.
Bjorbækmo W.S., Mengshoel A.M. A touch of physiotherapy: The significance and meaning of touch in the practice of physiotherapy. Physiother. Theory Pract. 2016;32:10–19. doi: 10.3109/09593985.2015.1071449. PubMed DOI
Bolognini N., Olgiati E., Xaiz A., Posteraro L., Ferraro F., Maravita A. Touch to See: Neuropsychological Evidence of a Sensory Mirror System for Touch. Cereb. Cortex. 2012;22:2055–2064. doi: 10.1093/cercor/bhr283. PubMed DOI
Coll M.P., Bird G., Catmur C., Press C. Cross-modal repetition effects in the mu rhythm indicate tactile mirroring during action observation. Cortex. 2015;63:121–131. doi: 10.1016/j.cortex.2014.08.024. PubMed DOI
Plata Bello J., Modrono C., González-Mora J.L. The role of mirror neurons in neurosurgical patients: A few general considerations and rehabilitation perspectives. NeuroRehabilitation. 2014;35:665–671. doi: 10.3233/NRE-141167. PubMed DOI
Bonini L., Rotunno C., Arcuri E., Gallese V. Mirror neurons 30 years later: Implications and applications. Trends Cogn. Sci. 2022;26:767–781. doi: 10.1016/j.tics.2022.06.003. PubMed DOI
Rizzolatti G., Sinigaglia C. The mirror mechanism: A basic principle of brain function. Nat. Rev. Neurosci. 2016;17:757–765. doi: 10.1038/nrn.2016.135. PubMed DOI
Kilner J.M., Lemon R.N. What We Know Currently about Mirror Neurons. Curr. Biol. 2013;23:R1057–R1062. doi: 10.1016/j.cub.2013.10.051. PubMed DOI PMC
Ramachandran V.S., Rogers-Ramachandran D. Synaesthesia in phantom limbs induced with mirrors. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1996;263:377–386. PubMed
Jančíková V., Konečný P., Horák S. Zrcadlová terapie a její využití v neurorehabilitaci. Rehabil. A Fyzikální Lékařství. 2018;25:139–142.
Ramachandran V.S., Rogers-Ramachandran D. Mirror feedback assisted recovery from hemiparesis following stroke. In reply to Morkisch et al.: How to perform mirror therapy after stroke? Evidence from a meta-analysis. Restor. Neurol. Neurosci. 2019;37:437–443. doi: 10.3233/RNN-190971. PubMed DOI
Sale P., Franceschini M. Action observation and mirror neuron network: A tool for motor stroke rehabilitation. Eur. J. Phys. Rehabil. Med. 2012;48:313–318. PubMed
Bryant L.J., Cuevas K. Effects of active and observational experience on EEG activity during early childhood. Psychophysiology. 2019;56:e13360. doi: 10.1111/psyp.13360. PubMed DOI
Stefan K. Formation of a Motor Memory by Action Observation. J. Neurosci. 2005;25:9339–9346. doi: 10.1523/JNEUROSCI.2282-05.2005. PubMed DOI PMC
Buccino G., Solodkin A., Small S.L. Functions of the Mirror Neuron System: Implications for Neurohabilitation. Cogn. Behav. Neurol. 2006;19:55–63. doi: 10.1097/00146965-200603000-00007. PubMed DOI
Nakanishi K., Watanabe T., Sunagawa T., Kurumadani H., Ibrahim Zehry H., Ochi M., Adachi N. Mirror imaging of finger mechanical stimulation affects secondary somatosensory response. NeuroReport. 2018;29:229–234. doi: 10.1097/WNR.0000000000000966. PubMed DOI
Arya K.N. Underlying neural mechanisms of mirror therapy: Implications for motor rehabilitation in stroke. Neurol. India. 2016;64:38–44. doi: 10.4103/0028-3886.173622. PubMed DOI
Lunghi C., Lo Verde L., Alais D. Touch Accelerated Visual Awareness. I-Perception. 2017;8:2041669516686986. doi: 10.1177/2041669516686986. PubMed DOI PMC
Salomon R., Galli G., Łukowska M., Faivre N., Ruiz J.B., Blanke O. An Invisible touch: Body-related multisensory conflicts modulate visual consciousness. Neuropsychologia. 2016;88:131–139. PubMed
Ding L., He J., Yao L., Zhuang J., Chen S., Wang H., Jiang N., Jia J. Mirror Visual Feedback Combining Vibrotactile Stimulation Promotes Embodiment Perception: An Electroencephalogram (EEG) Pilot Study. Front. Bioeng. Biotechnol. 2020;8:553270. doi: 10.3389/fbioe.2020.553270. PubMed DOI PMC
Gillmeister H. A new perceptual paradigm to investigate the visual remapping of others’ tactile sensations onto one ‘s own body shows “mirror touch” for the hands. Front. Psychol. 2014;5:95. doi: 10.3389/fpsyg.2014.00095. PubMed DOI PMC
Mancini F., Nash T., Iannetti G.D., Haggard P. Pain relief by touch: A quantitative approach. Pain. 2014;155:635–642. doi: 10.1016/j.pain.2013.12.024. PubMed DOI PMC
Martínek M., Pánek D., Nováková T., Pavlů D. Analysis of Intracerebral Activity during Reflex Locomotion Stimulation According to Vojta’s Principle. Appl. Sci. 2022;12:2225. doi: 10.3390/app12042225. DOI
Rothgangel A., Braun S. Mirror Therapy: Practical Protocol for Stroke Rehabilitation. Pflaun Verlag; München, Germany: 2013. pp. 1–17.
Pascual-Marqui R.D. Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details. Methods Find. Exp. Clin. Pharmacol. 2022;24:5–12. PubMed
Rakusa M., Busan P., Battaglini P.P., Zidar J. Separating the Idea from the Action: A sLORETA Study. Brain Topogr. 2018;31:228–241. doi: 10.1007/s10548-017-0584-9. PubMed DOI
Pánek D. Elektroencefalografické Koreláty Pohybového Chování a Výkonnostní Zátěže. Nakladatelství Karolinum; Prague, Czech Republic: 2016.
Jatoi M.A., Kamel N., Malik A.S., Faye I. EEG based brain source localization comparison of sLORETA and eLORETA. Australas. Phys. Eng. Sci. Med. 2014;37:713–721. doi: 10.1007/s13246-014-0308-3. PubMed DOI
Dattola S., Morabito F.C., Mammone N., La Foresta F. Findings about LORETA Applied to High-Density EEG—A Review. Electronics. 2020;9:660. doi: 10.3390/electronics9040660. DOI
Faber J. Elektroencefalografie a Psychofyziologie. ISV; Prague, Czech Republic: 2001.
Orel M., Procházka R. Vyšetření a Výzkum Mozku: Pro Psychology, Pedagogy a Další Nelékařské Obory. Grada; Prague, Czech Republic: 2017.
Talairach J., Tournoux P. Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging. Thieme; New York, NY, USA: 1988.
Baker S.N. Oscillatory interactions between sensorimotor cortex and the periphery. Curr. Opin. Neurobiol. 2007;17:649–655. doi: 10.1016/j.conb.2008.01.007. PubMed DOI PMC
Baravalle R., Rosso O.A., Montani F. Rhytmic activities of the brain: Quantifying the high complexity of beta and gamma oscillations during visuomotor tasks. Chaos Interdiscip. J. Nonlinear Sci. 2018;28:075513. doi: 10.1063/1.5025187. PubMed DOI
Gable P.A., Threadgill A.H., Adams D.L. Neural activity underlying motor-action preparation and cognitive narrowing in approach-motivated goal states. Cogn. Affect. Behav. Neurosci. 2016;16:145–152. doi: 10.3758/s13415-015-0381-4. PubMed DOI
Khanna P., Carmena J.M. Neural oscillations: Beta band activity across motor networks. Curr. Opin. Neurobiol. 2015;32:60–67. doi: 10.1016/j.conb.2014.11.010. PubMed DOI
Cortical Functions: Reference. [(accessed on 28 February 2023)]. Available online: https://www.fmriconsulting.com/brodmann/Interact.html.
Brodmann’s Interactive Atlas. [(accessed on 28 February 2023)]. Available online: https://trans-cranial.com/docs/cortical_functions_ref_v1_0_pdf.pdf.
Cavanagh J.F. Cortical delta activity reflects reward prediction error and related behavioral adjustments, but at different times. NeuroImage. 2015;110:205–216. doi: 10.1016/j.neuroimage.2015.02.007. PubMed DOI
Güntekin B., Başar E. Review of evoked and event-related delta responses in the human brain. Int. J. Psychophysiol. 2016;103:43–52. doi: 10.1016/j.ijpsycho.2015.02.001. PubMed DOI
Liang M., Starrett M.J., Ekstrom A.D. Dissociation of frontal-midline delta-theta and posterior alpha oscillations: A mobile EEG study. Psychophysiology. 2018;55:e13090. doi: 10.1111/psyp.13090. PubMed DOI
Di Pellegrino G., Fadiga L., Fogassi L., Gallese V., Rizzolatti G. Understanding motor events: A neurophysiological study. Exp. Brain Res. 1992;91:176–180. doi: 10.1007/BF00230027. PubMed DOI
D’Ausilio A. Mirror-like Mechanisms and Music. Sci. World J. 2009;9:1415–1422. doi: 10.1100/tsw.2009.160. PubMed DOI PMC
Caramazza A., Anzellotti S., Strnad L., Lingnau A. Embodied Cognition and Mirror Neurons: A Critical Assessment. Annu. Rev. Neurosci. 2014;37:1–15. doi: 10.1146/annurev-neuro-071013-013950. PubMed DOI
Jin F., Zheng P., Liu H., Guo H., Sun Z. Functional and anatomical connectivity-based parcellation of human cingulate cortex. Brain Behav. 2018;8:e01070. doi: 10.1002/brb3.1070. PubMed DOI PMC
Deconinck F.J., Smorenburg A.R., Benham A., Ledebt A., Feltham M.G., Savelsbergh G.J. Reflections on mirror therapy: A systematic review of the effect of mirror visual feedback on the brain. Neurorehabilit. Neural Repair. 2015;29:349–361. doi: 10.1177/1545968314546134. PubMed DOI
Fox N.A., Bakermans-Kranenburg M.J., Yoo K.H., Bowman L.C., Cannon E.N., Vanderwert R.E., Ferrari P.F., Van IJzendoorn M.H. Assessing human mirror activity with EEG mu rhythm: A meta-analysis. Psychol. Bull. 2016;142:291–313. doi: 10.1037/bul0000031. PubMed DOI PMC
Debnath R., Franz E.A. Perception of hand movement by mirror reflection evokes brain activation in the motor cortex contralateral to a non-moving hand. Cortex. 2016;81:118–125. doi: 10.1016/j.cortex.2016.04.015. PubMed DOI
Hötting K., Röder B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci. Biobehav. Rev. 2013;37:2243–2257. doi: 10.1016/j.neubiorev.2013.04.005. PubMed DOI
Gulyaeva N.V. Molecular mechanisms of neuroplasticity: An expanding universe. Biochemistry. 2017;82:237–242. doi: 10.1134/S0006297917030014. PubMed DOI