The Adapted POM Analysis of Avenanthramides In Silico
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SRDA-20-0413
Slovak Research and Development Agency
PubMed
37242500
PubMed Central
PMC10224542
DOI
10.3390/ph16050717
PII: ph16050717
Knihovny.cz E-zdroje
- Klíčová slova
- MOLINSPIRATION, OSIRIS, POM analysis, Swiss-ADME, avenanthramides, bioactivity,
- Publikační typ
- časopisecké články MeSH
POM analysis and related approaches are significant tools based on calculating various physico-chemical properties and predicting biological activity, ADME parameters, and toxicity of a molecule. These methods are used to evaluate a molecule's potential to become a drug candidate. Avenanthramides (AVNs) are promising secondary metabolites specific to Avena spp. (oat). They comprise the amides of anthranilic acid linked to various polyphenolic acids with or without post-condensation molecule transformation. These natural compounds have been reported to exert numerous biological effects, including antioxidant, anti-inflammatory, hepatoprotective, antiatherogenic, and antiproliferative properties. To date, almost 50 various AVNs have been identified. We performed a modified POM analysis of 42 AVNs using MOLINSPIRATION, SWISSADME, and OSIRIS software. The evaluation of primary in silico parameters revealed significant differences among individual AVNs, highlighting the most promising candidates. These preliminary results may help coordinate and initiate other research projects focused on particular AVNs, especially those with predicted bioactivity, low toxicity, optimal ADME parameters, and promising perspectives.
Crop Research Institute Drnovská 507 73 161 06 Prague Czech Republic
Institute of Neuroimmunology Slovak Academy of Sciences Dúbravská Cesta 9 845 10 Bratislava Slovakia
Zobrazit více v PubMed
Blaakmeer A., Van Der Wal D., Stork A., Van Beek T.A., De Groot A., Van Loon J.J. Structure-activity relationship of isolated avenanthramide alkaloids and synthesized related compounds as oviposition deterrents for Pieris brassicae. J. Nat. Prod. 2014;57:1145–1151. doi: 10.1021/np50110a003. PubMed DOI
Chu Y. Oats Nutrition and Technology. 1st ed. Wiley Blackwell; Hoboken, NJ, USA: 2014. p. 472.
Dimberg L.H., Sunnerheim K., Sundberg B., Walsh K. Stability of oat avenanthramides. Cereal Chem. 2001;78:278–281. doi: 10.1094/CCHEM.2001.78.3.278. DOI
Jágr M., Dvořáček V., Hlásná Čepková P., Doležalová J. Comprehensive analysis of oat avenanthramides using hybrid quadrupole-Orbitrap mass spectrometry: Possible detection of new compounds. Rapid Commun. Mass Spectrom. 2020;34:e8718. doi: 10.1002/rcm.8718. PubMed DOI
Collins F.W. Oat phenolics: Avenanthramides, novel substituted N-cinnamoylanthranilate alkaloids from oat groats and hulls. J. Agric. Food Chem. 1989;37:60–66. doi: 10.1021/jf00085a015. DOI
Darakhshan S., Pour A.B. Tranilast: A review of its therapeutic applications. Pharm. Res. 2015;91:15–28. doi: 10.1016/j.phrs.2014.10.009. PubMed DOI
Hernandez-Hernandez O., Pereira-Caro G., Borges G., Crozier A., Olsson O. Characterization and antioxidant activity of avenanthramides from selected oat lines developed by mutagenesis technique. Food Chem. 2021;343:128408. doi: 10.1016/j.foodchem.2020.128408. PubMed DOI
Liu L., Zubik L., Collins F.W., Marko M., Meydani M. The antiatherogenic potential of oat phenolic compounds. Atherosclerosis. 2004;175:39–49. doi: 10.1016/j.atherosclerosis.2004.01.044. PubMed DOI
Chen C., Wang L., Wang R., Luo X., Li Y., Li J., Li Y., Chen Z. Phenolic contents, cellular antioxidant activity and antiproliferative capacity of different varieties of oats. Food Chem. 2018;239:260–267. doi: 10.1016/j.foodchem.2017.06.104. PubMed DOI
Yang J., Ou B., Wise M.L., Chu Y. In vitro total antioxidant capacity and anti-inflammatory activity of three common oat-derived avenanthramides. Food Chem. 2014;160:338–345. doi: 10.1016/j.foodchem.2014.03.059. PubMed DOI
Sur R., Nigam A., Grote D., Liebel F., Southall M.D. Avenanthramides, polyphenols from oats, exhibit anti-inflammatory and anti-itch activity. Arch. Dermatol. Res. 2008;300:569–574. doi: 10.1007/s00403-008-0858-x. PubMed DOI
Cai S., Huang C., Ji B., Zhou F., Wise M.L., Zhang D., Yang P. In vitro antioxidant activity and inhibitory effect, on oleic acid-induced hepatic steatosis, of fractions and subfractions from oat (Avena sativa L.) ethanol extract. Food Chem. 2011;124:900–905. doi: 10.1016/j.foodchem.2010.07.017. DOI
Perrelli A., Goitre L., Salzano A.M., Moglia A., Scaloni A., Retta S.F. Biological Activities, Health Benefits, and Therapeutic Properties of Avenanthramides: From Skin Protection to Prevention and Treatment of Cerebrovascular Diseases. Oxid. Med. Cell Longev. 2018;2018:6015351. doi: 10.1155/2018/6015351. PubMed DOI PMC
Meydani M. Potential health benefits of avenanthramides of oats. Nutr. Rev. 2009;67:731–735. doi: 10.1111/j.1753-4887.2009.00256.x. PubMed DOI
Maliarová M., Maliar T., Krošlák E., Sokol J., Nemeček P., Nechvátal P. Antioxidant and proteinase inhibition activity of main oat avenanthramides. J. Food Nutr. Res. 2015;54:346–353.
Thomas M., Kim S., Guo W., Collins F.W., Wise M.L., Meydani M. High Levels of Avenanthramides in Oat-Based Diet Further Suppress High Fat Diet-Induced Atherosclerosis in Ldlr-/- Mice. J. Agric. Food Chem. 2018;66:498–504. doi: 10.1021/acs.jafc.7b04860. PubMed DOI
Llanaj E., Dejanovic G.M., Valido E., Bano A., Gamba M., Kastrati L., Minder B., Stojic S., Voortman T., Marques-Vidal P., et al. Effect of oat supplementation interventions on cardiovascular disease risk markers: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Nutr. 2022;61:1749–1778. doi: 10.1007/s00394-021-02763-1. PubMed DOI PMC
El Amir Y.O., Omar W., Khabrani A.Y., Jahfali A.E., Alhakami S.M., Dobab N.M. Protective effect of avenanthramides against cisplatin induced nephrotoxicity in rats. J. Adv. Vet. Anim. Res. 2019;6:521–527. doi: 10.5455/javar.2019.f377. PubMed DOI PMC
Zhang Y., Ni T., Zhang D., Liu H., Wang J., Sun B. Consumption of avenanthramides extracted from oats reduces weight gain, oxidative stress, inflammation and regulates intestinal microflora in high fat diet-induced mice. J. Funct. Foods. 2020;65:103774. doi: 10.1016/j.jff.2019.103774. DOI
Fu R., Yang P., Sajid A., Li Z. Avenanthramide A Induces Cellular Senescence via miR-129-3p/Pirh2/p53 Signaling Pathway To Suppress Colon Cancer Growth. J. Agric. Food Chem. 2019;67:4808–4816. doi: 10.1021/acs.jafc.9b00833. PubMed DOI
Gasteiger J. Empirical Methods for the Calculation of Physicochemical Data of Organic Compounds. In: Jochum C., Martin G., Hicks J.S., editors. Physical Property Prediction in Organic Chemistry, Proceedings of the Beilstein Workshop, Schloss Korb, Italy, 16–20 May 1988. Springer; Berlin/Heidelberg, Germany: DOI
Sander T., Freyss J., von Korff M., Reich J.R., Rufener C. OSIRIS, an entirely in-house developed drug discovery informatics system. J. Chem. Inf. Model. 2009;49:232–246. doi: 10.1021/ci800305f. PubMed DOI
Molinspiration Cheminformatics Free Web Services. [(accessed on 12 March 2023)]. Available online: https://www.molinspiration.com.
Daina A., Michielin O., Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017;7:42717. doi: 10.1038/srep42717. PubMed DOI PMC
Tariq M., Sirajuddin M., Ali S., Khalid N., Tahir M.N., Khan H., Ansari T.M. Pharmacological investigations and Petra/Osiris/Molinspiration (POM) analyses of newly synthesized potentially bioactive organotin(IV) carboxylates. J. Photochem. Photobio. B. 2016;158:174–183. doi: 10.1016/j.jphotobiol.2016.02.028. PubMed DOI
Mayama S., Matsuura Y., Iida H., Tani T. The role of avenalumin in the resistance of oat to crown rust, Puccinia coronataf. sp. avenae. Physiol. Plant Pathol. 1985;20:189–199. doi: 10.1016/0048-4059(82)90084-4. DOI
Mayama S., Bordin A.P.A., Morikawa T., Tanpo H., Kato H. Association of avenalumin accumulation with co-segregation of victorin sensitivity and crown rust resistance in oat lines carrying the Pc-2 gene. Physiol. Plant Pathol. 1995;46:263–274. doi: 10.1006/pmpp.1995.1021. DOI
Collins F.W., Mullin W.J. High-performance liquid chromatographic determination of avenanthramides, n-aroylanthranilic acid alkaloids from oats. J. Chromatogr. A. 1988;445:363–370. doi: 10.1016/S0021-9673(01)84548-9. DOI
Dimberg L.H., Theander O., Lingnert H. Avenanthramides—a group of phenolic antioxidants in oats. Cereal Chem. 1992;70:637–641.
Veber D.F., Johnson S.R., Cheng H.Y., Smith B.R., Ward K.W., Kopple K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002;45:2615–2623. doi: 10.1021/jm020017n. PubMed DOI
Fu R., Yang P., Li Z., Liu W., Amin S., Li Z. Avenanthramide A triggers potent ROS-mediated anti-tumor effects in colorectal cancer by directly targeting DDX3. Cell Death Dis. 2019;10:593. doi: 10.1038/s41419-019-1825-5. PubMed DOI PMC
Guo W., Wise M.L., Collins F.W., Meydani M. Avenanthramides, polyphenols from oats, inhibit IL-1beta-induced NF-kappaB activation in endothelial cells. Free Radic. Biol. Med. 2008;44:415–429. doi: 10.1016/j.freeradbiomed.2007.10.036. PubMed DOI
Park J., Choi H., Abekura F., Lim H.-S., Im J.-H., Yang W.-S., Hwang C.-W., Chang Y.-C., Lee Y.-C., Park N.G., et al. Avenanthramide C Suppresses Matrix Metalloproteinase-9 Expression and Migration Through the MAPK/NF- κB Signaling Pathway in TNF-α-Activated HASMC Cells. Front. Pharmacol. 2021;12:621854. doi: 10.3389/fphar.2021.621854. PubMed DOI PMC
Liu P., Liu T., Zhang M., Mo R., Zhou W., Li D., Wu Y. Effects of Avenanthramide on the Small Intestinal Damage through Hsp70-NF-κB Signaling in an Ovalbumin-Induced Food Allergy Model. Int. J. Mol. Sci. 2022;23:15229. doi: 10.3390/ijms232315229. PubMed DOI PMC
Pu Z., Shen C., Zhang W., Xie H., Wang W. Avenanthramide C from Oats Protects Pyroptosis through Dependent ROS-Induced Mitochondrial Damage by PI3K Ubiquitination and Phosphorylation in Pediatric Pneumonia. J. Agric. Food Chem. 2022;70:2339–2353. doi: 10.1021/acs.jafc.1c06223. PubMed DOI
Isaji M., Miyata H., Ajisawa Y. Tranilast: A new application in the cardiovascular field as an antiproliferative drug. Cardiovasc. Drug Rev. 1998;16:288–299. doi: 10.1111/j.1527-3466.1998.tb00359.x. DOI
Hu C., Tang Y., Zhao Y., Sang S. Quantitative Analysis and Anti-inflammatory Activity Evaluation of the A-Type Avenanthramides in Commercial Sprouted Oat Products. J. Agric. Food Chem. 2020;68:13068–13075. doi: 10.1021/acs.jafc.9b06812. PubMed DOI
Sang S., Chu Y. Whole grain oats, more than just a fiber: Role of unique phytochemicals. Mol. Nutr. Food Res. 2017;61:1600715. doi: 10.1002/mnfr.201600715. PubMed DOI
Bryngelsson S., Dimberg L.H., Kamal-Eldin A. Effects of commercial processing on levels of antioxidants in oats (Avena sativa L.) J. Agric. Food Chem. 2002;50:1890–1896. doi: 10.1021/jf011222z. PubMed DOI
Ertl P., Rohde B., Selzer P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 2000;43:3714–3717. doi: 10.1021/jm000942e. PubMed DOI
Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997;23:3–25. doi: 10.1016/S0169-409X(96)00423-1. PubMed DOI
Heuschkel S., Wohlrab J., Neubert R.H.H. Dermal and transdermal targeting of dihydroavenanthramide D using enhancer molecules and novel microemulsions. Eur. J. Pharm. Biopharm. 2009;72:552–560. doi: 10.1016/j.ejpb.2009.02.007. PubMed DOI
Kulichová K., Sokol J., Maliarová M. Štúdium avenantramidov ako významných biologicky aktívnych látok fenolového charakteru. Chem. Listy. 2018;112:848–854.
PubChem, National Center for Biotechnology Information PubChem Compound Summary for CID 131750842, Avenanthramide A2. [(accessed on 12 March 2023)]; Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Avenanthramide-A2.