Environmental technology, economic complexity, renewable electricity, environmental taxes and CO2 emissions: Implications for low-carbon future in G-10 bloc
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37251446
PubMed Central
PMC10220369
DOI
10.1016/j.heliyon.2023.e16457
PII: S2405-8440(23)03664-2
Knihovny.cz E-zdroje
- Klíčová slova
- Economic complexity, Energy productivity, Environmental taxes, G-10 countries, Renewable electricity, SDGs,
- Publikační typ
- časopisecké články MeSH
This study investigates the impact of environmental technological innovation, economic complexity, energy productivity, the use of renewable electricity generation, and environmental taxes on carbon dioxide (CO2) emissions in the G-10 countries for the timeframe from 1995 to 2020. The purpose of the study is to examine the need for a clear plan or strategy to achieve environmental objectives in G-10 countries. In both short-term and long-term projections, the increased use of environment-based technology, economic complexity, and renewable electricity generation has a major positive impact on carbon emission reduction. Moreover, the results demonstrate both unidirectional and bidirectional causality from carbon emissions to renewable energy, electrical generation, and environment-based technologies, respectively. Based on the results, the study proposes a number of concrete policies, such as updating modernized tax systems, increasing tax collection, providing individuals with the means to finance the Sustainable Development Goals through incentive regulations, and making grants from international organizations and the private sector available to finance investments toward the Sustainable Development Goals (SDGs) and carbon neutrality environment targets. This is the study's most significant contribution in order to attain a sustainable and low-carbon future in the G-10 countries, which has policy implications for governments and policymakers.
Department of Applied Economics 1 University of Castilla La Mancha 16002 Cuenca Spain
Department of Applied Economics University of Alicante Spain
Department of Economics University Aurel Vlaicu of Arad Arad Romania
Department of Finance Accounting and Economics University of Pitesti 110040 Pitesti Romania
Zobrazit více v PubMed
IEA, International Energy Agency . 2022. Data & Statistics.https://www.iea.org/data-and-statistics/
Joof F., Samour A., Ali M., Tursoy T., Haseeb M., Hossain MdE., Kamal M. Symmetric and asymmetric effects of gold, and oil price on environment: the role of clean energy in China. Resour. Pol. 2023;81 doi: 10.1016/j.resourpol.2023.103443. DOI
Global Economy . 2019. Global Economy Database.https://www.theglobaleconomy.com/rankings/Carbon_dioxide_emissions_per_capita/G10/
Siddik A.B., Khan S., Khan U., Yong L., Murshed M. The role of renewable energy finance in achieving low-carbon growth: contextual evidence from leading renewable energy-investing countries. Energy. 2023;270 doi: 10.1016/j.energy.2023.126864. DOI
Su C.-W., Pang L.-D., Tao R., Shao X., Umar M. Renewable energy and technological innovation: which one is the winner in promoting net-zero emissions? Technol. Forecast. Soc. Change. 2022;182 doi: 10.1016/j.techfore.2022.121798. DOI
Usman M., Khalid K., Mehdi M.A. What determines environmental deficit in Asia? Embossing the role of renewable and non-renewable energy utilization. Renew. Energy. 2021;168:1165–1176. doi: 10.1016/j.renene.2021.01.012. DOI
Wan X., Jahanger A., Usman M., Radulescu M., Balsalobre-Lorente D., Yu Y. Exploring the effects of economic complexity and the transition to a clean energy pattern on ecological footprint from the Indian perspective. Front. Environ. Sci. 2022;9 doi: 10.3389/fenvs.2021.816519. DOI
Uddin I., Ullah A., Saqib N., Kousar R., Usman M. Heterogeneous role of energy utilization, financial development, and economic development in ecological footprint: how far away are developing economies from developed ones. Environ. Sci. Pollut. Control Ser. 2023;30:58378–58398. doi: 10.1007/s11356-023-26584-3. PubMed DOI
Su C.W., Liu F., Stefea P., Umar M. Does technology innovation help to achieve carbon neutrality? Econ. Anal. Pol. 2023;78:1–14. doi: 10.1016/j.eap.2023.01.010. DOI
Usman M., Jahanger A., Makhdum M.S.A., Radulescu M., Balsalobre-Lorente D., Jianu E. An empirical investigation of ecological footprint using nuclear energy, industrialization, fossil fuels and foreign direct investment. Energies. 2022;15:6442. doi: 10.3390/en15176442. DOI
Balsalobre-Lorente D., Ibáñez-Luzón L., Usman M., Shahbaz M. The environmental Kuznets curve, based on the economic complexity, and the pollution haven hypothesis in PIIGS countries. Renew. Energy. 2022;185:1441–1455. doi: 10.1016/j.renene.2021.10.059. DOI
Wang L., Dilanchiev A., Haseeb M. The environmental regulation and policy assessment effect on the road to green recovery transformation. Econ. Anal. Pol. 2022;76:914–929. doi: 10.1016/j.eap.2022.10.006. DOI
Sadiq M., Shinwari R., Wen F., Usman M., Hassan S.T., Taghizadeh-Hesary F. Do globalization and nuclear energy intensify the environmental costs in top nuclear energy-consuming countries? Prog. Nucl. Energy. 2023;156 doi: 10.1016/j.pnucene.2022.104533. DOI
Nepal R., Paija N., Tyagi B., Harvie C. Energy security, economic growth and environmental sustainability in India: does FDI and trade openness play a role? J. Environ. Manag. 2021;281 doi: 10.1016/j.jenvman.2020.111886. PubMed DOI
Su C.-W., Umar M., Kirikkaleli D., Ayobamiji Awosusi A., Altuntaş M. Testing the asymmetric effect of financial stability towards carbon neutrality target: the case of Iceland and global comparison. Gondwana Res. 2023;116:125–135. doi: 10.1016/j.gr.2022.12.014. DOI
Wurlod J.-D., Noailly J. The impact of green innovation on energy intensity: an empirical analysis for 14 industrial sectors in OECD countries. Energy Econ. 2018;71:47–61. doi: 10.1016/j.eneco.2017.12.012. DOI
Petrović P., Lobanov M.M. The impact of R& D expenditures on CO2 emissions: evidence from sixteen OECD countries. J. Clean. Prod. 2020;248 doi: 10.1016/j.jclepro.2019.119187. DOI
Ding Q., Khattak S.I., Ahmad M. Towards sustainable production and consumption: assessing the impact of energy productivity and eco-innovation on consumption-based carbon dioxide emissions (CCO2) in G-7 nations. Sustain. Prod. Consum. 2021;27:254–268. doi: 10.1016/j.spc.2020.11.004. DOI
Jahanger A., Hossain M.R., Usman M., Chukwuma Onwe J. Recent scenario and nexus between natural resource dependence, energy use and pollution cycles in BRICS region: does the mediating role of human capital exist? Resour. Pol. 2023;81 doi: 10.1016/j.resourpol.2023.103382. DOI
He J., Yang Y., Liao Z., Xu A., Fang K. Linking SDG 7 to assess the renewable energy footprint of nations by 2030. Appl. Energy. 2022;317 doi: 10.1016/j.apenergy.2022.119167. DOI
Li H.-S., Geng Y.-C., Shinwari R., Yangjie W., Rjoub H. Does renewable energy electricity and economic complexity index help to achieve carbon neutrality target of top exporting countries? J. Environ. Manag. 2021;299 doi: 10.1016/j.jenvman.2021.113386. PubMed DOI
Sadiq M., Wen F., Bashir M.F., Amin A. Does nuclear energy consumption contribute to human development? Modeling the effects of public debt and trade globalization in an OECD heterogeneous panel. J. Clean. Prod. 2022;375 doi: 10.1016/j.jclepro.2022.133965. DOI
Zhang Y., Haseeb M., Hossain MdE., Hu M., Li Z. Study on the coupling and coordination degree between urban tourism development and habitat environment in the Yangtze River Delta in China. Environ. Sci. Pollut. Control Ser. 2022;30:14805–14820. doi: 10.1007/s11356-022-23135-0. PubMed DOI PMC
Peng G., Meng F., Ahmed Z., Ahmad M., Kurbonov K. Economic growth, technology, and CO2 emissions in BRICS: investigating the non-linear impacts of economic complexity. Environ. Sci. Pollut. Control Ser. 2022;29:68051–68062. doi: 10.1007/s11356-022-20647-7. PubMed DOI
Wen Y., Haseeb M., Safdar N., Yasmin F., Timsal S., Li Z. Does degree of stringency matter? Revisiting the pollution haven hypothesis in BRICS countries. Front. Environ. Sci. 2022;10 doi: 10.3389/fenvs.2022.949007. DOI
Krauss J.E. Unpacking SDG 15, its targets and indicators: tracing ideas of conservation. Globalizations. 2022;19:1179–1194. doi: 10.1080/14747731.2022.2035480. DOI
Usman M., Balsalobre-Lorente D., Jahanger A., Ahmad P. Are Mercosur economies going green or going away? An empirical investigation of the association between technological innovations, energy use, natural resources and GHG emissions. Gondwana Res. 2023;113:53–70. doi: 10.1016/j.gr.2022.10.018. DOI
Qin M., Zhang X., Li Y., Badarcea R.M. Blockchain market and green finance: the enablers of carbon neutrality in China. Energy Econ. 2023;118 doi: 10.1016/j.eneco.2022.106501. DOI
Wang R., Usman M., Radulescu M., Cifuentes-Faura J., Balsalobre-Lorente D. Achieving ecological sustainability through technological innovations, financial development, foreign direct investment, and energy consumption in developing European countries. Gondwana Res. 2023;119:138–152. doi: 10.1016/j.gr.2023.02.023. DOI
Awaworyi Churchill S., Inekwe J., Ivanovski K., Smyth R. The environmental kuznets curve in the OECD: 1870–2014. Energy Econ. 2018;75:389–399. doi: 10.1016/j.eneco.2018.09.004. DOI
Petković B., Zandi Y., Agdas A.S., Nikolić I., Denić N., Kojić N., Selmi A., Issakhov A., Milošević S., Khan A. Adaptive neuro fuzzy evaluation of energy and non‐energy material productivity impact on sustainable development based on circular economy and gross domestic product. Bus. Strat. Environ. 2022;31:129–144. doi: 10.1002/bse.2878. DOI
Fernández Fernández Y., Fernández López M.A., Olmedillas Blanco B. Innovation for sustainability: the impact of R& D spending on CO2 emissions. J. Clean. Prod. 2018;172:3459–3467. doi: 10.1016/j.jclepro.2017.11.001. DOI
Braungardt S., Elsland R., Eichhammer W. The environmental impact of eco-innovations: the case of EU residential electricity use. Environ. Econ. Pol. Stud. 2016;18:213–228. doi: 10.1007/s10018-015-0129-y. DOI
Acemoglu D., Gancia G., Zilibotti F. Competing engines of growth: innovation and standardization. J. Econ. Theor. 2012;147:570–601.e3. doi: 10.1016/j.jet.2010.09.001. DOI
Sharif A., Saqib N., Dong K., Khan S.A.R. Nexus between green technology innovation, green financing, and <scp> CO 2 </scp> emissions in the <scp>G7</scp> countries: the moderating role of social globalisation. Sustain. Dev. 2022;30:1934–1946. doi: 10.1002/sd.2360. DOI
Saqib N. Asymmetric linkages between renewable energy, technological innovation, and carbon-dioxide emission in developed economies: non-linear ARDL analysis. Environ. Sci. Pollut. Control Ser. 2022;29 doi: 10.1007/s11356-022-20206-0. –60758. PubMed DOI
Du K., Li P., Yan Z. Do green technology innovations contribute to carbon dioxide emission reduction? Empirical evidence from patent data. Technol. Forecast. Soc. Change. 2019;146:297–303. doi: 10.1016/j.techfore.2019.06.010. DOI
Popp D. The World Bank; 2012. The Role of Technological Change in Green Growth. DOI
Luis Míguez J., Porteiro J., Pérez-Orozco R., Patiño D., Rodríguez S. Evolution of CO2 capture technology between 2007 and 2017 through the study of patent activity. Appl. Energy. 2018;211:1282–1296. doi: 10.1016/j.apenergy.2017.11.107. DOI
Khan M.T., Imran M. Unveiling the carbon footprint of Europe and Central Asia: insights into the impact of key factors on CO2 emissions. Arch. Soc. Sci.: J. Collab. Mem. 2023;1:52–66. doi: 10.5281/zenodo.7669782. DOI
Cheng C., Ren X., Wang Z., Shi Y. The impacts of non-fossil energy, economic growth, energy consumption, and oil price on carbon intensity: evidence from a panel quantile regression analysis of EU 28. Sustainability. 2018;10:4067. doi: 10.3390/su10114067. DOI
abid N., Ceci F., Razzaq A. Inclusivity of information and communication technology in ecological governance for sustainable resources management in G10 countries. Resour. Pol. 2023;81 doi: 10.1016/j.resourpol.2023.103378. DOI
Cho J.H., Sohn S.Y. A novel decomposition analysis of green patent applications for the evaluation of R& D efforts to reduce CO2 emissions from fossil fuel energy consumption. J. Clean. Prod. 2018;193:290–299. doi: 10.1016/j.jclepro.2018.05.060. DOI
Neagu O., Teodoru M. The relationship between economic complexity, energy consumption structure and greenhouse gas emission: heterogeneous panel evidence from the EU countries. Sustainability. 2019;11:497. doi: 10.3390/su11020497. DOI
Alola A.A., Bekun F.V., Sarkodie S.A. Dynamic impact of trade policy, economic growth, fertility rate, renewable and non-renewable energy consumption on ecological footprint in Europe. Sci. Total Environ. 2019;685:702–709. doi: 10.1016/j.scitotenv.2019.05.139. PubMed DOI
Neagu O. Economic complexity and ecological footprint: evidence from the most complex economies in the world. Sustainability. 2020;12:9031. doi: 10.3390/su12219031. DOI
Ozcan B., Ulucak R., Dogan E. Analyzing long lasting effects of environmental policies: evidence from low, middle and high income economies. Sustain. Cities Soc. 2019;44:130–143. doi: 10.1016/j.scs.2018.09.025. DOI
Aqib M., Zaman K. Greening the workforce: the power of investing in human capital. Arch. Soc. Sci.: J. Collab. Mem. 2023;1:31–51. doi: 10.5281/zenodo.7620041. DOI
Abban O.J., Wu J., Mensah I.A. Analysis on the nexus amid CO2 emissions, energy intensity, economic growth, and foreign direct investment in Belt and Road economies: does the level of income matter? Environ. Sci. Pollut. Control Ser. 2020;27:11387–11402. doi: 10.1007/s11356-020-07685-9. PubMed DOI
Wu J., Abban O.J., Boadi A.D., Charles O. The effects of energy price, spatial spillover of CO2 emissions, and economic freedom on CO2 emissions in Europe: a spatial econometrics approach. Environ. Sci. Pollut. Control Ser. 2022;29:63782–63798. doi: 10.1007/s11356-022-20179-0. PubMed DOI
Xu J., Akhtar M., Haris M., Muhammad S., Abban O.J., Taghizadeh-Hesary F. Energy crisis, firm profitability, and productivity: an emerging economy perspective. Energy Strategy Rev. 2022;41 doi: 10.1016/j.esr.2022.100849. DOI
Balsalobre-Lorente D., Luzon L.I., Usman M., Jahanger A. Environmental Science and Pollution Research; 2023. The Relevance of International Tourism and Natural Resource Rents in Economic Growth: Fresh Evidence from MINT Countries in the Digital Era. PubMed DOI
Ben Jebli M., Ben Youssef S., Apergis N. The dynamic linkage between renewable energy, tourism, CO2 emissions, economic growth, foreign direct investment, and trade. Lat. Am. Econ. Rev. 2019;28:2. doi: 10.1186/s40503-019-0063-7. DOI
Acheampong A.O., Adams S., Boateng E. Do globalization and renewable energy contribute to carbon emissions mitigation in Sub-Saharan Africa? Sci. Total Environ. 2019;677:436–446. doi: 10.1016/j.scitotenv.2019.04.353. PubMed DOI
Mahmood H., Saqib N. Oil rents, economic growth, and CO2 emissions in 13 OPEC member economies: asymmetry analyses. Front. Environ. Sci. 2022;10 doi: 10.3389/fenvs.2022.1025756. DOI
Yang Q., Huo J., Saqib N., Mahmood H. Modelling the effect of renewable energy and public-private partnership in testing EKC hypothesis: evidence from methods moment of quantile regression. Renew. Energy. 2022;192:485–494. doi: 10.1016/j.renene.2022.03.123. DOI
Azam M., Uddin I., Saqib N. The determinants of life expectancy and environmental degradation in Pakistan: evidence from ARDL bounds test approach. Environ. Sci. Pollut. Control Ser. 2023;30:2233–2246. doi: 10.1007/s11356-022-22338-9. PubMed DOI
Saqib N. Green energy, non-renewable energy, financial development and economic growth with carbon footprint: heterogeneous panel evidence from cross-country. Econ. Res. Ekonomska Istraživanja. 2022;35:6945–6964. doi: 10.1080/1331677X.2022.2054454. DOI
Destek M.A., Sinha A. Renewable, non-renewable energy consumption, economic growth, trade openness and ecological footprint: evidence from organisation for economic Co-operation and development countries. J. Clean. Prod. 2020;242 doi: 10.1016/j.jclepro.2019.118537. DOI
Ulucak R., Kassouri Y., Çağrı İlkay S., Altıntaş H., Garang A.P.M. Does convergence contribute to reshaping sustainable development policies? Insights from Sub-Saharan Africa. Ecol. Indicat. 2020;112 doi: 10.1016/j.ecolind.2020.106140. DOI
Ouyang X., Shao Q., Zhu X., He Q., Xiang C., Wei G. Environmental regulation, economic growth and air pollution: panel threshold analysis for OECD countries. Sci. Total Environ. 2019;657:234–241. doi: 10.1016/j.scitotenv.2018.12.056. PubMed DOI
Hashmi R., Alam K. Dynamic relationship among environmental regulation, innovation, CO2 emissions, population, and economic growth in OECD countries: a panel investigation. J. Clean. Prod. 2019;231:1100–1109. doi: 10.1016/j.jclepro.2019.05.325. DOI
Cheng Z., Li L., Liu J. The emissions reduction effect and technical progress effect of environmental regulation policy tools. J. Clean. Prod. 2017;149:191–205. doi: 10.1016/j.jclepro.2017.02.105. DOI
Chen H., Hao Y., Li J., Song X. The impact of environmental regulation, shadow economy, and corruption on environmental quality: theory and empirical evidence from China. J. Clean. Prod. 2018;195:200–214. doi: 10.1016/j.jclepro.2018.05.206. DOI
Sarwar S., Shahzad U., Chang D., Tang B. Economic and non-economic sector reforms in carbon mitigation: empirical evidence from Chinese provinces. Struct. Change Econ. Dynam. 2019;49:146–154. doi: 10.1016/j.strueco.2019.01.003. DOI
Saqib N., Usman M., Radulescu M., Sinisi C.I., Secara C.G., Tolea C. Revisiting EKC hypothesis in context of renewable energy, human development and moderating role of technological innovations in E-7 countries? Front. Environ. Sci. 2022;10 doi: 10.3389/fenvs.2022.1077658. DOI
Doytch N. The impact of foreign direct investment on the ecological footprints of nations. Environ. Sustain. Indicat. 2020;8 doi: 10.1016/j.indic.2020.100085. DOI
Wenbo G., Yan C. Assessing the efficiency of China's environmental regulation on carbon emissions based on Tapio decoupling models and GMM models. Energy Rep. 2018;4:713–723. doi: 10.1016/j.egyr.2018.10.007. DOI
Ali Chandio A., Sethi N., Prasad Dash D., Usman M. Towards sustainable food production: what role ICT and technological development can play for cereal production in Asian–7 countries? Comput. Electron. Agric. 2022;202 doi: 10.1016/j.compag.2022.107368. DOI
Pesaran M.H. General diagnostic tests for cross-sectional dependence in panels. Empir. Econ. 2021;60:13–50. doi: 10.1007/s00181-020-01875-7. DOI
Hashem Pesaran M., Yamagata T. Testing slope homogeneity in large panels. J. Econom. 2008;142:50–93. doi: 10.1016/j.jeconom.2007.05.010. DOI
Pesaran M.H. A simple panel unit root test in the presence of cross-section dependence. J. Appl. Econom. 2007;22:265–312. doi: 10.1002/jae.951. DOI
Pesaran M.H. General diagnostic tests for cross-sectional dependence in panels. Empir. Econ. 2021;60:13–50. doi: 10.1007/s00181-020-01875-7. DOI
Westerlund J. Testing for error correction in panel data. Oxf. Bull. Econ. Stat. 2007;69:709–748. doi: 10.1111/j.1468-0084.2007.00477.x. DOI
Lisha L., Mousa S., Arnone G., Muda I., Huerta-Soto R., Shiming Z. Natural resources, green innovation, fintech, and sustainability: a fresh insight from BRICS. Resour. Pol. 2023;80 doi: 10.1016/j.resourpol.2022.103119. DOI
Phillips P.C.B., Sul D. Dynamic panel estimation and homogeneity testing under cross section dependence. Econom. J. 2003;6:217–259. doi: 10.1111/1368-423X.00108. DOI
Chudik A., Pesaran M.H. Large panel data models with cross-sectional dependence: a survey. SSRN Electron. J. 2013 doi: 10.2139/ssrn.2316333. DOI
Saqib N., Ozturk I., Usman M., Sharif A., Razzaq A. Pollution Haven or Halo? How European countries leverage FDI, energy, and human capital to alleviate their ecological footprint. Gondwana Res. 2023;116:136–148. doi: 10.1016/j.gr.2022.12.018. DOI
Phillips P.C.B., Hansen B.E. Statistical inference in instrumental variables regression with I(1) processes. Rev. Econ. Stud. 1990;57:99. doi: 10.2307/2297545. DOI
Pedroni P. 2021. Fully modified OLS for heterogeneous cointegrated panels; pp. 93–130. in: n. d. DOI
Eberhardt M., Bond S. 2009. Cross-section Dependence in Nonstationary Panel Models: a Novel Estimator.https://mpra.ub.uni-muenchen.de/id/eprint/17692
Dumitrescu E.-I., Hurlin C. Testing for Granger non-causality in heterogeneous panels. Econ. Modell. 2012;29:1450–1460. doi: 10.1016/j.econmod.2012.02.014. DOI
Chudik A., Mohaddes K., Pesaran M.H., Raissi M. 2016. Long-run effects in large heterogeneous panel data models with cross-sectionally correlated errors; pp. 85–135. DOI
Usman M., Radulescu M., Balsalobre-Lorente D., Rehman A. Energy & Environment; 2022. Investigation on the Causality Relationship between Environmental Innovation and Energy Consumption: Empirical Evidence from EU Countries. DOI
Mughal N., Arif A., Jain V., Chupradit S., Shabbir M.S., Ramos-Meza C.S., Zhanbayev R. The role of technological innovation in environmental pollution, energy consumption and sustainable economic growth: evidence from South Asian economies. Energy Strategy Rev. 2022;39 doi: 10.1016/j.esr.2021.100745. DOI
Shao X., Zhong Y., Liu W., Li R.Y.M. Modeling the effect of green technology innovation and renewable energy on carbon neutrality in N-11 countries? Evidence from advance panel estimations. J. Environ. Manag. 2021;296 doi: 10.1016/j.jenvman.2021.113189. PubMed DOI
Can M., Gozgor G. The impact of economic complexity on carbon emissions: evidence from France. Environ. Sci. Pollut. Control Ser. 2017;24:16364–16370. doi: 10.1007/s11356-017-9219-7. PubMed DOI
Doğan B., Saboori B., Can M. Does economic complexity matter for environmental degradation? An empirical analysis for different stages of development. Environ. Sci. Pollut. Control Ser. 2019;26 doi: 10.1007/s11356-019-06333-1. –31912. PubMed DOI
Shahzad U., Fareed Z., Shahzad F., Shahzad K. Investigating the nexus between economic complexity, energy consumption and ecological footprint for the United States: new insights from quantile methods. J. Clean. Prod. 2021;279 doi: 10.1016/j.jclepro.2020.123806. DOI
Martins J.M., Adebayo T.S., Mata M.N., Oladipupo S.D., Adeshola I., Ahmed Z., Correia A.B. Modeling the relationship between economic complexity and environmental degradation: evidence from top seven economic complexity countries. Front. Environ. Sci. 2021;9 doi: 10.3389/fenvs.2021.744781. DOI
Sun J., Guo X., Wang Y., Shi J., Zhou Y., Shen B. Nexus among energy consumption structure, energy intensity, population density, urbanization, and carbon intensity: a heterogeneous panel evidence considering differences in electrification rates. Environ. Sci. Pollut. Control Ser. 2022;29:19224–19243. doi: 10.1007/s11356-021-17165-3. PubMed DOI
Swart J., Brinkmann L. 2020. Economic Complexity and the Environment: Evidence from Brazil; pp. 3–45. DOI
Makhdum M.S.A., Usman M., Kousar R., Cifuentes-Faura J., Radulescu M., Balsalobre-Lorente D. How do institutional quality, natural resources, renewable energy, and financial development reduce ecological footprint without hindering economic growth trajectory? Evidence from China. Sustainability. 2022;14 doi: 10.3390/su142113910. DOI
Wahab S., Zhang X., Safi A., Wahab Z., Amin M. Does energy productivity and technological innovation limit trade-adjusted carbon emissions? Econ. Res.-Ekonomska Istraživanja. 2021;34:1896–1912. doi: 10.1080/1331677X.2020.1860111. DOI
Li J., Zhang X., Ali S., Khan Z. Eco-innovation and energy productivity: new determinants of renewable energy consumption. J. Environ. Manag. 2020;271 doi: 10.1016/j.jenvman.2020.111028. PubMed DOI
Rasoulinezhad E. Environmental impact assessment analysis in the kahak's wind farm. J. Environ. Assess. Pol. Manag. 2020;22 doi: 10.1142/S1464333222500065. DOI
Mekhilef S., Saidur R., Kamalisarvestani M. Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renew. Sustain. Energy Rev. 2012;16:2920–2925. doi: 10.1016/j.rser.2012.02.012. DOI
Mardones C., Cabello M. Effectiveness of local air pollution and GHG taxes: the case of Chilean industrial sources. Energy Econ. 2019;83:491–500. doi: 10.1016/j.eneco.2019.08.007. DOI