• This record comes from PubMed

Lysobacter changpingensis sp. nov., a novel species of the genus Lysobacter isolated from a rhizosphere soil of strawberry in China

. 2023 Dec ; 68 (6) : 991-998. [epub] 20230602

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
31870004 National Natural Science Foundation of China
1610132021011 National Nonprofit Institute Research Grant of CAAS
202202AE090025 Major Science and Major Science and Technology Special Project of Yunnan Province

Links

PubMed 37266892
PubMed Central PMC10689546
DOI 10.1007/s12223-023-01058-8
PII: 10.1007/s12223-023-01058-8
Knihovny.cz E-resources

In the present work, we characterized in detail strain CM-3-T8T, which was isolated from the rhizosphere soil of strawberries in Beijing, China, in order to elucidate its taxonomic position. Cells of strain CM-3-T8T were Gram-negative, non-spore-forming, aerobic, short rod. Growth occurred at 25-37 °C, pH 5.0-10.0, and in the presence of 0-8% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CM-3-T8T formed a stable clade with Lysobacter soli DCY21T and Lysobacter panacisoli CJ29T, with the 16S rRNA gene sequence similarities of 98.91% and 98.50%. The average nucleotide identity and digital DNA-DNA hybridization values between strain SG-8 T and the two reference type strains listed above were 76.3%, 79.6%, and 34.3%, 27%, respectively. The DNA G + C content was 68.4% (mol/mol). The major cellular fatty acids were comprised of C15:0 iso (36.15%), C17:0 iso (8.40%), and C11:0 iso 3OH (8.28%). The major quinone system was ubiquinone Q-8. The major polar lipids were phosphatidylethanolamine (PE), phosphatidylethanolamine (PME), diphosphatidylglycerol (DPG), and aminophospholipid (APL). On the basis of phenotypic, genotypic, and phylogenetic evidence, strain CM-3-T8T (= ACCC 61714 T = JCM 34576 T) represents a new species within the genus Lysobacter, for which the name Lysobacter changpingensis sp. nov. is proposed.

See more in PubMed

Auch AF, von JM, Klenk HP, Göker M (2010) Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2(117–134):29. 10.4056/sigs.531120 PubMed PMC

Beveridge T. Use of the Gram stain in microbiology. Biotech Histochem. 2001;76(3):111–118. doi: 10.1080/bih.76.3.111.118. PubMed DOI

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Chaudhary DK, Lee SD, Kim J. Lysobacter olei sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol. 2017;67:4660–4666. doi: 10.1099/ijsem.0.002348. PubMed DOI

Choi H, Im WT, Park JS (2018) Lysobacter spongiae sp. nov. isolated from spongin. J Microbiol 56(2):97–103. 10.1007/s12275-018-7462-3 PubMed

Christensen P, Cook FD. Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int J Syst Bacteriol. 1978;28:367–393. doi: 10.1099/00207713-28-3-367. DOI

Coil D, Jospin G, Darling AE. A5-MiSeq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics. 2014;31:587–589. doi: 10.1093/bioinformatics/btu661. PubMed DOI

Farris MH, Olson JB. Detection of Actinobacteria cultivated from environmental samples reveals bias in universal primers. Lett Appl Microbiol. 2007;45(4):376–381. doi: 10.1111/j.1472-765X.2007.02198.x. PubMed DOI

Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17:368–376. doi: 10.1007/BF01734359. PubMed DOI

Gross H, Trappen S-V, Cleenwerck I, Miess H, Vos PD (2016) Reclassification of Pseudomonas sp. PB-6250t as Lysobacter firmicutimachus sp. nov. Int J Syst Evol Microbiol 66(10):4162–4166. 10.1099/ijsem.0.001329 PubMed

Kates M. Techniques of lipidology: isolation, analysis and identification of lipids. In: Work TS, Work E, editors. Laboratory techniques in biochemistry and molecular biology. Amsterdam: Elsevier; 1972. pp. 269–610.

Kimura MA. Simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16(2):111–120. doi: 10.1007/BF01731581. PubMed DOI

Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr. 1982;5:2359–2367. doi: 10.1080/01483918208067640. DOI

Lee I, Ouk KY, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol. 2016;66:1100–1103. doi: 10.1099/ijsem.0.000760. PubMed DOI

Lee SY, Kim PS, Sung H, Hyun DW, Bae JW. Lysobacter ciconiae sp. nov., and Lysobacter avium sp. nov., isolated from the faeces of an Oriental stork. J Microbiol. 2022;60:469–477. doi: 10.1007/s12275-022-1647-5. PubMed DOI

Liu ZY, Jiang PQ, Niu GJ, Wang WJ, Li J (2022) Lysobacter antarcticus sp. nov., an SUF-system-containing bacterium from Antarctic coastal sediment. Int J Syst Evol Microbiol 72(2):1466–5034. 10.1099/ijsem.0.005250 PubMed

Margesin R, Zhang DC, Albuquerque L, Froufe HJC, Egas C, da Costa MS. Lysobacter silvestris sp. nov., isolated from alpine forest soil, and reclassification of Luteimonas tolerans as Lysobacter tolerans comb. nov. Int J Syst Evol Microbiol. 2018;68:1571–1577. doi: 10.1099/ijsem.0.002710. PubMed DOI

Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics. 2013;14(60):1471–2105. doi: 10.1186/1471-2105-14-60. PubMed DOI PMC

Mikkel S. Adapter Removal v2: rapid adapter trimming, identification, and read merging. BMC Res Notes. 2016;9:88. doi: 10.1186/s13104-016-1900-2. PubMed DOI PMC

Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods. 1984;2:233–241. doi: 10.1016/0167-7012(84)90018-6. DOI

Mobley HL, Doyle RJ, Streips UN, Langemeier SO. Transport and incorporation of N-acetyl-D-glucosamine in Bacillus subtilis. J Bacteriol. 1982;150(1):8–15. doi: 10.1128/jb.150.1.8-15.1982. PubMed DOI PMC

Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A, Lapidus A, Prjibelsky A, Pyshkin A, Sirotkin A, Sirotkin Y. Assembling genomes and mini-metagenomes from highly chimeric reads. Lect N Bioinformat. 2013;7821:158–170. doi: 10.1007/978-3-642-37195-0_13. PubMed DOI PMC

Park JH, Kim R, Aslam Z, Jeon CO, Chung YR (2008) Lysobacter capsici sp. nov., with antimicrobial activity, isolated from the rhizosphere of pepper, and emended description of the genus Lysobacter. Int J Syst Evol Microbiol 58(Pt 2):387–92. 10.1099/ijs.0.65290-0 PubMed

Raj PS, Ramaprasad EV, Vaseef S, Sasikala C, Ramana C. Rhodobacter viridis sp. nov., a phototrophic bacterium isolated from mud of a stream. Int J Syst Evol Microbiol. 2013;63:181–186. doi: 10.1099/ijs.0.038471-0. PubMed DOI

Richter M, RossellóMóra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA. 2009;106:19126–19131. doi: 10.1073/pnas.0906412106. PubMed DOI PMC

Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol. 1992;9:945–967.

Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–425. doi: 10.1093/oxfordjournals.molbev.a040454. PubMed DOI

Sang EJ, Hyo JL, Che OJ. Lysobacter aestuarii sp nov. isolated from estuary sediment. Int J Syst Evol Microbiol. 2016;66:1346–1351. doi: 10.1099/ijsem.0.000884. PubMed DOI

Siddiqi MZ, Im WT. Lysobacter pocheonensis sp. nov., isolated from soil of a ginseng field. Arch Microbiol. 2016;198:551–557. doi: 10.1007/s00203-016-1214-8. PubMed DOI

Srinivasan S, Kim MK, Sathiyaraj G, Kim HB, Kim YJ, Yang DC (2009) Lysobacter soli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 60(7):1543–1547. 10.1099/ijs.0.016428-0 PubMed

Weon HY, Kim BY, Baek YK, Yoo SH, Kwon SW, Stackebrandt E, Go SJ (2006) Two novel species, Lysobacter daejeonensis sp. nov. and Lysobacter yangpyeongensis sp. nov., isolated from Korean greenhouse soils. Int J Syst Evol Microbiol 56(Pt 5):947–951. 10.1099/ijs.0.64095-0 PubMed

Xiao M, Zhou XK, Chen X, Duan YQ, Alkhalifah DHM, Im WT, Hozzein WN, Chen W, Li WJ (2019) Lysobacter tabacisoli sp. nov. isolated from rhizosphere soil of Nicotiana tabacum. Int J Syst Evol 69(7):1875–1880. 10.1099/ijsem.0.003164 PubMed

Xu L, Huang XX, Fan DL, Sun JQ. Lysobacter alkalisoli sp. nov., a chitin-degrading strain isolated from saline-alkaline soil. Int J Syst Evol Microbiol. 2020;70:1273–1281. doi: 10.1099/ijsem.0.003911. PubMed DOI

Ye XM, Chu CW, Shi C, Zhu JC, He Q, He J (2015) Lysobacter caeni sp. nov., isolated from the sludge of a pesticide manufacturing factory. Int J Syst Evol Microbiol 65(Pt 3):845–850. 10.1099/ijs.0.000024 PubMed

Zhang L, Bai J, Wang Y, Wu GL, Dai J, Fang CX (2011) Lysobacter korlensis sp. nov. and Lysobacter bugurensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 61(Pt 9):2259–2265. 10.1099/ijs.0.024448-0 PubMed

Zhang XJ, Yao Q, Wang YH, Yang SZ, Feng GD, Zhu HH. Lysobacter silvisoli sp. nov. isolated from forest soil. Int J Syst Evol Microbiol. 2019;69:93–98. doi: 10.1099/ijsem.0.003105. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...