Fast synthesis of large-area bilayer graphene film on Cu
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
51520105003
National Natural Science Foundation of China (National Science Foundation of China)
PubMed
37268632
PubMed Central
PMC10238369
DOI
10.1038/s41467-023-38877-9
PII: 10.1038/s41467-023-38877-9
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Bilayer graphene (BLG) is intriguing for its unique properties and potential applications in electronics, photonics, and mechanics. However, the chemical vapor deposition synthesis of large-area high-quality bilayer graphene on Cu is suffering from a low growth rate and limited bilayer coverage. Herein, we demonstrate the fast synthesis of meter-sized bilayer graphene film on commercial polycrystalline Cu foils by introducing trace CO2 during high-temperature growth. Continuous bilayer graphene with a high ratio of AB-stacking structure can be obtained within 20 min, which exhibits enhanced mechanical strength, uniform transmittance, and low sheet resistance in large area. Moreover, 96 and 100% AB-stacking structures were achieved in bilayer graphene grown on single-crystal Cu(111) foil and ultraflat single-crystal Cu(111)/sapphire substrates, respectively. The AB-stacking bilayer graphene exhibits tunable bandgap and performs well in photodetection. This work provides important insights into the growth mechanism and the mass production of large-area high-quality BLG on Cu.
Academy for Advanced Interdisciplinary Studies Peking University 100871 Beijing P R China
Beijing Graphene Institute 100095 Beijing P R China
Department of Engineering University of Cambridge Cambridge CB3 0FA UK
Department of Physics and Astronomy University of Manchester Manchester M13 9PL UK
School of Materials Science and Engineering Peking University 100871 Beijing P R China
Soochow Institute for Energy and Materials Innovations Soochow University 215006 Suzhou P R China
Zobrazit více v PubMed
Zhang Y, et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature. 2009;459:820–823. doi: 10.1038/nature08105. PubMed DOI
Zhang C, et al. Visualizing delocalized correlated electronic states in twisted double bilayer graphene. Nat. Commun. 2021;12:2516. doi: 10.1038/s41467-021-22711-1. PubMed DOI PMC
Lin Q, et al. Step-by-step fracture of two-layer stacked graphene membranes. ACS Nano. 2014;8:10246–10251. doi: 10.1021/nn5033888. PubMed DOI
Bae S, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010;5:574–578. doi: 10.1038/nnano.2010.132. PubMed DOI
Nimbalkar A, Kim H. Opportunities and challenges in twisted bilayer graphene: a review. Nano-Micro Lett. 2020;12:126. doi: 10.1007/s40820-020-00464-8. PubMed DOI PMC
Fang W, Hsu AL, Song Y, Kong J. A review of large-area bilayer graphene synthesis by chemical vapor deposition. Nanoscale. 2015;7:20335–20351. doi: 10.1039/C5NR04756K. PubMed DOI
Novoselov KS, et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA. 2005;102:10451–10453. doi: 10.1073/pnas.0502848102. PubMed DOI PMC
Nguyen VL, et al. Wafer-scale single-crystalline AB-stacked bilayer graphene. Adv. Mater. 2016;28:8177–8183. doi: 10.1002/adma.201601760. PubMed DOI
Fang W, et al. Asymmetric growth of bilayer graphene on copper enclosures using low-pressure chemical vapor deposition. ACS Nano. 2014;8:6491–6499. doi: 10.1021/nn5015177. PubMed DOI
Liu L, et al. High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene. ACS Nano. 2012;6:8241–8249. doi: 10.1021/nn302918x. PubMed DOI PMC
Banszerus L, et al. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 2015;1:1500222. doi: 10.1126/sciadv.1500222. PubMed DOI PMC
Schall D, et al. 50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems. ACS Photonics. 2014;1:781–784. doi: 10.1021/ph5001605. DOI
Huang M, et al. Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(111) foil. Nat. Nanotechnol. 2020;15:289–295. doi: 10.1038/s41565-019-0622-8. PubMed DOI
Solis-Fernandez P, et al. Isothermal growth and stacking evolution in highly uniform bernal-stacked bilayer graphene. ACS Nano. 2020;14:6834–6844. doi: 10.1021/acsnano.0c00645. PubMed DOI
Nguyen VL, et al. Layer-controlled single-crystalline graphene film with stacking order via Cu-Si alloy formation. Nat. Nanotechnol. 2020;15:861–867. doi: 10.1038/s41565-020-0743-0. PubMed DOI
Ma W, et al. Interlayer epitaxy of wafer-scale high-quality uniform AB-stacked bilayer graphene films on liquid Pt3Si/solid Pt. Nat. Commun. 2019;10:2809. doi: 10.1038/s41467-019-10691-2. PubMed DOI PMC
Yang N, Choi K, Robertson J, Park HG. Layer-selective synthesis of bilayer graphene via chemical vapor deposition. 2D Mater. 2017;4:035023. doi: 10.1088/2053-1583/aa805d. DOI
Zhang X, Wang L, Xin J, Yakobson BI, Ding F. Role of hydrogen in graphene chemical vapor deposition growth on a copper surface. J. Am. Chem. Soc. 2014;136:3040–3047. doi: 10.1021/ja405499x. PubMed DOI
Zhao Z, et al. Synthesis of sub-millimeter Bi-/multi-layer graphene by designing a sandwiched structure using copper foils. Appl. Phys. Lett. 2016;109:123107. doi: 10.1063/1.4963351. DOI
Yoo MS, et al. Chemical vapor deposition of bernal-stacked graphene on a Cu surface by breaking the carbon solubility symmetry in Cu foils. Adv. Mater. 2017;29:1700753. doi: 10.1002/adma.201700753. PubMed DOI
Gong P, et al. Precise CO2 reduction for bilayer graphene. ACS Cent. Sci. 2022;8:394–401. doi: 10.1021/acscentsci.1c01578. PubMed DOI PMC
Hao Y, et al. Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. Nat. Nanotechnol. 2016;11:426–431. doi: 10.1038/nnano.2015.322. PubMed DOI
Zhou H, et al. Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene. Nat. Commun. 2013;4:2096. doi: 10.1038/ncomms3096. PubMed DOI
Li X, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science. 2009;324:1312–1314. doi: 10.1126/science.1171245. PubMed DOI
Zhou Y, et al. Epitaxial growth of asymmetrically-doped bilayer graphene for photocurrent generation. Small. 2014;10:2245–2250. doi: 10.1002/smll.201303696. PubMed DOI
Strudwick AJ, et al. Chemical vapor deposition of high quality graphene films from carbon dioxide atmospheres. ACS Nano. 2015;9:31–42. doi: 10.1021/nn504822m. PubMed DOI
Grebenko AK, et al. High‐quality graphene using Boudouard reaction. Adv. Sci. 2022;9:2200217. doi: 10.1002/advs.202200217. PubMed DOI PMC
Luo B, et al. Synthesis and morphology transformation of single-crystal graphene domains based on activated carbon dioxide by chemical vapor deposition. J. Mater. Chem. C. 2013;1:2990–2995. doi: 10.1039/c3tc30124a. DOI
Molina‐Jirón C, et al. Direct conversion of CO2 to multi‐layer graphene using Cu–Pd alloys. ChemSusChem. 2019;12:3509–3514. doi: 10.1002/cssc.201901404. PubMed DOI PMC
Seekaew Y, et al. Conversion of carbon dioxide into chemical vapor deposited graphene with controllable number of layers via hydrogen plasma pre-treatment. Membranes. 2022;12:796. doi: 10.3390/membranes12080796. PubMed DOI PMC
Lin L, Deng B, Sun J, Peng H, Liu Z. Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene. Chem. Rev. 2018;118:9281–9343. doi: 10.1021/acs.chemrev.8b00325. PubMed DOI
Liu W, Li H, Xu C, Khatami Y, Banerjee K. Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon. 2011;49:4122–4130. doi: 10.1016/j.carbon.2011.05.047. DOI
Yan K, Peng H, Zhou Y, Li H, Liu Z. Formation of bilayer bernal graphene: layer-by-layer epitaxy via chemical vapor deposition. Nano Lett. 2011;11:1106–1110. doi: 10.1021/nl104000b. PubMed DOI
Kalbac M, Frank O, Kavan L. The control of graphene double-layer formation in copper-catalyzed chemical vapor deposition. Carbon. 2012;50:3682–3687. doi: 10.1016/j.carbon.2012.03.041. DOI
Li Z, et al. Graphene thickness control via gas-phase dynamics in chemical vapor deposition. J. Phys. Chem. C. 2012;116:10557–10562. doi: 10.1021/jp210814j. DOI
Wassei JK, et al. Chemical vapor deposition of graphene on copper from methane, ethane and propane: evidence for bilayer selectivity. Small. 2012;8:1415–1422. doi: 10.1002/smll.201102276. PubMed DOI
Fang W, et al. Rapid identification of stacking orientation in isotopically labeled chemical-vapor grown bilayer graphene by Raman spectroscopy. Nano Lett. 2013;13:1541–1548. doi: 10.1021/nl304706j. PubMed DOI
Choubak S, et al. Graphene CVD: interplay between growth and etching on morphology and stacking by hydrogen and oxidizing impurities. J. Phys. Chem. C. 2014;118:21532–21540. doi: 10.1021/jp5070215. DOI
Zhao P, et al. Equilibrium chemical vapor deposition growth of Bernal-stacked bilayer graphene. ACS Nano. 2014;8:11631–11638. doi: 10.1021/nn5049188. PubMed DOI
Gan L, et al. Grain size control in the fabrication of large single-crystal bilayer graphene structures. Nanoscale. 2015;7:2391–2399. doi: 10.1039/C4NR06607C. PubMed DOI
Song Y, et al. Epitaxial nucleation of CVD bilayer graphene on copper. Nanoscale. 2016;8:20001–20007. doi: 10.1039/C6NR04557J. PubMed DOI
Luo B, et al. Chemical vapor deposition of bilayer graphene with layer-resolved growth through dynamic pressure control. J. Mater. Chem. C. 2016;4:7464–7471. doi: 10.1039/C6TC02339H. DOI
Han J, Lee J, Yeo J. Large-area layer-by-layer controlled and fully bernal stacked synthesis of graphene. Carbon. 2016;105:205–213. doi: 10.1016/j.carbon.2016.04.039. DOI
Lee J, Seo J, Jung S, Park K, Park H. Unveiling the direct correlation between the CVD-grown graphene and the growth template. J. Nanomater. 2018;2018:7610409. doi: 10.1155/2018/7610409. DOI
Chan C, Chung W, Woon W. Nucleation and growth kinetics of multi-layered graphene on copper substrate. Carbon. 2018;135:118–124. doi: 10.1016/j.carbon.2018.04.044. DOI
Zhang J, et al. Preparation of bilayer graphene utilizing CuO as nucleation sites by CVD method. J. Mater. Sci. Mater. Electron. 2018;29:4495–4502. doi: 10.1007/s10854-017-8397-x. DOI
Qi Z, et al. Chemical vapor deposition growth of bernal-stacked bilayer graphene by edge-selective etching with H2O. Chem. Mater. 2018;30:7852–7859. doi: 10.1021/acs.chemmater.8b03393. DOI
Cho JH, et al. Controlling the number of layers in graphene using the growth pressure. Nanotechnology. 2019;30:235602. doi: 10.1088/1361-6528/ab0847. PubMed DOI
Shen C, et al. Criteria for the growth of large-area adlayer-free monolayer graphene films by chemical vapor deposition. J. Materiomics. 2019;5:463–470. doi: 10.1016/j.jmat.2019.01.009. DOI
Liu B, et al. Layer-by-layer AB-stacked bilayer graphene growth through an asymmetric oxygen gateway. Chem. Mater. 2019;31:6105–6109. doi: 10.1021/acs.chemmater.9b01095. DOI
Chu C, Woon W. Growth of twisted bilayer graphene through two-stage chemical vapor deposition. Nanotechnology. 2020;31:435603. doi: 10.1088/1361-6528/aba39e. PubMed DOI
Chen Q, et al. High-quality bilayer graphene grown on softened copper foils by atmospheric pressure chemical vapor deposition. Sci. China Mater. 2020;63:1973–1982. doi: 10.1007/s40843-020-1394-3. DOI
Li Q, et al. Growth of adlayer graphene on Cu studied by carbon isotope labeling. Nano Lett. 2013;13:486–490. doi: 10.1021/nl303879k. PubMed DOI
Zhang J, et al. Large-area synthesis of superclean graphene via selective etching of amorphous carbon with carbon dioxide. Angew. Chem. Int. Ed. Engl. 2019;58:14446–14451. doi: 10.1002/anie.201905672. PubMed DOI
Yan Z, et al. Large hexagonal bi- and trilayer graphene single crystals with varied interlayer rotations. Angew. Chem. Int. Ed. Engl. 2014;53:1565–1569. doi: 10.1002/anie.201306317. PubMed DOI
Song Y, Zou W, Lu Q, Lin L, Liu Z. Graphene transfer: paving the road for applications of chemical vapor deposition graphene. Small. 2021;17:2007600. doi: 10.1002/smll.202007600. PubMed DOI
Sun L, et al. Toward epitaxial growth of misorientation-free graphene on Cu (111) foils. ACS Nano. 2021;16:285–294. doi: 10.1021/acsnano.1c06285. PubMed DOI
Deng B, et al. Wrinkle-free single-crystal graphene wafer grown on strain-engineered substrates. ACS Nano. 2017;11:12337–12345. doi: 10.1021/acsnano.7b06196. PubMed DOI
Wang L, et al. One-dimensional electrical contact to a two-dimensional material. Science. 2013;342:614–617. doi: 10.1126/science.1244358. PubMed DOI
Xia F, Mueller T, Lin Y, Valdes-Garcia A, Avouris P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009;4:839–843. doi: 10.1038/nnano.2009.292. PubMed DOI
Mueller T, Xia F, Avouris P. Graphene photodetectors for high-speed optical communications. Nat. Photonics. 2010;4:297–301. doi: 10.1038/nphoton.2010.40. DOI
Nair RR, et al. Fine structure constant defines visual transparency of graphene. Science. 2008;320:1308. doi: 10.1126/science.1156965. PubMed DOI
Xu X, Gabor NM, Alden JS, Van Der Zande AM, McEuen PL. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 2010;10:562–566. doi: 10.1021/nl903451y. PubMed DOI
Reina A, et al. Transferring and identification of single- and few-layer graphene on arbitrary substrates. J. Phys. Chem. C. 2008;112:17741–17744. doi: 10.1021/jp807380s. DOI
Zhang J, et al. Clean transfer of large graphene single crystals for high-intactness suspended membranes and liquid cells. Adv. Mater. 2017;29:1700639. doi: 10.1002/adma.201700639. PubMed DOI
Kretinin AV, et al. Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Lett. 2014;14:3270–3276. doi: 10.1021/nl5006542. PubMed DOI
Zhang J, et al. Low-temperature heteroepitaxy of 2D PbI2/graphene for large-area flexible photodetectors. Adv. Mater. 2018;30:1870271. doi: 10.1002/adma.201870271. PubMed DOI