Fast synthesis of large-area bilayer graphene film on Cu

. 2023 Jun 02 ; 14 (1) : 3199. [epub] 20230602

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37268632

Grantová podpora
51520105003 National Natural Science Foundation of China (National Science Foundation of China)

Odkazy

PubMed 37268632
PubMed Central PMC10238369
DOI 10.1038/s41467-023-38877-9
PII: 10.1038/s41467-023-38877-9
Knihovny.cz E-zdroje

Bilayer graphene (BLG) is intriguing for its unique properties and potential applications in electronics, photonics, and mechanics. However, the chemical vapor deposition synthesis of large-area high-quality bilayer graphene on Cu is suffering from a low growth rate and limited bilayer coverage. Herein, we demonstrate the fast synthesis of meter-sized bilayer graphene film on commercial polycrystalline Cu foils by introducing trace CO2 during high-temperature growth. Continuous bilayer graphene with a high ratio of AB-stacking structure can be obtained within 20 min, which exhibits enhanced mechanical strength, uniform transmittance, and low sheet resistance in large area. Moreover, 96 and 100% AB-stacking structures were achieved in bilayer graphene grown on single-crystal Cu(111) foil and ultraflat single-crystal Cu(111)/sapphire substrates, respectively. The AB-stacking bilayer graphene exhibits tunable bandgap and performs well in photodetection. This work provides important insights into the growth mechanism and the mass production of large-area high-quality BLG on Cu.

Academy for Advanced Interdisciplinary Studies Peking University 100871 Beijing P R China

Beijing Graphene Institute 100095 Beijing P R China

Beijing National Laboratory for Molecular Sciences National Centre for Mass Spectrometry in Beijing CAS Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences 100190 Beijing P R China

CAS Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences 100190 Beijing P R China

Center for Nanochemistry Beijing Science and Engineering Center for Nanocarbons Beijing National Laboratory for Molecular Science College of Chemistry and Molecular Engineering Peking University 100871 Beijing P R China

Centre of Polymer and Carbon Materials Polish Academy of Sciences M Curie Skłodowskiej 34 Zabrze 41 819 Poland

Department of Engineering University of Cambridge Cambridge CB3 0FA UK

Department of Physics and Astronomy University of Manchester Manchester M13 9PL UK

Institute of Environmental Technology VŠB Technical University of Ostrava 17 Listopadu 15 Ostrava 708 33 Czech Republic

Leibniz Institute for Solid State and Materials Research Dresden P O Box 270116 D 01171 Dresden Germany

School of Material Science and Engineering Tianjin Key Laboratory of Advanced Fibers and Energy Storage State Key Laboratory of Separation Membranes and Membrane Processes Tiangong University 300387 Tianjin P R China

School of Materials Science and Engineering Peking University 100871 Beijing P R China

Soochow Institute for Energy and Materials Innovations Soochow University 215006 Suzhou P R China

State Key Laboratory for Turbulence and Complex System Department of Mechanics and Engineering Science College of Engineering Peking University 100871 Beijing P R China

Zobrazit více v PubMed

Zhang Y, et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature. 2009;459:820–823. doi: 10.1038/nature08105. PubMed DOI

Zhang C, et al. Visualizing delocalized correlated electronic states in twisted double bilayer graphene. Nat. Commun. 2021;12:2516. doi: 10.1038/s41467-021-22711-1. PubMed DOI PMC

Lin Q, et al. Step-by-step fracture of two-layer stacked graphene membranes. ACS Nano. 2014;8:10246–10251. doi: 10.1021/nn5033888. PubMed DOI

Bae S, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010;5:574–578. doi: 10.1038/nnano.2010.132. PubMed DOI

Nimbalkar A, Kim H. Opportunities and challenges in twisted bilayer graphene: a review. Nano-Micro Lett. 2020;12:126. doi: 10.1007/s40820-020-00464-8. PubMed DOI PMC

Fang W, Hsu AL, Song Y, Kong J. A review of large-area bilayer graphene synthesis by chemical vapor deposition. Nanoscale. 2015;7:20335–20351. doi: 10.1039/C5NR04756K. PubMed DOI

Novoselov KS, et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA. 2005;102:10451–10453. doi: 10.1073/pnas.0502848102. PubMed DOI PMC

Nguyen VL, et al. Wafer-scale single-crystalline AB-stacked bilayer graphene. Adv. Mater. 2016;28:8177–8183. doi: 10.1002/adma.201601760. PubMed DOI

Fang W, et al. Asymmetric growth of bilayer graphene on copper enclosures using low-pressure chemical vapor deposition. ACS Nano. 2014;8:6491–6499. doi: 10.1021/nn5015177. PubMed DOI

Liu L, et al. High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene. ACS Nano. 2012;6:8241–8249. doi: 10.1021/nn302918x. PubMed DOI PMC

Banszerus L, et al. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 2015;1:1500222. doi: 10.1126/sciadv.1500222. PubMed DOI PMC

Schall D, et al. 50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems. ACS Photonics. 2014;1:781–784. doi: 10.1021/ph5001605. DOI

Huang M, et al. Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(111) foil. Nat. Nanotechnol. 2020;15:289–295. doi: 10.1038/s41565-019-0622-8. PubMed DOI

Solis-Fernandez P, et al. Isothermal growth and stacking evolution in highly uniform bernal-stacked bilayer graphene. ACS Nano. 2020;14:6834–6844. doi: 10.1021/acsnano.0c00645. PubMed DOI

Nguyen VL, et al. Layer-controlled single-crystalline graphene film with stacking order via Cu-Si alloy formation. Nat. Nanotechnol. 2020;15:861–867. doi: 10.1038/s41565-020-0743-0. PubMed DOI

Ma W, et al. Interlayer epitaxy of wafer-scale high-quality uniform AB-stacked bilayer graphene films on liquid Pt3Si/solid Pt. Nat. Commun. 2019;10:2809. doi: 10.1038/s41467-019-10691-2. PubMed DOI PMC

Yang N, Choi K, Robertson J, Park HG. Layer-selective synthesis of bilayer graphene via chemical vapor deposition. 2D Mater. 2017;4:035023. doi: 10.1088/2053-1583/aa805d. DOI

Zhang X, Wang L, Xin J, Yakobson BI, Ding F. Role of hydrogen in graphene chemical vapor deposition growth on a copper surface. J. Am. Chem. Soc. 2014;136:3040–3047. doi: 10.1021/ja405499x. PubMed DOI

Zhao Z, et al. Synthesis of sub-millimeter Bi-/multi-layer graphene by designing a sandwiched structure using copper foils. Appl. Phys. Lett. 2016;109:123107. doi: 10.1063/1.4963351. DOI

Yoo MS, et al. Chemical vapor deposition of bernal-stacked graphene on a Cu surface by breaking the carbon solubility symmetry in Cu foils. Adv. Mater. 2017;29:1700753. doi: 10.1002/adma.201700753. PubMed DOI

Gong P, et al. Precise CO2 reduction for bilayer graphene. ACS Cent. Sci. 2022;8:394–401. doi: 10.1021/acscentsci.1c01578. PubMed DOI PMC

Hao Y, et al. Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. Nat. Nanotechnol. 2016;11:426–431. doi: 10.1038/nnano.2015.322. PubMed DOI

Zhou H, et al. Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene. Nat. Commun. 2013;4:2096. doi: 10.1038/ncomms3096. PubMed DOI

Li X, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science. 2009;324:1312–1314. doi: 10.1126/science.1171245. PubMed DOI

Zhou Y, et al. Epitaxial growth of asymmetrically-doped bilayer graphene for photocurrent generation. Small. 2014;10:2245–2250. doi: 10.1002/smll.201303696. PubMed DOI

Strudwick AJ, et al. Chemical vapor deposition of high quality graphene films from carbon dioxide atmospheres. ACS Nano. 2015;9:31–42. doi: 10.1021/nn504822m. PubMed DOI

Grebenko AK, et al. High‐quality graphene using Boudouard reaction. Adv. Sci. 2022;9:2200217. doi: 10.1002/advs.202200217. PubMed DOI PMC

Luo B, et al. Synthesis and morphology transformation of single-crystal graphene domains based on activated carbon dioxide by chemical vapor deposition. J. Mater. Chem. C. 2013;1:2990–2995. doi: 10.1039/c3tc30124a. DOI

Molina‐Jirón C, et al. Direct conversion of CO2 to multi‐layer graphene using Cu–Pd alloys. ChemSusChem. 2019;12:3509–3514. doi: 10.1002/cssc.201901404. PubMed DOI PMC

Seekaew Y, et al. Conversion of carbon dioxide into chemical vapor deposited graphene with controllable number of layers via hydrogen plasma pre-treatment. Membranes. 2022;12:796. doi: 10.3390/membranes12080796. PubMed DOI PMC

Lin L, Deng B, Sun J, Peng H, Liu Z. Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene. Chem. Rev. 2018;118:9281–9343. doi: 10.1021/acs.chemrev.8b00325. PubMed DOI

Liu W, Li H, Xu C, Khatami Y, Banerjee K. Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon. 2011;49:4122–4130. doi: 10.1016/j.carbon.2011.05.047. DOI

Yan K, Peng H, Zhou Y, Li H, Liu Z. Formation of bilayer bernal graphene: layer-by-layer epitaxy via chemical vapor deposition. Nano Lett. 2011;11:1106–1110. doi: 10.1021/nl104000b. PubMed DOI

Kalbac M, Frank O, Kavan L. The control of graphene double-layer formation in copper-catalyzed chemical vapor deposition. Carbon. 2012;50:3682–3687. doi: 10.1016/j.carbon.2012.03.041. DOI

Li Z, et al. Graphene thickness control via gas-phase dynamics in chemical vapor deposition. J. Phys. Chem. C. 2012;116:10557–10562. doi: 10.1021/jp210814j. DOI

Wassei JK, et al. Chemical vapor deposition of graphene on copper from methane, ethane and propane: evidence for bilayer selectivity. Small. 2012;8:1415–1422. doi: 10.1002/smll.201102276. PubMed DOI

Fang W, et al. Rapid identification of stacking orientation in isotopically labeled chemical-vapor grown bilayer graphene by Raman spectroscopy. Nano Lett. 2013;13:1541–1548. doi: 10.1021/nl304706j. PubMed DOI

Choubak S, et al. Graphene CVD: interplay between growth and etching on morphology and stacking by hydrogen and oxidizing impurities. J. Phys. Chem. C. 2014;118:21532–21540. doi: 10.1021/jp5070215. DOI

Zhao P, et al. Equilibrium chemical vapor deposition growth of Bernal-stacked bilayer graphene. ACS Nano. 2014;8:11631–11638. doi: 10.1021/nn5049188. PubMed DOI

Gan L, et al. Grain size control in the fabrication of large single-crystal bilayer graphene structures. Nanoscale. 2015;7:2391–2399. doi: 10.1039/C4NR06607C. PubMed DOI

Song Y, et al. Epitaxial nucleation of CVD bilayer graphene on copper. Nanoscale. 2016;8:20001–20007. doi: 10.1039/C6NR04557J. PubMed DOI

Luo B, et al. Chemical vapor deposition of bilayer graphene with layer-resolved growth through dynamic pressure control. J. Mater. Chem. C. 2016;4:7464–7471. doi: 10.1039/C6TC02339H. DOI

Han J, Lee J, Yeo J. Large-area layer-by-layer controlled and fully bernal stacked synthesis of graphene. Carbon. 2016;105:205–213. doi: 10.1016/j.carbon.2016.04.039. DOI

Lee J, Seo J, Jung S, Park K, Park H. Unveiling the direct correlation between the CVD-grown graphene and the growth template. J. Nanomater. 2018;2018:7610409. doi: 10.1155/2018/7610409. DOI

Chan C, Chung W, Woon W. Nucleation and growth kinetics of multi-layered graphene on copper substrate. Carbon. 2018;135:118–124. doi: 10.1016/j.carbon.2018.04.044. DOI

Zhang J, et al. Preparation of bilayer graphene utilizing CuO as nucleation sites by CVD method. J. Mater. Sci. Mater. Electron. 2018;29:4495–4502. doi: 10.1007/s10854-017-8397-x. DOI

Qi Z, et al. Chemical vapor deposition growth of bernal-stacked bilayer graphene by edge-selective etching with H2O. Chem. Mater. 2018;30:7852–7859. doi: 10.1021/acs.chemmater.8b03393. DOI

Cho JH, et al. Controlling the number of layers in graphene using the growth pressure. Nanotechnology. 2019;30:235602. doi: 10.1088/1361-6528/ab0847. PubMed DOI

Shen C, et al. Criteria for the growth of large-area adlayer-free monolayer graphene films by chemical vapor deposition. J. Materiomics. 2019;5:463–470. doi: 10.1016/j.jmat.2019.01.009. DOI

Liu B, et al. Layer-by-layer AB-stacked bilayer graphene growth through an asymmetric oxygen gateway. Chem. Mater. 2019;31:6105–6109. doi: 10.1021/acs.chemmater.9b01095. DOI

Chu C, Woon W. Growth of twisted bilayer graphene through two-stage chemical vapor deposition. Nanotechnology. 2020;31:435603. doi: 10.1088/1361-6528/aba39e. PubMed DOI

Chen Q, et al. High-quality bilayer graphene grown on softened copper foils by atmospheric pressure chemical vapor deposition. Sci. China Mater. 2020;63:1973–1982. doi: 10.1007/s40843-020-1394-3. DOI

Li Q, et al. Growth of adlayer graphene on Cu studied by carbon isotope labeling. Nano Lett. 2013;13:486–490. doi: 10.1021/nl303879k. PubMed DOI

Zhang J, et al. Large-area synthesis of superclean graphene via selective etching of amorphous carbon with carbon dioxide. Angew. Chem. Int. Ed. Engl. 2019;58:14446–14451. doi: 10.1002/anie.201905672. PubMed DOI

Yan Z, et al. Large hexagonal bi- and trilayer graphene single crystals with varied interlayer rotations. Angew. Chem. Int. Ed. Engl. 2014;53:1565–1569. doi: 10.1002/anie.201306317. PubMed DOI

Song Y, Zou W, Lu Q, Lin L, Liu Z. Graphene transfer: paving the road for applications of chemical vapor deposition graphene. Small. 2021;17:2007600. doi: 10.1002/smll.202007600. PubMed DOI

Sun L, et al. Toward epitaxial growth of misorientation-free graphene on Cu (111) foils. ACS Nano. 2021;16:285–294. doi: 10.1021/acsnano.1c06285. PubMed DOI

Deng B, et al. Wrinkle-free single-crystal graphene wafer grown on strain-engineered substrates. ACS Nano. 2017;11:12337–12345. doi: 10.1021/acsnano.7b06196. PubMed DOI

Wang L, et al. One-dimensional electrical contact to a two-dimensional material. Science. 2013;342:614–617. doi: 10.1126/science.1244358. PubMed DOI

Xia F, Mueller T, Lin Y, Valdes-Garcia A, Avouris P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009;4:839–843. doi: 10.1038/nnano.2009.292. PubMed DOI

Mueller T, Xia F, Avouris P. Graphene photodetectors for high-speed optical communications. Nat. Photonics. 2010;4:297–301. doi: 10.1038/nphoton.2010.40. DOI

Nair RR, et al. Fine structure constant defines visual transparency of graphene. Science. 2008;320:1308. doi: 10.1126/science.1156965. PubMed DOI

Xu X, Gabor NM, Alden JS, Van Der Zande AM, McEuen PL. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 2010;10:562–566. doi: 10.1021/nl903451y. PubMed DOI

Reina A, et al. Transferring and identification of single- and few-layer graphene on arbitrary substrates. J. Phys. Chem. C. 2008;112:17741–17744. doi: 10.1021/jp807380s. DOI

Zhang J, et al. Clean transfer of large graphene single crystals for high-intactness suspended membranes and liquid cells. Adv. Mater. 2017;29:1700639. doi: 10.1002/adma.201700639. PubMed DOI

Kretinin AV, et al. Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Lett. 2014;14:3270–3276. doi: 10.1021/nl5006542. PubMed DOI

Zhang J, et al. Low-temperature heteroepitaxy of 2D PbI2/graphene for large-area flexible photodetectors. Adv. Mater. 2018;30:1870271. doi: 10.1002/adma.201870271. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...