The Pioneer platform: A novel approach for selection of selective anti-cancer cytotoxic activity in bacteria through co-culturing with engineered human cells

. 2023 ; 18 (6) : e0286741. [epub] 20230606

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37279202

Grantová podpora
C57113/A21639 Cancer Research UK - United Kingdom

Most of the small-molecule drugs approved for the treatment of cancer over the past 40 years are based on natural compounds. Bacteria provide an extensive reservoir for the development of further anti-cancer therapeutics to meet the challenges posed by the diversity of these malignant diseases. While identifying cytotoxic compounds is often easy, achieving selective targeting of cancer cells is challenging. Here we describe a novel experimental approach (the Pioneer platform) for the identification and development of 'pioneering' bacterial variants that either show or are conduced to exhibit selective contact-independent anti-cancer cytotoxic activities. We engineered human cancer cells to secrete Colicin M that repress the growth of the bacterium Escherichia coli, while immortalised non-transformed cells were engineered to express Chloramphenicol Acetyltransferase capable of relieving the bacteriostatic effect of Chloramphenicol. Through co-culturing of E. coli with these two engineered human cell lines, we show bacterial outgrowth of DH5α E. coli is constrained by the combination of negative and positive selection pressures. This result supports the potential for this approach to screen or adaptively evolve 'pioneering' bacterial variants that can selectively eliminate the cancer cell population. Overall, the Pioneer platform demonstrates potential utility for drug discovery through multi-partner experimental evolution.

Zobrazit více v PubMed

Mattiuzzi C, Lippi G. Current cancer epidemiology. J Epidemiol Glob Health. 2019;9: 217–222. doi: 10.2991/jegh.k.191008.001 PubMed DOI PMC

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72: 7–33. doi: 10.3322/caac.21708 PubMed DOI

Newman DJ, Cragg GM. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. Journal of Natural Products. 2020. pp. 770–803. doi: 10.1021/acs.jnatprod.9b01285 PubMed DOI

Mohan CD, Rangappa S, Nayak SC, Jadimurthy R, Wang L, Sethi G, et al.. Bacteria as a treasure house of secondary metabolites with anticancer potential. Seminars in Cancer Biology. 2022. pp. 998–1013. doi: 10.1016/j.semcancer.2021.05.006 PubMed DOI

Bérdy J. Bioactive microbial metabolites: A personal view. Journal of Antibiotics. 2005. pp. 1–26. doi: 10.1038/ja.2005.1 PubMed DOI

Swofford CA, St. Jean AT, Panteli JT, Brentzel ZJ, Forbes NS. Identification of Staphylococcus Aureus α-hemolysin as a protein drug that is secreted by anticancer bacteria and rapidly kills cancer cells. Biotechnol Bioeng. 2014;111: 1233–1245. doi: 10.1002/bit.25184 PubMed DOI

Harimoto T, Singer ZS, Velazquez OS, Zhang J, Castro S, Hinchliffe TE, et al.. Rapid screening of engineered microbial therapies in a 3D multicellular model. Proc Natl Acad Sci U S A. 2019;116: 9002–9007. doi: 10.1073/pnas.1820824116 PubMed DOI PMC

Schaller K, Holtje J V., Braun V. Colicin M is an inhibitor of murein biosynthesis. J Bacteriol. 1982;152: 994–1000. doi: 10.1128/jb.152.3.994–1000.1982 PubMed DOI PMC

Barreteau H, El Ghachi M, Barnéoud-Arnoulet A, Sacco E, Touzé T, Duché D, et al.. Characterization of colicin M and its orthologs targeting bacterial cell wall peptidoglycan biosynthesis. Microbial Drug Resistance. 2012. pp. 222–229. doi: 10.1089/mdr.2011.0230 PubMed DOI

Braun V, Schaller K, Wolff H. A common receptor protein for phage T5 and colicin M in the outer membrane of Escherichia coli B. BBA—Biomembr. 1973;323: 87–97. doi: 10.1016/0005-2736(73)90433-1 PubMed DOI

Braun V, Patzer SI, Hantke K. Ton-dependent colicins and microcins: Modular design and evolution. Biochimie. 2002. pp. 365–380. doi: 10.1016/s0300-9084(02)01427-x PubMed DOI

El Ghachi M, Bouhss A, Barreteau H, Touzé T, Auger G, Blanot D, et al.. Colicin M exerts its bacteriolytic effect via enzymatic degradation of undecaprenyl phosphate-linked peptidoglycan precursors. J Biol Chem. 2006;281: 22761–22772. doi: 10.1074/jbc.M602834200 PubMed DOI

Rahal JJ, Simberkoff MS. Bactericidal and bacteriostatic action of chloramphenicol against meningeal pathogens. Antimicrob Agents Chemother. 1979;16: 13–18. doi: 10.1128/AAC.16.1.13 PubMed DOI PMC

Moazed D, Noller HF. Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the peptidyl transferase region of 23 S ribosomal RNA. Biochimie. 1987;69. doi: 10.1016/0300-9084(87)90215-X PubMed DOI

Marks J, Kannan K, Roncase EJ, Klepacki D, Kefi A, Orelle C, et al.. Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center. Proc Natl Acad Sci U S A. 2016;113: 12150–12155. doi: 10.1073/pnas.1613055113 PubMed DOI PMC

Tereshchenkov AG, Dobosz-Bartoszek M, Osterman IA, Marks J, Sergeeva VA, Kasatsky P, et al.. Binding and Action of Amino Acid Analogs of Chloramphenicol upon the Bacterial Ribosome. J Mol Biol. 2018;430: 842–852. doi: 10.1016/j.jmb.2018.01.016 PubMed DOI PMC

Shaw W V. Chloramphenicol acetyltransferase: Enzymology and molecular biolog. Crit Rev Biochem Mol Biol. 1983;14: 1–46. doi: 10.3109/10409238309102789 PubMed DOI

Shaw W V., Packman LC, Burleigh BD, Dell A, Morris HR, Hartley BS. Primary structure of a chloramphenicol acetyltransferase specified by R plasmids. Nature. 1979. doi: 10.1038/282870a0 PubMed DOI

Sasada R, Marumoto R, Igarashi K. Secretion of Human EGF and IgE in Mammalian Cells by Recombinant DNA Techniques; Use of a IL-2 Leader Sequence. Cell Struct Funct. 1988;13: 129–141. doi: 10.1247/csf.13.129 PubMed DOI

Dexter DL, Spremulli EN, Fligiel Z, Barbosa JA, Vogel R, VanVoorhees A, et al.. Heterogeneity of cancer cells from a single human colon carcinoma. Am J Med. 1981;71: 949–956. doi: 10.1016/0002-9343(81)90312-0 PubMed DOI

Roig AI, Eskiocak U, Hight SK, Kim SB, Delgado O, Souza RF, et al.. Immortalized Epithelial Cells Derived From Human Colon Biopsies Express Stem Cell Markers and Differentiate In Vitro. Gastroenterology. 2010;138. doi: 10.1053/j.gastro.2009.11.052 PubMed DOI

Borowicz S, Van Scoyk M, Avasarala S, Karuppusamy Rathinam MK, Tauler J, Bikkavilli RK, et al.. The soft agar colony formation assay. J Vis Exp. 2014. doi: 10.3791/51998 PubMed DOI PMC

Avrani S, Bolotin E, Katz S, Hershberg R. Rapid Genetic Adaptation during the First Four Months of Survival under Resource Exhaustion. Mol Biol Evol. 2017;34: 1758–1769. doi: 10.1093/molbev/msx118 PubMed DOI PMC

Sandberg TE, Salazar MJ, Weng LL, Palsson BO, Feist AM. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metabolic Engineering. 2019. pp. 1–16. doi: 10.1016/j.ymben.2019.08.004 PubMed DOI PMC

Miller K O ’Neill AJ, Chopra I. Response of Escherichia coli hypermutators to selection pressure with antimicrobial agents from different classes. J Antimicrob Chemother. 2002;49: 925–934. doi: 10.1093/jac/dkf044 PubMed DOI

Yamada T, Fialho AM, Punj V, Bratescu L, Das Gupta TK, Chakrabarty AM. Internalization of bacterial redox protein azurin in mammalian cells: Entry domain and specificity. Cell Microbiol. 2005;7: 1418–1431. doi: 10.1111/j.1462-5822.2005.00567.x PubMed DOI

Yamada T, Goto M, Punj V, Zaborina O, Chen ML, Kimbara K, et al.. Bacterial redox protein azurin, tumor suppressor protein p53, and regression of cancer. Proc Natl Acad Sci U S A. 2002;99: 14098–14103. doi: 10.1073/pnas.222539699 PubMed DOI PMC

Yamada T, Hiraoka Y, Ikehata M, Kimbara K, Avner BS, Das Gupta TK, et al.. Apoptosis or growth arrest: Modulation of tumor suppressor p53’s specificity by bacterial redox protein azurin. Proc Natl Acad Sci U S A. 2004;101: 4770–4775. doi: 10.1073/pnas.0400899101 PubMed DOI PMC

Taylor BN, Mehta RR, Yamada T, Lekmine F, Christov K, Chakrabarty AM, et al.. Noncationic peptides obtained from azurin preferentially enter cancer cells. Cancer Res. 2009;69: 537–546. doi: 10.1158/0008-5472.CAN-08-2932 PubMed DOI

Ahmed D, Eide PW, Eilertsen IA, Danielsen SA, Eknæs M, Hektoen M, et al.. Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis. 2013;2. doi: 10.1038/oncsis.2013.35 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...