Prediction of post-operative atrial fibrillation in patients after cardiac surgery using heart rate variability
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37286952
PubMed Central
PMC10249294
DOI
10.1186/s12872-023-03309-5
PII: 10.1186/s12872-023-03309-5
Knihovny.cz E-zdroje
- Klíčová slova
- Cardiac surgery, Heart rate variability, Non-linear analysis, Post-operative atrial fibrillation,
- MeSH
- fibrilace síní * diagnóza epidemiologie etiologie MeSH
- kardiochirurgické výkony * škodlivé účinky MeSH
- lidé MeSH
- pooperační komplikace diagnóza etiologie MeSH
- rizikové faktory MeSH
- ROC křivka MeSH
- srdeční frekvence fyziologie MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
PURPOSE: Post-operative atrial fibrillation (PoAF) occurs in ~ 30% of patients after cardiac surgery. The etiology of PoAF is complex, but a disbalance in autonomic systems plays an important role. The goal of this study was to assess whether pre-operative heart rate variability analysis can predict the risk of PoAF. METHODS: Patients without a history of AF with an indication for cardiac surgery were included. Two-hour ECG recordings one day before surgery was used for the HRV analysis. Univariate and multivariate logistic regression, including all HRV parameters, their combination, and clinical variables, were calculated to find the best predictive model for post-operative AF. RESULTS: One hundred and thirty-seven patients (33 women) were enrolled in the study. PoAF occurred in 48 patients (35%, AF group); the remaining 89 patients were in the NoAF group. AF patients were significantly older (69.1 ± 8.6 vs. 63.4 ± 10.5 yrs., p = 0.002), and had higher CHA2DS2-VASc score (3 ± 1.4 vs. 2.5 ± 1.3, p = 0.01). In the multivariate regression model, parameters independently associated with higher risk of AF were pNN50, TINN, absolute power VLF, LF and HF, total power, SD2, and the Porta index. A combination of clinical variables with HRV parameters in the ROC analysis achieved an AUC of 0.86, a sensitivity of 0.95, and a specificity of 0.57 and was more effective in PoAF prediction than a combination of clinical variables alone. CONCLUSION: A combination of several HRV parameters is helpful in predicting the risk of PoAF. Attenuation of heart rate variability increases the risk for PoAF.
Zobrazit více v PubMed
ZAKKAR M, ASCIONE R, JAMES AF, ANGELINI GD. and M.S. SULEIMAN. Inflammation, oxidative stress and post-operative atrial fibrillation in cardiac surgery. Pharmacology& Therapeutics 2015, 154(October 2015), 13–20. DOI: 10.1016/j.pharmthera.2015.06.009. ISSN 01637258. PubMed
MAESEN B, NIJS J, J. MAESSEN M, ALLESSIE Post-operative atrial fibrillation: a maze of mechanisms. Europace. 2012;14(2):159–74. doi: 10.1093/europace/eur208. PubMed DOI PMC
Ji SEOE, Joonhwa HONG, Hyeon-Ju LEEa, Youn-Jung SON. Perioperative risk factors for new-onset post-operative atrial fibrillation after coronary artery bypass grafting: a systematic review. BMC Cardiovasc Disord. 2021;21(1):1471–2261. doi: 10.1186/s12872-021-02224-x. PubMed DOI PMC
Hristo TODOROV, Inka JANSSEN, Stefanie HONNDORF, et al. Clinical significance and risk factors for new onset and recurring atrial fibrillation following cardiac surgery - a retrospective data analysis. BMC Anesthesiol. 2017;17(1):1471–2253. doi: 10.1186/s12871-017-0455-7. PubMed DOI PMC
Hugh CALKINS, Gerhard HINDRICKS, Riccardo CAPPATO, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary. EP Europace. 2018;20(1):157–208. doi: 10.1093/europace/eux275. PubMed DOI PMC
ELECTROPHYSIOLOGY TF, Clinical Use. o. t. E. S. o. C. t. N. A. S. Heart Rate Variability: Standards of Measurement, Physiological Interpretation, and. Circulation [online]. 1996, 93(5), 1043–1065. ISSN 0009-7322. 10.1161/01.CIR.93.5.1043. PubMed
HRV analysis methods. Kubios [online]. Kuopio: Kubios Oy, c2022. Available from: https://www.kubios.com/hrv-analysis-methods/.
Fred a SHAFFER. GINSBERG. An overview of Heart Rate Variability Metrics and norms. Front Public Health. 2017;5:2296–565. doi: 10.3389/fpubh.2017.00258. PubMed DOI PMC
RAJENDRA ACHARYA, U. K, PAUL JOSEPH NKANNATHAL, Choo Min LIM, a Jasjit. S. SURI. Heart rate variability: a review. 2006, 44(12), 1031–1051. ISSN 0140 – 0118. 10.1007/s11517-006-0119-0. PubMed
Akemi HOSHIR, Carlos Marcelo PASTRE, Luiz Carlos Marques VANDERLEI a, Moacir Fernandes GODOY. Poincaré plot indexes of heart rate variability: Relationships with other non-linear variables. Autonomic Neuroscience. 2013, 177(2), 271–274. ISSN 15660702. 10.1016/j.autneu.2013.05.004. PubMed
KARMAKAR CK, AH, KHANDOKER a M, PALANISWAMI Phase asymmetry of heart rate variability signal. Physiol Meas. 2015;36(2):303–14. doi: 10.1088/0967-3334/36/2/303. PubMed DOI
PORTA A, CASALI KR, CASALI AG, et al. Temporal asymmetries of short-term heart period variability are linked to autonomic regulation. Am J Physiology-Regulatory Integr Comp Physiol. 2008;295(2):R550–7. doi: 10.1152/ajpregu.00129.2008. PubMed DOI
Florian RADER, Otto COSTANTINI, Craig JARRETT, Eiran Z, GORODESKI, Michael S, LAUER a Eugene H. BLACKSTONE. Quantitative electrocardiography for predicting post-operative atrial fibrillation after cardiac surgery. J Electrocardiol. 2011;44(6):761–7. doi: 10.1016/j.jelectrocard.2010.12.005. PubMed DOI PMC
Giovanni POLLOCKBD, Briget FILARDO, Teresa DAGRACA, PHAN K, Gorav AILAWADI, Vinod THOURANI, Ralph J, DAMIANO JR a James R. EDGERTON. Predicting New-Onset Post-Coronary Artery Bypass Graft Atrial Fibrillation with existing risk scores. Ann Thorac Surg. 2018;105(1):115–21. doi: 10.1016/j.athoracsur.2017.06.075. PubMed DOI
OVREIU MIRELA, NAIR BALAG, MENG XU, et al. Electrocardiographic Activity before Onset of Postoperative Atrial Fibrillation in Cardiac surgery patients. Pacing and Clinical Electrophysiology [online] 2008;31(11):1371–82. doi: 10.1111/j.1540-8159.2008.01198.x. PubMed DOI
Su-Kiat CHUA, Kou-Gi SHYU, Ming-Jen LU, Li-Ming LIEN, Chia-Hsun LIN, Hung-Hsing CHAOa, Huey-Ming LO. Clinical utility of CHADS2 and CHA2DS2-VASc scoring systems for predicting post-operative atrial fibrillation after cardiac surgery. J Thorac Cardiovasc Surg. 2013;146(4):919–926e1. doi: 10.1016/j.jtcvs.2013.03.040. PubMed DOI
Alexandra BEKIARIDOU, Anastasios KARTAS, Dimitrios VMOYSIDIS, Andreas S, PAPAZOGLOU, Amalia BAROUTIDOU, Anastasios PAPANASTASIOU, a George GIANNAKOULAS. Reviews in endocrine & metabolic disorders [online] New York: Springer US; 2022. The bidirectional relationship of thyroid disease and atrial fibrillation: established knowledge and future considerations; pp. 621–30. PubMed
WANG A, GREEN JB, Jonathan L, HALPERIN a Jonathan P. PICCINI. Atrial Fibrillation and Diabetes Mellitus: JACC Review Topic of the Week. Journal of the American College of Cardiology [online]. NEW YORK: Elsevier, 2019, 74(8), 1107–1115. ISSN 0735–1097. 10.1016/j.jacc.2019.07.020. PubMed
HUANG, Qiangru, Huaiyu XIONG, Tiankui SHUAI et al. Risk factors for new-onset atrial fibrillation in patients with chronic obstructive pulmonary disease: A systematic review and meta-analysis. PeerJ (San Francisco, CA) [online]. United States: PeerJ., 2020, 8, e10376-e10376. ISSN 2167–8359. PubMed PMC
Dmitri CHAMCHAD, HORROW JC, Louis E, SAMUELS a Lev NAKHAMCHIK. Heart rate variability measures poorly predict atrial fibrillation after off-pump coronary artery bypass grafting. J Clin Anesth. 2011;23(6):451–5. doi: 10.1016/j.jclinane.2010.12.016. PubMed DOI
KALIŠNIK, Jurij M, Viktor AVBELJ, Jon VRATANAR, Giuseppe SANTARPINO, Borut GERÅAK, Theodor FISCHLEIN, Roman TROBEC, a Janez ŽIBERT. Cardiac autonomic regulation and PR interval determination for enhanced atrial fibrillation risk prediction after cardiac surgery. Int J Cardiol. 2019;289:24–9. doi: 10.1016/j.ijcard.2019.04.070. PubMed DOI
REYES DEL PASO, Gustavo A, Wolf LANGEWITZ, Lambertus JM, MULDER, Arie VAN, ROON a Stefan DUSCHEK. The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: a review with emphasis on a reanalysis of previous studies. Psychophysiol [online] HOBOKEN: Blackwell Publishing. 2013;50(5):477–87. doi: 10.1111/psyp.12027. PubMed DOI
SKINNER JE, Craig M, PRATT a Tomas VYBIRAL. A reduction in the correlation dimension of heartbeat intervals precedes imminent ventricular fibrillation in human subjects. Am Heart J. 1993;125(3):731–43. doi: 10.1016/0002-8703(93)90165-6. PubMed DOI
FLEISHER LA, PINCUS a SM. Anesthesiology (Philadelphia) [online] PHILADELPHIA: Lippincott Williams & Wilkins; 1993. ROSENBAUM. Approximate entropy of heart rate as a correlate of post-operative ventricular dysfunction; pp. 683–92. PubMed
Ernie LIAOTing-Wei, Li-wei LO, Yenn-jiang LIN, et al. Nonlinear Heart Rate Dynamics before and after paroxysmal atrial fibrillation events. Acta Cardiologica Sinica [online] Taiwan Soc Cardiol. 2022;38(5):594–600. doi: 10.6515/ACS.202209_38(5).20220328A. PubMed DOI PMC
PLATIŠA MM, Tijana BOJIC, Siniša U, PAVLOVIC, Nikola N, RADOVANOVIC a Aleksandar KALAUZI. Generalized Poincaré plots-A new method for evaluation of regimes in cardiac neural control in atrial fibrillation and healthy subjects. Frontiers in neuroscience [online] LAUSANNE: Front Media. 2016;10:38–8. doi: 10.3389/fnins.2016.00038. PubMed DOI PMC
BARBIERI R, Pasquale E. SCILINGO a, Gaetano VALENZA. Complexity and Nonlinearity in Cardiovascular Signals. Cham: Springer International Publishing, 2017, 1 online resource (537 pages). ISBN 3-319-58709-9. 10.1007/978-3-319-58709-7.
MARWAN, Norbert MCARMENROMANO, Marco THIEL, a Jürgen. KURTHS. Recurrence plots for the analysis of complex systems. Physics reports [online]. AMSTERDAM: Elsevier B.V, 2007, 438(5), 237–329. ISSN 0370–1573. 10.1016/j.physrep.2006.11.001.
Dong-gu SHIN, Sang-hoon Cheol-seungYOO, Jun-ho YI, Young-jo BAE. KIM, Jong-sun PARK a Geu-ru HONG. Prediction of Paroxysmal Atrial Fibrillation Using Nonlinear Analysis of the R-R Interval Dynamics Before the Spontaneous Onset of Atrial Fibrillation. Circulation journal: official journal of the Japanese Circulation Society [online]. Japan: The Japanese Circulation Society, 2006, 70(1), 94–99. ISSN 1346–9843. 10.1253/circj.70.94. PubMed
Peter HOGUECW, Phyllis PDOMITROVICH, STEIN K, George D, DESPOTIS, Lisa RE, Richard B, SCHUESSLER, Robert E. KLEIGER a Jeffery N. ROTTMAN. RR interval Dynamics before Atrial Fibrillation in Patients after coronary artery bypass graft surgery. Circulation. 1998;98(5):429–34. doi: 10.1161/01.CIR.98.5.429. PubMed DOI
Heikki HUIKURI, Juha V, Roberto SPERKIÖMÄKI, a Gian Domenico MAESTRI. Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences [online] London: The Royal Society; 2009. Clinical impact of evaluation of cardiovascular control by novel methods of heart rate dynamics; pp. 1223–38. PubMed
ALVAREZ-RAMIREZ J, ECHEVERRIA JC, MERAZ a E M. RODRIGUEZ. Asymmetric acceleration/deceleration dynamics in heart rate variability. Physica A [online]. AMSTERDAM: Elsevier B.V, 2017, 479, 213–224. ISSN 0378–4371. 10.1016/j.physa.2017.03.008.