A New Method to Prepare Stable Polyaniline Dispersions for Highly Loaded Cathodes of All-Polymer Li-Ion Batteries
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU20-06-00424
Czech Health Research Council
PubMed
37299307
PubMed Central
PMC10255123
DOI
10.3390/polym15112508
PII: polym15112508
Knihovny.cz E-zdroje
- Klíčová slova
- 2D material, acid-assisted synthesis, all-solid-state L batteries, cathode material, poly(ionic liquid), polyaniline, single-ion conductor,
- Publikační typ
- časopisecké články MeSH
A new method for the preparation of polyaniline (PANI) films that have a 2D structure and can record high active mass loading (up to 30 mg cm-2) via acid-assisted polymerization in the presence of concentrated formic acid was developed. This new approach represents a simple reaction pathway that proceeds quickly at room temperature in quantitative isolated yield with the absence of any byproducts and leads to the formation of a stable suspension that can be stored for a prolonged time without sedimentation. The observed stability was explained by two factors: (a) the small size of the obtained rod-like particles (50 nm) and (b) the change of the surface of colloidal PANI particles to a positively charged form by protonation with concentrated formic acid. The films cast from the concentrated suspension were composed of amorphous PANI chains assembled into 2D structures with nanofibrillar morphology. Such PANI films demonstrated fast and efficient diffusion of the ions in liquid electrolyte and showed a pair of revisable oxidation and reduction peaks in cyclic voltammetry. Furthermore, owing to the high mass loading, specific morphology, and porosity, the synthesized polyaniline film was impregnated by a single-ion conducting polyelectrolyte-poly(LiMn-r-PEGMm) and characterized as a novel lightweight all-polymeric cathode material for solid-state Li batteries by cyclic voltammetry and electrochemical impedance spectroscopy techniques.
Zobrazit více v PubMed
Ore I., Pigments I.O., Rock P., Crystal Q., Earths R., Ash S. Mineral Commodity Summaries 2021. U.S. Geological Survey; Reston, VA, USA: 2021.
Meister P., Jia H., Li J., Klöpsch R., Winter M., Placke T. Best Practice: Performance and Cost Evaluation of Lithium Ion Battery Active Materials with Special Emphasis on Energy Efficiency. Chem. Mater. 2016;28:7203–7217. doi: 10.1021/acs.chemmater.6b02895. DOI
Canepa P., Sai Gautam G., Hannah D.C., Malik R., Liu M., Gallagher K.G., Persson K.A., Ceder G. Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. Chem. Rev. 2017;117:4287–4341. doi: 10.1021/acs.chemrev.6b00614. PubMed DOI
Xiao L., Chen X., Cao R., Qian J., Xiang H., Zheng J., Zhang J.G., Xu W. Enhanced performance of Li|LiFePO4 cells using CsPF6 as an electrolyte additive. J. Power Sources. 2015;293:1062–1067. doi: 10.1016/j.jpowsour.2015.06.044. DOI
Oz E., Altin S., Demirel S., Bayri A., Altin E., Baglayan O., Avci S. Electrochemical effects and magnetic properties of B substituted LiCoO2: Improving Li-battery performance. J. Alloys Compd. 2016;657:835–847. doi: 10.1016/j.jallcom.2015.10.080. DOI
Zheng X., Li X., Wang Z., Guo H., Huang Z., Yan G., Wang D. Investigation and improvement on the electrochemical performance and storage characteristics of LiNiO2-based materials for lithium ion battery. Electrochim. Acta. 2016;191:832–840. doi: 10.1016/j.electacta.2016.01.142. DOI
Chepurnaya I., Smirnova E., Karushev M. Electrochemically Active Polymer Components in Next-Generation LiFePO4 Cathodes: Can Small Things Make a Big Difference? Batteries. 2022;8:185. doi: 10.3390/batteries8100185. DOI
Chung Y.M., Ryu K.S. Surface coating and electrochemical properties of LiNi0.8Co0.15Al0.05O2/polyaniline composites as an electrode for Li-ion batteries. Bull. Korean Chem. Soc. 2009;30:1733–1737. doi: 10.5012/bkcs.2009.30.8.1733. DOI
Kotz R., Carlen M. Principles and applications of electrochemical capacitors. Electrochim. Acta. 2000;45:2483–2498. doi: 10.1016/S0013-4686(00)00354-6. DOI
Zhang L., Zhao X.S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009;38:2520–2531. doi: 10.1039/b813846j. PubMed DOI
Miller J., Burke A. Electrochemical Capacitors: Challenges and Opportunities for Real-World Applications. Electrochem. Soc. Interface. 2008;17:53. doi: 10.1149/2.F08081IF. DOI
Simon P., Gogotsi Y. Materials for electrochemical capacitors. Nat. Mater. 2008;7:845–854. doi: 10.1038/nmat2297. PubMed DOI
Cheng F.Y., Tang W., Li C., Chen J., Liu H., Shen P., Dou S. Conducting Poly(aniline) Nanotubes and Nanofibers: Controlled Synthesis and Application in Lithium/Poly(aniline) Rechargeable Batteries. Chem. Eur. J. 2006;12:3082–3088. doi: 10.1002/chem.200500883. PubMed DOI
Rudge A., Raistnck I.A.N., Gottesfeld S., Ferraris J. A Study of The Electrochemical Properties of Conducting Polymers for Application in Capacitors. Electrochim. Acta. 1994;39:273–287. doi: 10.1016/0013-4686(94)80063-4. DOI
Peng C., Hu D., Chen G.Z. Theoretical specific capacitance based on charge storage mechanisms of conducting polymers: Comment on ‘Vertically oriented arrays of polyaniline nanorods and their super electrochemical properties’. Chem. Commun. 2011;47:4105–4107. doi: 10.1039/c1cc10675a. PubMed DOI
Tomšík E., Ivanko I., Kohut O., Hromádková J. High-Rate Polyaniline/Carbon-Cloth Electrodes: Effect of Mass Loading on the Pseudocapacitive Performance. ChemElectroChem. 2017;4:2884–2890. doi: 10.1002/celc.201700793. DOI
Ismail R., Sedenkova I., Svoboda J., Lukesova M., Walterova Z., Tomsik E. Acid-assisted polymerization: The novel synthetic route of sensing layers based on PANI films and chelating agents protected by non-biofouling layers for Fe2+ or Fe3+ potentiometric detection. J. Mater. Chem. B. 2023;11:1545–1556. doi: 10.1039/D2TB02450K. PubMed DOI
Tomšík E., Kohut O., Ivanko I., Pekárek M., Bieloshapka I., Dallas P. Assembly and Interaction of Polyaniline Chains: Impact on Electro- and Physical-Chemical Behavior. J. Phys. Chem. C. 2018;122:8022–8030. doi: 10.1021/acs.jpcc.8b01948. DOI
Gospodinova N., Muat V., Kolev H., Romanova J. New insight into the redox behavior of polyaniline. Synth. Met. 2011;161:2510–2513. doi: 10.1016/j.synthmet.2011.08.035. DOI
Shaplov A.S., Vlasov P.S., Armand M., Lozinskaya E.I., Ponkratov D.O., Malyshkina I.A., Vidal F., Okatova O.V., Pavlov G.M., Wandrey C., et al. Design and synthesis of new anionic “polymeric ionic liquids” with high charge delocalization. Polym. Chem. 2011;2:2609–2618. doi: 10.1039/c1py00282a. DOI
Porcarelli L., Shaplov A.S., Salsamendi M., Nair J.R., Vygodskii Y.S., Mecerreyes D., Gerbaldi C. Single-Ion Block Copoly(ionic liquid)s as Electrolytes for All-Solid State Lithium Batteries. ACS Appl. Mater. Interfaces. 2016;8:10350–10359. doi: 10.1021/acsami.6b01973. PubMed DOI
Lingua G., Grysan P., Vlasov P.S., Verge P., Shaplov A.S., Gerbaldi C. Unique Carbonate-Based Single Ion Conducting Block Copolymers Enabling High-Voltage, All-Solid-State Lithium Metal Batteries. Macromolecules. 2021;54:6911–6924. doi: 10.1021/acs.macromol.1c00981. PubMed DOI PMC
Jakeš J. Regularized Positive Exponential Sum (REPES) Program-A Way of Inverting Laplace Transform Data Obtained by Dynamic Light Scattering. Collect. Czechoslov. Chem. Commun. 1995;60:1781–1797. doi: 10.1135/cccc19951781. DOI
Wu J., Zhang Q., Wang J., Huang X., Bai H. A self-assembly route to porous polyaniline/reduced graphene oxide composite materials with molecular-level uniformity for high-performance supercapacitors. Energy Environ. Sci. 2018;11:1280–1286. doi: 10.1039/C8EE00078F. DOI
Wu C., Bein T. Conducting Polyaniline Filaments in a Mesoporous Channel Host. Science. 1994;264:1757–1759. doi: 10.1126/science.264.5166.1757. PubMed DOI
Sivakkumar S.R., Oh J.S., Kim D.W. Polyaniline nanofibres as a cathode material for rechargeable lithium-polymer cells assembled with gel polymer electrolyte. J. Power Sources. 2006;163:573–577. doi: 10.1016/j.jpowsour.2006.08.035. DOI
Qiu B., Wang J., Li Z., Wang X., Li X. Influence of Acidity and Oxidant Concentration on the Nanostructures and Electrochemical Performance of Polyaniline during Fast Microwave-Assisted Chemical Polymerization. Polymers. 2020;12:310. doi: 10.3390/polym12020310. PubMed DOI PMC
Qiu B., Li Z., Wang X., Li X., Zhang J. Exploration on the Microwave-Assisted Synthesis and Formation Mechanism of Polyaniline Nanostructures Synthesized in Different Hydrochloric Acid Concentrations. Polym. Chem. 2017;55:3357–3369. doi: 10.1002/pola.28707. DOI
Hambitzer G., Stassen I. Polymerization of aniline in aqueous sulfuric acid -study by electrochemical thermospray mass spectrometry. Synth. Met. 1993;57:1045–1050. doi: 10.1016/0379-6779(93)90197-5. DOI
Trchova M., Sedenkova I., Stejskal J., Bok J. Polymerization of Aniline in the Solutions of Strong and Weak Acids: The Evolution of Infrared Spectra and Their Interpretation Using Factor Analysis. Appl. Spectrosc. 2007;61:1153–1162. PubMed
Rao P.S., Sathyanarayana D.N. Synthesis of electrically conducting copolymers of aniline with o/m -amino benzoic acid by an inverse emulsion pathway. Polymer. 2002;43:5051–5058.
Kuramoto N., Tomita A. Aqueous polyaniline suspensions: Chemical oxidative polymerization of dodecylbenzene-sulfonic acid aniline salt. Polymer. 1997;38:3055–3058. doi: 10.1016/S0032-3861(96)00861-0. DOI
Gomes E.C., Oliveira M.A.S. Chemical Polymerization of Aniline in Hydrochloric Acid (HCl) and Formic Acid (HCOOH) Media. Differences Between the Two Synthesized Polyanilines. Am. J. Polym. Sci. 2012;2:5–13. doi: 10.5923/j.ajps.20120202.02. DOI
Wu W., Pan D., Li Y., Zhao G., Jing L., Chen S. Facile fabrication of polyaniline nanotubes using the self-assembly behavior based on the hydrogen bonding: A mechanistic study and application in high-performance electrochemical supercapacitor electrode. Electrochim. Acta. 2015;152:126–134. doi: 10.1016/j.electacta.2014.11.130. DOI
Li G., Jiang L., Peng H. One-dimensional polyaniline nanostructures with controllable surfaces and diameters using vanadic acid as the oxidant. Macromolecules. 2007;40:7890–7894. doi: 10.1021/ma070650o. DOI
Sun Z., Geng Y., Li J., Wang F. Chemical polymerization of aniline with hydrogen peroxide as oxidant. Synth. Met. 1997;84:99–100. doi: 10.1016/S0379-6779(96)03855-6. DOI
Zoromba M.S., Alghool S., Abdel-Hamid S.M.S., Bassyouni M., Abdel-Aziz M.H. Polymerization of aniline derivatives by K2Cr2O7 and production of Cr2O3 nanoparticles. Polym. Adv. Technol. 2017;28:842–848. doi: 10.1002/pat.3987. DOI
Yasuda A., Shimidzu T. Chemical Oxidative Polymerization of Aniline with Ferric Chloride. Polymer. 1993;25:329–338. doi: 10.1295/polymj.25.329. DOI
Ding Q., Qian R., Jing X., Han J., Yu L. Reaction of aniline with KMnO4 to synthesize polyaniline-supported Mn nanocomposites: An unexpected heterogeneous free radical scavenger. Mater. Lett. 2019;251:222–225. doi: 10.1016/j.matlet.2019.05.076. DOI
Ma Y., Zhang H., Hou C., Qiao M., Chen Y., Zhang H. Multidimensional polyaniline structures from micellar templates. J. Mater. Sci. 2017;52:2995–3002. doi: 10.1007/s10853-016-0550-z. DOI
Stejskal J., Sapurina I., Trchová M., Konyushenko E.N., Holler P. The genesis of polyaniline nanotubes. Polymer. 2006;47:8253–8262. doi: 10.1016/j.polymer.2006.10.007. DOI
Chao D., Lu X., Chen J., Zhang W., Wei Y. Anthranilic acid assisted preparation of Fe3O4-Poly(aniline-co-o-anthranilic acid) nanoparticles. J. Appl. Polym. Sci. 2006;102:1666–1671. doi: 10.1002/app.24117. DOI
Ji J., Li R., Li H., Shu Y., Li Y., Qiu S., He C., Yang Y. Phytic acid assisted fabrication of graphene/polyaniline composite hydrogels for high-capacitance supercapacitors. Compos. Part B Eng. 2018;155:132–137. doi: 10.1016/j.compositesb.2018.08.037. DOI
Tomšík E., Ivanko I., Svoboda J., Šeděnková I., Zhigunov A., Hromádková J., Pánek J., Lukešová M., Velychkivska N., Janisová L. Method of Preparation of Soluble PEDOT: Self-Polymerization of EDOT without Oxidant at Room Temperature. Macromol. Chem. Phys. 2020;221:2000219. doi: 10.1002/macp.202000219. DOI
Kolouchova K., Groborz O., Skarkova A., Brabek J., Rosel D., Svec P., Starcuk Z., Slouf M., Hruby M. Thermo- and ROS-Responsive Self-Assembled Polymer Nanoparticle Tracers for 19 F MRI Theranostics. Biomacromolecules. 2021;22:2325–2337. doi: 10.1021/acs.biomac.0c01316. PubMed DOI
Morávková Z., Trchová M., Tomšík E., Čechvala J., Stejskal J. Enhanced thermal stability of multi-walled carbon nanotubes after coating with polyaniline salt. Polym. Degrad. Stab. 2012;97:1405–1414. doi: 10.1016/j.polymdegradstab.2012.05.019. DOI
Rakić A.A., Vukomanović M., Ćirić-Marjanović G. Formation of nanostructured polyaniline by dopant-free oxidation of aniline in a water/isopropanol mixture. Chem. Pap. 2014;68:372–383. doi: 10.2478/s11696-013-0453-2. DOI
Bláha M., Trchová M., Morávková Z., Humpolíček P., Stejskal J. Semiconducting materials from oxidative coupling of phenylenediamines under various acidic conditions. Mater. Chem. Phys. 2018;205:423–435. doi: 10.1016/j.matchemphys.2017.11.007. DOI
Kiefer W. Recent Advances in linear and nonlinear Raman spectroscopy I. J. Raman Spectrosc. 2007;38:1538–1553. doi: 10.1002/jrs.1902. DOI
El-Bashir S.M., Yahia I.S., Binhussain M.A., AlSalhi M.S. Design of Rose Bengal/FTO optical thin film system as a novel nonlinear media for infrared blocking windows. Results Phys. 2017;7:1852–1858. doi: 10.1016/j.rinp.2017.05.027. DOI
Murugesan R., Subramanian E. Effect of organic dopants on electrodeposition and characteristics of polyaniline under the varying influence of H2SO4 and HClO4 electrolyte media. Mater. Chem. Phys. 2003;80:731–739. doi: 10.1016/S0254-0584(03)00127-5. DOI
Pouget J.P., Oblakowski Z., Nogami Y., Albouy P.A., Laridjani M., Oh E.J., Min Y., MacDiarmid A.G., Tsukamoto J., Ishiguro T., et al. Recent structural investigations of metallic polymers. Synth. Met. 1994;65:131–140. doi: 10.1016/0379-6779(94)90174-0. DOI
Buron C.C., Lakard B., Monnin A.F., Moutarlier V., Lakard S. Elaboration and characterization of polyaniline films electrodeposited on tin oxides. Synth. Met. 2011;161:2162–2169. doi: 10.1016/j.synthmet.2011.08.021. DOI
Gospodinova N., Ivanov D.A., Anokhin D.V., Mihai I., Brun S., Romanova J., Tadjer A. Unprecedented Route to Ordered Polyaniline: Direct Synthesis of Highly Crystalline Fibrillar Films with Strong p-p Stacking Alignment. Macromol. Rapid Commun. 2009;30:29–33. doi: 10.1002/marc.200800434. PubMed DOI
Tadyszak K., Strzelczyk R., Coy E., Ma M., Augustyniak-jab M.A. Size effects in the conduction electron spin resonance of anthracite and higher anthraxolite. Magn. Reson. Chem. 2016;54:239–245. doi: 10.1002/mrc.4373. PubMed DOI
Dyson F. Electron Spin Resonance Absorption in Metals. II. Theory of Electron Diffusion and the Skin Effect. Phys. Rev. 1955;98:349–358. doi: 10.1103/PhysRev.98.349. DOI
Wertz J., Bolton J. Electron Spin Resonance. Chapman and Hall; New York, NY, USA: London, UK: 1986.
Popovych V., Bester M., Stefaniuk I., Kuzma M. Dyson line and modified Dyson line in the EPR measurements. Nukleonika. 2015;60:385–388. doi: 10.1515/nuka-2015-0068. DOI
Lozinskaya E.I., Ponkratov D.O., Malyshkina I.A., Grysan P., Lingua G., Gerbaldi C., Shaplov A.S., Vygodskii Y.S. Self-assembly of Li single-ion-conducting block copolymers for improved conductivity and viscoelastic properties. Electrochim. Acta. 2022;413:140126. doi: 10.1016/j.electacta.2022.140126. DOI
Kozarenko O.A., Dyadyun V.S., Papakin M.S., Posudievsky O.Y., Koshechko V.G., Pokhodenko V.D. Effect of potential range on electrochemical performance of polyaniline as a component of lithium battery electrodes. Electrochim. Acta. 2015;184:111–116. doi: 10.1016/j.electacta.2015.10.058. DOI