A New Method to Prepare Stable Polyaniline Dispersions for Highly Loaded Cathodes of All-Polymer Li-Ion Batteries

. 2023 May 29 ; 15 (11) : . [epub] 20230529

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37299307

Grantová podpora
NU20-06-00424 Czech Health Research Council

A new method for the preparation of polyaniline (PANI) films that have a 2D structure and can record high active mass loading (up to 30 mg cm-2) via acid-assisted polymerization in the presence of concentrated formic acid was developed. This new approach represents a simple reaction pathway that proceeds quickly at room temperature in quantitative isolated yield with the absence of any byproducts and leads to the formation of a stable suspension that can be stored for a prolonged time without sedimentation. The observed stability was explained by two factors: (a) the small size of the obtained rod-like particles (50 nm) and (b) the change of the surface of colloidal PANI particles to a positively charged form by protonation with concentrated formic acid. The films cast from the concentrated suspension were composed of amorphous PANI chains assembled into 2D structures with nanofibrillar morphology. Such PANI films demonstrated fast and efficient diffusion of the ions in liquid electrolyte and showed a pair of revisable oxidation and reduction peaks in cyclic voltammetry. Furthermore, owing to the high mass loading, specific morphology, and porosity, the synthesized polyaniline film was impregnated by a single-ion conducting polyelectrolyte-poly(LiMn-r-PEGMm) and characterized as a novel lightweight all-polymeric cathode material for solid-state Li batteries by cyclic voltammetry and electrochemical impedance spectroscopy techniques.

Zobrazit více v PubMed

Ore I., Pigments I.O., Rock P., Crystal Q., Earths R., Ash S. Mineral Commodity Summaries 2021. U.S. Geological Survey; Reston, VA, USA: 2021.

Meister P., Jia H., Li J., Klöpsch R., Winter M., Placke T. Best Practice: Performance and Cost Evaluation of Lithium Ion Battery Active Materials with Special Emphasis on Energy Efficiency. Chem. Mater. 2016;28:7203–7217. doi: 10.1021/acs.chemmater.6b02895. DOI

Canepa P., Sai Gautam G., Hannah D.C., Malik R., Liu M., Gallagher K.G., Persson K.A., Ceder G. Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. Chem. Rev. 2017;117:4287–4341. doi: 10.1021/acs.chemrev.6b00614. PubMed DOI

Xiao L., Chen X., Cao R., Qian J., Xiang H., Zheng J., Zhang J.G., Xu W. Enhanced performance of Li|LiFePO4 cells using CsPF6 as an electrolyte additive. J. Power Sources. 2015;293:1062–1067. doi: 10.1016/j.jpowsour.2015.06.044. DOI

Oz E., Altin S., Demirel S., Bayri A., Altin E., Baglayan O., Avci S. Electrochemical effects and magnetic properties of B substituted LiCoO2: Improving Li-battery performance. J. Alloys Compd. 2016;657:835–847. doi: 10.1016/j.jallcom.2015.10.080. DOI

Zheng X., Li X., Wang Z., Guo H., Huang Z., Yan G., Wang D. Investigation and improvement on the electrochemical performance and storage characteristics of LiNiO2-based materials for lithium ion battery. Electrochim. Acta. 2016;191:832–840. doi: 10.1016/j.electacta.2016.01.142. DOI

Chepurnaya I., Smirnova E., Karushev M. Electrochemically Active Polymer Components in Next-Generation LiFePO4 Cathodes: Can Small Things Make a Big Difference? Batteries. 2022;8:185. doi: 10.3390/batteries8100185. DOI

Chung Y.M., Ryu K.S. Surface coating and electrochemical properties of LiNi0.8Co0.15Al0.05O2/polyaniline composites as an electrode for Li-ion batteries. Bull. Korean Chem. Soc. 2009;30:1733–1737. doi: 10.5012/bkcs.2009.30.8.1733. DOI

Kotz R., Carlen M. Principles and applications of electrochemical capacitors. Electrochim. Acta. 2000;45:2483–2498. doi: 10.1016/S0013-4686(00)00354-6. DOI

Zhang L., Zhao X.S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009;38:2520–2531. doi: 10.1039/b813846j. PubMed DOI

Miller J., Burke A. Electrochemical Capacitors: Challenges and Opportunities for Real-World Applications. Electrochem. Soc. Interface. 2008;17:53. doi: 10.1149/2.F08081IF. DOI

Simon P., Gogotsi Y. Materials for electrochemical capacitors. Nat. Mater. 2008;7:845–854. doi: 10.1038/nmat2297. PubMed DOI

Cheng F.Y., Tang W., Li C., Chen J., Liu H., Shen P., Dou S. Conducting Poly(aniline) Nanotubes and Nanofibers: Controlled Synthesis and Application in Lithium/Poly(aniline) Rechargeable Batteries. Chem. Eur. J. 2006;12:3082–3088. doi: 10.1002/chem.200500883. PubMed DOI

Rudge A., Raistnck I.A.N., Gottesfeld S., Ferraris J. A Study of The Electrochemical Properties of Conducting Polymers for Application in Capacitors. Electrochim. Acta. 1994;39:273–287. doi: 10.1016/0013-4686(94)80063-4. DOI

Peng C., Hu D., Chen G.Z. Theoretical specific capacitance based on charge storage mechanisms of conducting polymers: Comment on ‘Vertically oriented arrays of polyaniline nanorods and their super electrochemical properties’. Chem. Commun. 2011;47:4105–4107. doi: 10.1039/c1cc10675a. PubMed DOI

Tomšík E., Ivanko I., Kohut O., Hromádková J. High-Rate Polyaniline/Carbon-Cloth Electrodes: Effect of Mass Loading on the Pseudocapacitive Performance. ChemElectroChem. 2017;4:2884–2890. doi: 10.1002/celc.201700793. DOI

Ismail R., Sedenkova I., Svoboda J., Lukesova M., Walterova Z., Tomsik E. Acid-assisted polymerization: The novel synthetic route of sensing layers based on PANI films and chelating agents protected by non-biofouling layers for Fe2+ or Fe3+ potentiometric detection. J. Mater. Chem. B. 2023;11:1545–1556. doi: 10.1039/D2TB02450K. PubMed DOI

Tomšík E., Kohut O., Ivanko I., Pekárek M., Bieloshapka I., Dallas P. Assembly and Interaction of Polyaniline Chains: Impact on Electro- and Physical-Chemical Behavior. J. Phys. Chem. C. 2018;122:8022–8030. doi: 10.1021/acs.jpcc.8b01948. DOI

Gospodinova N., Muat V., Kolev H., Romanova J. New insight into the redox behavior of polyaniline. Synth. Met. 2011;161:2510–2513. doi: 10.1016/j.synthmet.2011.08.035. DOI

Shaplov A.S., Vlasov P.S., Armand M., Lozinskaya E.I., Ponkratov D.O., Malyshkina I.A., Vidal F., Okatova O.V., Pavlov G.M., Wandrey C., et al. Design and synthesis of new anionic “polymeric ionic liquids” with high charge delocalization. Polym. Chem. 2011;2:2609–2618. doi: 10.1039/c1py00282a. DOI

Porcarelli L., Shaplov A.S., Salsamendi M., Nair J.R., Vygodskii Y.S., Mecerreyes D., Gerbaldi C. Single-Ion Block Copoly(ionic liquid)s as Electrolytes for All-Solid State Lithium Batteries. ACS Appl. Mater. Interfaces. 2016;8:10350–10359. doi: 10.1021/acsami.6b01973. PubMed DOI

Lingua G., Grysan P., Vlasov P.S., Verge P., Shaplov A.S., Gerbaldi C. Unique Carbonate-Based Single Ion Conducting Block Copolymers Enabling High-Voltage, All-Solid-State Lithium Metal Batteries. Macromolecules. 2021;54:6911–6924. doi: 10.1021/acs.macromol.1c00981. PubMed DOI PMC

Jakeš J. Regularized Positive Exponential Sum (REPES) Program-A Way of Inverting Laplace Transform Data Obtained by Dynamic Light Scattering. Collect. Czechoslov. Chem. Commun. 1995;60:1781–1797. doi: 10.1135/cccc19951781. DOI

Wu J., Zhang Q., Wang J., Huang X., Bai H. A self-assembly route to porous polyaniline/reduced graphene oxide composite materials with molecular-level uniformity for high-performance supercapacitors. Energy Environ. Sci. 2018;11:1280–1286. doi: 10.1039/C8EE00078F. DOI

Wu C., Bein T. Conducting Polyaniline Filaments in a Mesoporous Channel Host. Science. 1994;264:1757–1759. doi: 10.1126/science.264.5166.1757. PubMed DOI

Sivakkumar S.R., Oh J.S., Kim D.W. Polyaniline nanofibres as a cathode material for rechargeable lithium-polymer cells assembled with gel polymer electrolyte. J. Power Sources. 2006;163:573–577. doi: 10.1016/j.jpowsour.2006.08.035. DOI

Qiu B., Wang J., Li Z., Wang X., Li X. Influence of Acidity and Oxidant Concentration on the Nanostructures and Electrochemical Performance of Polyaniline during Fast Microwave-Assisted Chemical Polymerization. Polymers. 2020;12:310. doi: 10.3390/polym12020310. PubMed DOI PMC

Qiu B., Li Z., Wang X., Li X., Zhang J. Exploration on the Microwave-Assisted Synthesis and Formation Mechanism of Polyaniline Nanostructures Synthesized in Different Hydrochloric Acid Concentrations. Polym. Chem. 2017;55:3357–3369. doi: 10.1002/pola.28707. DOI

Hambitzer G., Stassen I. Polymerization of aniline in aqueous sulfuric acid -study by electrochemical thermospray mass spectrometry. Synth. Met. 1993;57:1045–1050. doi: 10.1016/0379-6779(93)90197-5. DOI

Trchova M., Sedenkova I., Stejskal J., Bok J. Polymerization of Aniline in the Solutions of Strong and Weak Acids: The Evolution of Infrared Spectra and Their Interpretation Using Factor Analysis. Appl. Spectrosc. 2007;61:1153–1162. PubMed

Rao P.S., Sathyanarayana D.N. Synthesis of electrically conducting copolymers of aniline with o/m -amino benzoic acid by an inverse emulsion pathway. Polymer. 2002;43:5051–5058.

Kuramoto N., Tomita A. Aqueous polyaniline suspensions: Chemical oxidative polymerization of dodecylbenzene-sulfonic acid aniline salt. Polymer. 1997;38:3055–3058. doi: 10.1016/S0032-3861(96)00861-0. DOI

Gomes E.C., Oliveira M.A.S. Chemical Polymerization of Aniline in Hydrochloric Acid (HCl) and Formic Acid (HCOOH) Media. Differences Between the Two Synthesized Polyanilines. Am. J. Polym. Sci. 2012;2:5–13. doi: 10.5923/j.ajps.20120202.02. DOI

Wu W., Pan D., Li Y., Zhao G., Jing L., Chen S. Facile fabrication of polyaniline nanotubes using the self-assembly behavior based on the hydrogen bonding: A mechanistic study and application in high-performance electrochemical supercapacitor electrode. Electrochim. Acta. 2015;152:126–134. doi: 10.1016/j.electacta.2014.11.130. DOI

Li G., Jiang L., Peng H. One-dimensional polyaniline nanostructures with controllable surfaces and diameters using vanadic acid as the oxidant. Macromolecules. 2007;40:7890–7894. doi: 10.1021/ma070650o. DOI

Sun Z., Geng Y., Li J., Wang F. Chemical polymerization of aniline with hydrogen peroxide as oxidant. Synth. Met. 1997;84:99–100. doi: 10.1016/S0379-6779(96)03855-6. DOI

Zoromba M.S., Alghool S., Abdel-Hamid S.M.S., Bassyouni M., Abdel-Aziz M.H. Polymerization of aniline derivatives by K2Cr2O7 and production of Cr2O3 nanoparticles. Polym. Adv. Technol. 2017;28:842–848. doi: 10.1002/pat.3987. DOI

Yasuda A., Shimidzu T. Chemical Oxidative Polymerization of Aniline with Ferric Chloride. Polymer. 1993;25:329–338. doi: 10.1295/polymj.25.329. DOI

Ding Q., Qian R., Jing X., Han J., Yu L. Reaction of aniline with KMnO4 to synthesize polyaniline-supported Mn nanocomposites: An unexpected heterogeneous free radical scavenger. Mater. Lett. 2019;251:222–225. doi: 10.1016/j.matlet.2019.05.076. DOI

Ma Y., Zhang H., Hou C., Qiao M., Chen Y., Zhang H. Multidimensional polyaniline structures from micellar templates. J. Mater. Sci. 2017;52:2995–3002. doi: 10.1007/s10853-016-0550-z. DOI

Stejskal J., Sapurina I., Trchová M., Konyushenko E.N., Holler P. The genesis of polyaniline nanotubes. Polymer. 2006;47:8253–8262. doi: 10.1016/j.polymer.2006.10.007. DOI

Chao D., Lu X., Chen J., Zhang W., Wei Y. Anthranilic acid assisted preparation of Fe3O4-Poly(aniline-co-o-anthranilic acid) nanoparticles. J. Appl. Polym. Sci. 2006;102:1666–1671. doi: 10.1002/app.24117. DOI

Ji J., Li R., Li H., Shu Y., Li Y., Qiu S., He C., Yang Y. Phytic acid assisted fabrication of graphene/polyaniline composite hydrogels for high-capacitance supercapacitors. Compos. Part B Eng. 2018;155:132–137. doi: 10.1016/j.compositesb.2018.08.037. DOI

Tomšík E., Ivanko I., Svoboda J., Šeděnková I., Zhigunov A., Hromádková J., Pánek J., Lukešová M., Velychkivska N., Janisová L. Method of Preparation of Soluble PEDOT: Self-Polymerization of EDOT without Oxidant at Room Temperature. Macromol. Chem. Phys. 2020;221:2000219. doi: 10.1002/macp.202000219. DOI

Kolouchova K., Groborz O., Skarkova A., Brabek J., Rosel D., Svec P., Starcuk Z., Slouf M., Hruby M. Thermo- and ROS-Responsive Self-Assembled Polymer Nanoparticle Tracers for 19 F MRI Theranostics. Biomacromolecules. 2021;22:2325–2337. doi: 10.1021/acs.biomac.0c01316. PubMed DOI

Morávková Z., Trchová M., Tomšík E., Čechvala J., Stejskal J. Enhanced thermal stability of multi-walled carbon nanotubes after coating with polyaniline salt. Polym. Degrad. Stab. 2012;97:1405–1414. doi: 10.1016/j.polymdegradstab.2012.05.019. DOI

Rakić A.A., Vukomanović M., Ćirić-Marjanović G. Formation of nanostructured polyaniline by dopant-free oxidation of aniline in a water/isopropanol mixture. Chem. Pap. 2014;68:372–383. doi: 10.2478/s11696-013-0453-2. DOI

Bláha M., Trchová M., Morávková Z., Humpolíček P., Stejskal J. Semiconducting materials from oxidative coupling of phenylenediamines under various acidic conditions. Mater. Chem. Phys. 2018;205:423–435. doi: 10.1016/j.matchemphys.2017.11.007. DOI

Kiefer W. Recent Advances in linear and nonlinear Raman spectroscopy I. J. Raman Spectrosc. 2007;38:1538–1553. doi: 10.1002/jrs.1902. DOI

El-Bashir S.M., Yahia I.S., Binhussain M.A., AlSalhi M.S. Design of Rose Bengal/FTO optical thin film system as a novel nonlinear media for infrared blocking windows. Results Phys. 2017;7:1852–1858. doi: 10.1016/j.rinp.2017.05.027. DOI

Murugesan R., Subramanian E. Effect of organic dopants on electrodeposition and characteristics of polyaniline under the varying influence of H2SO4 and HClO4 electrolyte media. Mater. Chem. Phys. 2003;80:731–739. doi: 10.1016/S0254-0584(03)00127-5. DOI

Pouget J.P., Oblakowski Z., Nogami Y., Albouy P.A., Laridjani M., Oh E.J., Min Y., MacDiarmid A.G., Tsukamoto J., Ishiguro T., et al. Recent structural investigations of metallic polymers. Synth. Met. 1994;65:131–140. doi: 10.1016/0379-6779(94)90174-0. DOI

Buron C.C., Lakard B., Monnin A.F., Moutarlier V., Lakard S. Elaboration and characterization of polyaniline films electrodeposited on tin oxides. Synth. Met. 2011;161:2162–2169. doi: 10.1016/j.synthmet.2011.08.021. DOI

Gospodinova N., Ivanov D.A., Anokhin D.V., Mihai I., Brun S., Romanova J., Tadjer A. Unprecedented Route to Ordered Polyaniline: Direct Synthesis of Highly Crystalline Fibrillar Films with Strong p-p Stacking Alignment. Macromol. Rapid Commun. 2009;30:29–33. doi: 10.1002/marc.200800434. PubMed DOI

Tadyszak K., Strzelczyk R., Coy E., Ma M., Augustyniak-jab M.A. Size effects in the conduction electron spin resonance of anthracite and higher anthraxolite. Magn. Reson. Chem. 2016;54:239–245. doi: 10.1002/mrc.4373. PubMed DOI

Dyson F. Electron Spin Resonance Absorption in Metals. II. Theory of Electron Diffusion and the Skin Effect. Phys. Rev. 1955;98:349–358. doi: 10.1103/PhysRev.98.349. DOI

Wertz J., Bolton J. Electron Spin Resonance. Chapman and Hall; New York, NY, USA: London, UK: 1986.

Popovych V., Bester M., Stefaniuk I., Kuzma M. Dyson line and modified Dyson line in the EPR measurements. Nukleonika. 2015;60:385–388. doi: 10.1515/nuka-2015-0068. DOI

Lozinskaya E.I., Ponkratov D.O., Malyshkina I.A., Grysan P., Lingua G., Gerbaldi C., Shaplov A.S., Vygodskii Y.S. Self-assembly of Li single-ion-conducting block copolymers for improved conductivity and viscoelastic properties. Electrochim. Acta. 2022;413:140126. doi: 10.1016/j.electacta.2022.140126. DOI

Kozarenko O.A., Dyadyun V.S., Papakin M.S., Posudievsky O.Y., Koshechko V.G., Pokhodenko V.D. Effect of potential range on electrochemical performance of polyaniline as a component of lithium battery electrodes. Electrochim. Acta. 2015;184:111–116. doi: 10.1016/j.electacta.2015.10.058. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...