Dynamic nitrogen vacancy magnetometry by single-shot optical streaking microscopy
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
Grant support
R01 GM127696
NIGMS NIH HHS - United States
R21 CA269099
NCI NIH HHS - United States
R21 GM142107
NIGMS NIH HHS - United States
PubMed
37303834
PubMed Central
PMC10256238
DOI
10.1364/prj.455634
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Nitrogen vacancy diamonds have emerged as sensitive solid-state magnetic field sensors capable of producing diffraction limited and sub-diffraction field images. Here, for the first time, to our knowledge, we extend those measurements to high-speed imaging, which can be readily applied to analyze currents and magnetic field dynamics in circuits on a microscopic scale. To overcome detector acquisition rate limitations, we designed an optical streaking nitrogen vacancy microscope to acquire two-dimensional spatiotemporal kymograms. We demonstrate magnetic field wave imaging with micro-scale spatial extent and ~400 μs temporal resolution. In validating this system, we detected magnetic fields down to 10 μT for 40 Hz magnetic fields using single-shot imaging and captured the spatial transit of an electromagnetic needle at streak rates as high as 110 μm/ms. This design has the capability to be readily extended to full 3D video acquisition by utilizing compressed sensing techniques and a potential for further improvement of spatial resolution, acquisition speed, and sensitivity. The device opens opportunities to many potential applications where transient magnetic events can be isolated to a single spatial axis, such as acquiring spatially propagating action potentials for brain imaging and remotely interrogating integrated circuits.
Czech Technical University Prague 27201 Kladno Czech Republic
Department of Biomedical Engineering Texas A and M University College Station Texas 77843 USA
IMOMEC Division IMEC B 3590 Diepenbeek Belgium
Institute for Materials Research Hasselt University B 3590 Diepenbeek Belgium
National Research Council Research Associateship Program Washington DC 20001 USA
See more in PubMed
Davies G and Hamer MF, “Optical studies of the 1.945 eV vibronic band in diamond,” Proc. R. Soc. London A 348, 285–298 (1976).
Barry JF, Schloss JM, Bauch E, Turner MJ, Hart CA, and Pham LM, “Sensitivity optimization for NV-diamond magnetometry,” Rev. Mod. Phys 92, 015004 (2020).
Hernández-Gómez S and Fabbri N, “Quantum control for nanoscale spectroscopy with diamond nitrogen-vacancy centers: a short review,” Front. Phys 8, 610868 (2021).
Zhang T, Pramanik G, Zhang K, Gulka M, Wang L, Jing J, Xu F, Li Z, Wei Q, Cigler P, and Chu Z, “Toward quantitative bio-sensing with nitrogen–vacancy center in diamond,” ACS Sens. 6, 2077–2107 (2021). PubMed
Wu Y, Jelezko F, Plenio MB, and Weil T, “Diamond quantum devices in biology,” Angew. Chem 55, 6586–6598 (2016). PubMed
Schirhagl R, Chang K, Loretz M, and Degen CL, “Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology,” Annu. Rev. Phys. Chem 65, 83–105 (2014). PubMed
Pham LM, Le Sage D, Stanwix PL, Yeung TK, Glenn D, Trifonov A, Cappellaro P, Hemmer PR, Lukin MD, Park H, Yacoby A, and Walsworth RL, “Magnetic field imaging with nitrogen-vacancy ensembles,” New J. Phys 13, 045021 (2011).
Jaskula J-C, Bauch E, Arroyo-Camejo S, Lukin MD, Hell SW, Trifonov AS, and Walsworth RL, “Superresolution optical magnetic imaging and spectroscopy using individual electronic spins in diamond,” Opt. Express 25, 11048–11064 (2017). PubMed
Schloss JM, Barry JF, Turner MJ, and Walsworth RL, “Simultaneous broadband vector magnetometry using solid-state spins,” Phys. Rev. Appl 10, 034044 (2018).
Barry JF, Turner MJ, Schloss JM, Glenn DR, Song Y, Lukin MD, Park H, and Walsworth RL, “Optical magnetic detection of single-neuron action potentials using quantum defects in diamond,” Proc. Natl. Acad. Sci. USA 113, 14133–14138 (2016). PubMed PMC
Le Sage D, Arai K, Glenn DR, Devience SJ, Pham LM, Rahn-Lee L, Lukin MD, Yacoby A, Komeili A, and Walsworth RL, “Optical magnetic imaging of living cells,” Nature 496, 486–489 (2013). PubMed PMC
Mohan N, Chen CS, Hsieh HH, Wu YC, and Chang HC, “In vivo imaging and toxicity assessments of fluorescent nanodiamonds in caenorhabditis elegans,” Nano Lett. 10, 3692–3699 (2010). PubMed
Kucsko G, Maurer PC, Yao NY, Kubo M, Noh HJ, Lo PK, Park H, and Lukin MD, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013). PubMed PMC
Fujiwara M, Sun S, Dohms A, Nishimura Y, Suto K, Takezawa Y, Oshimi K, Zhao L, Sadzak N, Umehara Y, Teki Y, Komatsu N, Benson O, Shikano Y, and Kage-Nakadai E, “Real-time nanodiamond thermometry probing in vivo thermogenic responses,” Sci. Adv 6, eaba9636 (2020). PubMed PMC
Hart CA, Schloss JM, Turner MJ, Scheidegger PJ, Bauch E, and Walsworth RL, “N–V-diamond magnetic microscopy using a double quantum 4-Ramsey protocol,” Phys. Rev. Appl 15, 044020 (2021).
Davies JJ, “Optically-detected magnetic resonance and its applications,” Contemp. Phys 17, 275–294 (1976).
Wojciechowski AM, Karadas M, Huck A, Osterkamp C, Jankuhn S, Meijer J, Jelezko F, and Andersen UL, “Contributed review: camera-limits for wide-field magnetic resonance imaging with a nitrogen-vacancy spin sensor,” Rev. Sci. Instrum 89, 031501 (2018). PubMed
Hamamatsu, “How fast can I image?” https://camera.hamamatsu.com/jp/en/technical_guides/dissecting_camera/dissecting_camera03/index.html.
Malmivuo J and Plonsey R, Bioelectromagnetism Principles and Applications of Bioelectric and Biomagnetic Fields (Oxford University, 1995), Vol. 15.
Webb JL, Troise L, Hansen NW, Achard J, Brinza O, Staacke R, Kieschnick M, Meijer J, Perrier JF, Berg-Sørensen K, Huck A, and Andersen UL, “Optimization of a diamond nitrogen vacancy centre magnetometer for sensing of biological signals,” Front. Phys 8, 430 (2020).
Mizuno K, Ishiwata H, Masuyama Y, Iwasaki T, and Hatano M, “Simultaneous wide-field imaging of phase and magnitude of AC magnetic signal using diamond quantum magnetometry,” Sci. Rep 10, 11611 (2020). PubMed PMC
Gao L, Liang J, Li C, and Wang LV, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516, 74–77 (2014). PubMed PMC
Acosta VM, Jarmola A, Bauch E, and Budker D, “Optical properties of the nitrogen-vacancy singlet levels in diamond,” Phys. Rev. B 82, 201202 (2010).
Glenn DR, Fu RR, Kehayias P, Le Sage D, Lima EA, Weiss BP, and Walsworth RL, “Micrometer-scale magnetic imaging of geological samples using a quantum diamond microscope,” Geochem. Geophys. Geosyst 18, 3254–3267 (2017).
Matthews BD, LaVan DA, Overby DR, Karavitis J, and Ingber DE, “Electromagnetic needles with submicron pole tip radii for nanomanipulation of biomolecules and living cells,” Appl. Phys. Lett 85, 2968–2970 (2004).
“Magnetic field calculator for coil,” https://www.accelinstruments.com/Magnetic/Magnetic-field-calculator.html.
Kuwahata A, Kitaizumi T, Saichi K, Sato T, Igarashi R, Ohshima T, Masuyama Y, Iwasaki T, Hatano M, Jelezko F, Kusakabe M, Yatsui T, and Sekino M, “Magnetometer with nitrogen-vacancy center in a bulk diamond for detecting magnetic nanoparticles in biomedical applications,” Sci. Rep 10, 2483 (2020). PubMed PMC
Mrózek M, Wojciechowski AM, and Gawlik W, “Characterization of strong NV—gradient in the e-beam irradiated diamond sample,” Diam. Relat. Mater 120, 108689 (2021).
Rubinas R, Vorobyov VV, Soshenko VV, Bolshedvorskii SV, Sorokin VN, Smolyaninov AN, Vins VG, Yelisseyev AP, and Akimov AV, “Spin properties of NV centers in high-pressure, high-temperature grown diamond,” J. Phys. Commun 2, 115003 (2018).
Mittiga T, Hsieh S, Zu C, Kobrin B, Machado F, Bhattacharyya P, Rui NZ, Jarmola A, Choi S, Budker D, and Yao NY, “Imaging the local charge environment of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett 121, 246402 (2018). PubMed
Alghannam F and Hemmer P, “Engineering of shallow layers of nitrogen vacancy colour centres in diamond using plasma immersion ion implantation,” Sci. Rep 9, 5870 (2019). PubMed PMC
Ma Z, Zhang S, Fu Y, Yuan H, Shi Y, Gao J, Qin L, Tang J, Liu J, and Li Y, “Magnetometry for precision measurement using frequency-modulation microwave combined efficient photon-collection technique on an ensemble of nitrogen-vacancy centers in diamond,” Opt. Express 26, 382–390 (2018). PubMed
Pothen M, Winands K, and Klocke F, “Compensation of scanner based inertia for laser structuring processes,” J. Laser Appl 29, 012017 (2017).
Ortega S, Guerra R, DIaz M, Fabelo H, Lopez S, Callico GM, and Sarmiento R, “Hyperspectral push-broom microscope development and characterization,” IEEE Access 7, 122473 (2019).
Hopper DA, Shulevitz HJ, and Bassett LC, “Spin readout techniques of the nitrogen-vacancy center in diamond,” Micromachines 9, 437 (2018). PubMed PMC
Parashar M, Saha K, and Bandyopadhyay S, “Axon hillock currents enable single-neuron-resolved 3D reconstruction using diamond nitrogen-vacancy magnetometry,” Commun. Phys 3, 174 (2020). PubMed PMC
Suter D and Jelezko F, “Single-spin magnetic resonance in the nitrogen-vacancy center of diamond,” Prog. Nucl. Magn. Reson. Spectrosc 98–99, 50–62 (2017). PubMed
Suter D and Álvarez GA, “Colloquium: protecting quantum information against environmental noise,” Rev. Mod. Phys 88, 041001 (2016).
Mrózek M, Rudnicki D, Kehayias P, Jarmola A, Budker D, and Gawlik W, “Longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond,” EPJ Quantum Technol. 2, 22 (2015).
McGuinness LP, Yan Y, Stacey A, Simpson DA, Hall LT, Maclaurin D, Prawer S, Mulvaney P, Wrachtrup J, Caruso F, Scholten RE, and Hollenberg LCL, “Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells,” Nat. Nanotechnol 6, 358–363 (2011). PubMed
Block M, Kobrin B, Jarmola A, Hsieh S, Zu C, Figueroa NL, Acosta VM, Minguzzi J, Maze JR, Budker D, and Yao NY, “Optically enhanced electric field sensing using nitrogen-vacancy ensembles,” Phys. Rev. Appl 16, 024024 (2021).
Dolde F, Fedder H, Doherty MW, Nöbauer T, Rempp F, Balasubramanian G, Wolf T, Reinhard F, Hollenberg LCL, Jelezko F, and Wrachtrup J, “Electric-field sensing using single diamond spins,” Nat. Phys 7, 459–463 (2011).
Gorrini F, Giri R, Avalos CE, Tambalo S, Mannucci S, Basso L, Bazzanella N, Dorigoni C, Cazzanelli M, Marzola P, Miotello A, and Bifone A, “Fast and sensitive detection of paramagnetic species using coupled charge and spin dynamics in strongly fluorescent nanodiamonds,” ACS Appl. Mater. Interfaces 11, 24412–24422 (2019). PubMed
Steinert S, Ziem F, Hall LT, Zappe A, Schweikert M, Götz N, Aird A, Balasubramanian G, Hollenberg L, and Wrachtrup J, “Magnetic spin imaging under ambient conditions with sub-cellular resolution,” Nat. Commun 4, 1607 (2013). PubMed
Perona Martínez F, Nusantara AC, Chipaux M, Padamati SK, and Schirhagl R, “Nanodiamond relaxometry-based detection of free-radical species when produced in chemical reactions in biologically relevant conditions,” ACS Sens. 5, 3862–3869 (2020). PubMed PMC
Doherty MW, Struzhkin VV, Simpson DA, McGuinness LP, Meng Y, Stacey A, Karle TJ, Hemley RJ, Manson NB, Hollenberg LCL, and Prawer S, “Electronic properties and metrology applications of the diamond NV-center under pressure,” Phys. Rev. Lett 112, 047601 (2014). PubMed
Lagomarsino S, Flatae AM, Kambalathmana H, Sledz F, Hunold L, Soltani N, Reuschel P, Sciortino S, Gelli N, Massi M, Czelusniak C, Giuntini L, and Agio M, “Creation of silicon-vacancy color centers in diamond by ion implantation,” Front. Phys 8, 626 (2021).
Castelletto S and Boretti A, “Silicon carbide color centers for quantum applications,” J. Phys. Photon 2, 022001 (2020).
Bayliss SL, Laorenza DW, Mintun PJ, Kovos BD, Freedman DE, and Awschalom DD, “Optically addressable molecular spins for quantum information processing,” Science 370, 1309–1312 (2020). PubMed
Vetrone F, Naccache R, Zamarrón A, De La Fuente AJ, Sanz-Rodríguez F, Maestro LM, Rodriguez EM, Jaque D, Sole JG, and Capobianco JA, “Temperature sensing using fluorescent nanother-mometers,” ACS Nano 4, 3254–3258 (2010). PubMed
Liu X, Skripka A, Lai Y, Jiang C, Liu J, Vetrone F, and Liang J, “Fast wide-field upconversion luminescence lifetime thermometry enabled by single-shot compressed ultrahigh-speed imaging,” Nat. Commun 12, 6401 (2021). PubMed PMC
Liu X, Liu J, Jiang C, Vetrone F, and Liang J, “Single-shot compressed optical-streaking ultra-high-speed photography,” Opt. Lett 44, 1387–1390 (2019). PubMed
Candès EJ, Romberg J, and Tao T, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
Voronin S and Zaroli C, “Survey of computational methods for inverse problems,” in Recent Trends in Computational Science and Engineering (InTech, 2018), Vol. 3.
Radu V, Price JC, Levett SJ, Narayanasamy KK, Bateman-Price TD, Wilson PB, and Mather ML, “Dynamic quantum sensing of paramagnetic species using nitrogen-vacancy centers in diamond,” ACS Sens. 5, 703–710 (2020). PubMed PMC