Genetic architecture of acute hyperthermia resistance in juvenile rainbow trout (Oncorhynchus mykiss) and genetic correlations with production traits

. 2023 Jun 12 ; 55 (1) : 39. [epub] 20230612

Jazyk angličtina Země Francie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37308823

Grantová podpora
FEA470019FA1000016 European Maritime and Fisheries Fund
FEA470019FAA1000016 France AgriMer

Odkazy

PubMed 37308823
PubMed Central PMC10259007
DOI 10.1186/s12711-023-00811-4
PII: 10.1186/s12711-023-00811-4
Knihovny.cz E-zdroje

BACKGROUND: Selective breeding is a promising solution to reduce the vulnerability of fish farms to heat waves, which are predicted to increase in intensity and frequency. However, limited information about the genetic architecture of acute hyperthermia resistance in fish is available. Two batches of sibs from a rainbow trout commercial line were produced: the first (N = 1382) was phenotyped for acute hyperthermia resistance at nine months of age and the second (N = 1506) was phenotyped for main production traits (growth, body length, muscle fat content and carcass yield) at 20 months of age. Fish were genotyped on a 57 K single nucleotide polymorphism (SNP) array and their genotypes were imputed to high-density based on the parent's genotypes from a 665 K SNP array. RESULTS: The heritability estimate of resistance to acute hyperthermia was 0.29 ± 0.05, confirming the potential of selective breeding for this trait. Since genetic correlations of acute hyperthermia resistance with the main production traits near harvest age were all close to zero, selecting for acute hyperthermia resistance should not impact the main production traits, and vice-versa. A genome-wide association study revealed that resistance to acute hyperthermia is a highly polygenic trait, with six quantitative trait loci (QTL) detected, but explaining less than 5% of the genetic variance. Two of these QTL, including the most significant one, may explain differences in acute hyperthermia resistance across INRAE isogenic lines of rainbow trout. Differences in mean acute hyperthermia resistance phenotypes between homozygotes at the most significant SNP was 69% of the phenotypic standard deviation, showing promising potential for marker-assisted selection. We identified 89 candidate genes within the QTL regions, among which the most convincing functional candidates are dnajc7, hsp70b, nkiras2, cdk12, phb, fkbp10, ddx5, cygb1, enpp7, pdhx and acly. CONCLUSIONS: This study provides valuable insight into the genetic architecture of acute hyperthermia resistance in juvenile rainbow trout. We show that the selection potential for this trait is substantial and selection for this trait should not be too detrimental to improvement of other traits of interest. Identified functional candidate genes provide new knowledge on the physiological mechanisms involved in acute hyperthermia resistance, such as protein chaperoning, oxidative stress response, homeostasis maintenance and cell survival.

Zobrazit více v PubMed

Boyd CE, McNevin AA, Davis RP. The contribution of fisheries and aquaculture to the global protein supply. Food Secur. 2022;14:805–827. doi: 10.1007/s12571-021-01246-9. PubMed DOI PMC

FAO. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome: FAO; 2022. https://www.fao.org/3/ca9229en/online/ca9229en.html#chapter-1_1.

Maulu S, Hasimuna OJ, Haambiya LH, Monde C, Musuka CG, Makorwa TH, et al. Climate change effects on aquaculture production: sustainability implications, mitigation, and adaptations. Front Sustain Food Syst. 2021;5:609097. doi: 10.3389/fsufs.2021.609097. DOI

Alfonso S, Gesto M, Sadoul B. Temperature increase and its effects on fish stress physiology in the context of global warming. J Fish Biol. 2021;98:1496–1508. doi: 10.1111/jfb.14599. PubMed DOI

Vasseur DA, DeLong JP, Gilbert B, Greig HS, Harley CDG, McCann KS, et al. Increased temperature variation poses a greater risk to species than climate warming. Proc R Soc B Biol Sci. 2014;281:20132612. doi: 10.1098/rspb.2013.2612. PubMed DOI PMC

Sandblom E, Clark TD, Gräns A, Ekström A, Brijs J, Sundström LF, et al. Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings. Nat Commun. 2016;7:11447. doi: 10.1038/ncomms11447. PubMed DOI PMC

Wade NM, Clark TD, Maynard BT, Atherton S, Wilkinson RJ, Smullen RP, et al. Effects of an unprecedented summer heatwave on the growth performance, flesh colour and plasma biochemistry of marine cage-farmed Atlantic salmon (Salmo salar) J Therm Biol. 2019;80:64–74. doi: 10.1016/j.jtherbio.2018.12.021. PubMed DOI

Reid GK, Gurney-Smith HJ, Flaherty M, Garber AF, Forster I, Brewer-Dalton K, et al. Climate change and aquaculture: considering adaptation potential. Aquac Environ Interact. 2019;11:603–624. doi: 10.3354/aei00333. DOI

Pettinau L, Seppänen E, Sikanen A, Anttila K. Aerobic exercise training with optimal intensity increases cardiac thermal tolerance in juvenile Rainbow trout. Front Mar Sci. 2022;9:912720. doi: 10.3389/fmars.2022.912720. DOI

Beitinger TL, Bennett WA, Mccauley RW. Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environ Biol Fishes. 2000;58:237–275. doi: 10.1023/A:1007676325825. DOI

Roze T, Christen F, Amerand A, Claireaux G. Trade-off between thermal sensitivity, hypoxia tolerance and growth in fish. J Therm Biol. 2013;38:98–106. doi: 10.1016/j.jtherbio.2012.12.001. DOI

Falconer DS. Introduction to quantitative genetics. London: Oliver and Boyd; 1962.

Perry GML, Martyniuk CM, Ferguson MM, Danzmann RG. Genetic parameters for upper thermal tolerance and growth-related traits in rainbow trout (Oncorhynchus mykiss) Aquaculture. 2005;250:120–128. doi: 10.1016/j.aquaculture.2005.04.042. DOI

Morgan R, Finnøen MH, Jensen H, Pélabon C, Jutfelt F. Low potential for evolutionary rescue from climate change in a tropical fish. Proc Natl Acad Sci USA. 2020;117:33365–33372. doi: 10.1073/pnas.2011419117. PubMed DOI PMC

Chavanne H, Janssen K, Hofherr J, Contini F, Haffray P, Aquatrace Consortium et al. A comprehensive survey on selective breeding programs and seed market in the European aquaculture fish industry. Aquac Int. 2016;24:1287–1307. doi: 10.1007/s10499-016-9985-0. DOI

Lagarde H, Phocas F, Pouil S, Goardon L, Bideau M, Guyvarc’h F, et al. Are resistances to acute hyperthermia or hypoxia stress similar and consistent between early and late ages in rainbow trout using isogenic lines? Aquaculture. 2023;562:738800. doi: 10.1016/j.aquaculture.2022.738800. DOI

Wang H, Misztal I, Aguilar I, Legarra A, Muir WM. Genome-wide association mapping including phenotypes from relatives without genotypes. Genet Res (Camb) 2012;94:73–83. doi: 10.1017/S0016672312000274. PubMed DOI

Ren D, An L, Li B, Qiao L, Liu W. Efficient weighting methods for genomic best linear-unbiased prediction (BLUP) adapted to the genetic architectures of quantitative traits. Heredity (Edinb) 2021;126:320–334. doi: 10.1038/s41437-020-00372-y. PubMed DOI PMC

Zhou Q, Chen YD, Lu S, Liu Y, Xu WT, Li YZ, et al. Development of a 50K SNP array for Japanese flounder and its application in genomic selection for disease resistance. Eengineering. 2021;7:406–411.

Fraslin C, Koskinen H, Nousianen A, Houston RD, Kause A. Genome-wide association and genomic prediction of resistance to Flavobacterium columnare in a farmed rainbow trout population. Aquaculture. 2022;557:738332. doi: 10.1016/j.aquaculture.2022.738332. DOI

Houston RD, Haley CS, Hamilton A, Guy DR, Tinch AE, Taggart JB, et al. Major quantitative trait loci affect resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar) Genetics. 2008;178:1109–1115. doi: 10.1534/genetics.107.082974. PubMed DOI PMC

Moen T, Baranski M, Sonesson AK, Kjøglum S. Confirmation and fine-mapping of a major QTL for resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar): population-level associations between markers and trait. BMC Genomics. 2009;10:368. doi: 10.1186/1471-2164-10-368. PubMed DOI PMC

Yue GH. Recent advances of genome mapping and marker-assisted selection in aquaculture. Fish Fish. 2014;15:376–396. doi: 10.1111/faf.12020. DOI

Jackson TR, Ferguson MM, Danzmann RG, Fishback AG, Ihssen PE, O’Connell M, et al. Identification of two QTL influencing upper temperature tolerance in three rainbow trout (Oncorhynchus mykiss) half-sib families. Heredity (Edinb) 1998;80:143–151. doi: 10.1046/j.1365-2540.1998.00289.x. DOI

Danzmann RG, Jackson TR, Ferguson MM. Epistasis in allelic expression at upper temperature tolerance QTL in rainbow trout. Aquaculture. 1999;173:45–58. doi: 10.1016/S0044-8486(98)00465-7. DOI

Perry GML, Danzmann RG, Ferguson MM, Gibson JP. Quantitative trait loci for upper thermal tolerance in outbred strains of rainbow trout (Oncorhynchus mykiss) Heredity (Edinb) 2001;86:333–341. doi: 10.1046/j.1365-2540.2001.00838.x. PubMed DOI

Perry GML, Ferguson MM, Sakamoto T, Danzmann RG. Sex-linked quantitative trait loci for thermotolerance and length in the rainbow trout. J Hered. 2005;96:97–107. doi: 10.1093/jhered/esi019. PubMed DOI

Jin Y, Zhou T, Geng X, Liu S, Chen A, Yao J, et al. A genome-wide association study of heat stress-associated SNPs in catfish. Anim Genet. 2017;48:233–236. doi: 10.1111/age.12482. PubMed DOI

Wu Y, Zhou Z, Pan Y, Zhao J, Bai H, Chen B, et al. GWAS identified candidate variants and genes associated with acute heat tolerance of large yellow croaker. Aquaculture. 2021;540:736696. doi: 10.1016/j.aquaculture.2021.736696. DOI

Haffray P, Bugeon J, Rivard Q, Quittet B, Puyo S, Allamelou JM, et al. Genetic parameters of in-vivo prediction of carcass, head and fillet yields by internal ultrasound and 2D external imagery in large rainbow trout (Oncorhynchus mykiss) Aquaculture. 2013;410–411:236–244. doi: 10.1016/j.aquaculture.2013.06.016. DOI

Haffray P, Bugeon J, Pincent C, Chapuis H, Mazeiraud E, Rossignol MN, et al. Negative genetic correlations between production traits and head or bony tissues in large all-female rainbow trout (Oncorhynchus mykiss) Aquaculture. 2012;368–369:145–152. doi: 10.1016/j.aquaculture.2012.09.023. DOI

Douirin C, Haffray P, Vallet JL, Fauconneau B. Determination of the lipid content of rainbow trout (Oncorhynchus mykiss) filets with the torry fish fat meter R. Sci Aliment. 1998;18:527–535.

Palti Y, Gao G, Liu S, Kent MP, Lien S, Miller MR, et al. The development and characterization of a 57K single nucleotide polymorphism array for rainbow trout. Mol Ecol Resour. 2015;15:662–672. doi: 10.1111/1755-0998.12337. PubMed DOI

Bernard M, Dehaullon A, Gao G, Paul K, Lagarde H, Prchal M, et al. Development of a high-density 665 K SNP array for rainbow trout genome-wide genotyping. Front Genet. 2022;13:941340. doi: 10.3389/fgene.2022.941340. PubMed DOI PMC

Gao G, Magadan S, Waldbieser GC, Youngblood RC, Wheeler PA, Scheffler BE, et al. A long reads-based de-novo assembly of the genome of the Arlee homozygous line reveals chromosomal rearrangements in rainbow trout. G3 (Bethesda). 2021;11:jkab052. doi: 10.1093/g3journal/jkab052. PubMed DOI PMC

Griot R, Allal F, Brard-Fudulea S, Morvezen R, Haffray P, Phocas F, et al. APIS: an auto-adaptive parentage inference software that tolerates missing parents. Mol Ecol Resour. 2020;20:579–590. doi: 10.1111/1755-0998.13103. PubMed DOI

Sargolzaei M, Chesnais JP, Schenkel FS. A new approach for efficient genotype imputation using information from relatives. BMC Genomics. 2014;15:478. doi: 10.1186/1471-2164-15-478. PubMed DOI PMC

Misztal I, Tsuruta S, Strabel T, Auvray B, Druet T, Lee DH. Blupf90 and related programs (Bgf90). In: Proceedings of the7th World Congress on Genetics Applied to Livestock Production: 19–23 August 19–23 2002; Montpellier. 2002.

VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 2008;91:4414–4423. doi: 10.3168/jds.2007-0980. PubMed DOI

Habier D, Fernando RL, Kizilkaya K, Garrick DJ. Extension of the bayesian alphabet for genomic selection. BMC Bioinformatics. 2011;12:186. doi: 10.1186/1471-2105-12-186. PubMed DOI PMC

Boerner V, Tier B. BESSiE: a software for linear model BLUP and Bayesian MCMC analysis of large-scale genomic data. Genet Sel Evol BioMed Central. 2016;48:1–5. PubMed PMC

Kass RE, Raftery AE. Bayes factors. J Am Stat Assoc. 1995;90:773–795. doi: 10.1080/01621459.1995.10476572. DOI

Michenet A, Barbat M, Saintilan R, Venot E, Phocas F. Detection of quantitative trait loci for maternal traits using high-density genotypes of Blonde d’Aquitaine beef cattle. BMC Genet. 2016;17:88. doi: 10.1186/s12863-016-0397-y. PubMed DOI PMC

Quillet E, Dorson M, Le Guillou S, Benmansour A, Boudinot P. Wide range of susceptibility to rhabdoviruses in homozygous clones of rainbow trout. Fish Shellfish Immunol. 2007;22:510–519. doi: 10.1016/j.fsi.2006.07.002. PubMed DOI

Wendelaar Bonga SE. The stress response in fish. Physiol Rev. 1997;77:591–625. doi: 10.1152/physrev.1997.77.3.591. PubMed DOI

Schreck CB, Tort L. The concept of stress in fish. Fish Physiol. 2016;35:1–34. doi: 10.1016/B978-0-12-802728-8.00001-1. DOI

Chen Z, Narum SR. Whole genome resequencing reveals genomic regions associated with thermal adaptation in redband trout. Mol Ecol. 2021;30:162–174. doi: 10.1111/mec.15717. PubMed DOI

Barton BA. Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol. 2002;42:517–525. doi: 10.1093/icb/42.3.517. PubMed DOI

Tort L. Stress and immune modulation in fish. Dev Comp Immunol. 2011;35:1366–1375. doi: 10.1016/j.dci.2011.07.002. PubMed DOI

Dupont-Nivet M, Crusot M, Rigaudeau D, Quillet E. Genetic analysis of resistance to acute or chronic temperature stress using isogenic lines of Rainbow trout (Oncorhynchusmykiss). In: Proceedings of the 10th World Congress on Genetics Applied to Livestock Production: 17–22 August 2014; Vancouver; 2014.

Bartlett CB, Garber AF, Gonen S, Benfey TJ. Acute critical thermal maximum does not predict chronic incremental thermal maximum in Atlantic salmon ( Salmo salar ) Comp Biochem Physiol Part A Mol Integr Physiol. 2022;266:111143. doi: 10.1016/j.cbpa.2022.111143. PubMed DOI

Wang T, Lefevre S, Iversen NK, Findorf I, Buchanan R, Mckenzie DJ. Anaemia only causes a small reduction in the upper critical temperature of sea bass: is oxygen delivery the limiting factor for tolerance of acute warming in fishes? J Exp Biol. 2014;217:4275–4278. PubMed

Brijs J, Jutfelt F, Clark TD, Gräns A, Ekström A, Sandblom E. Experimental manipulations of tissue oxygen supply do not affect warming tolerance of European perch. J Exp Biol. 2015;218:2448–2454. PubMed

Ern R, Norin T, Gamperl AK, Esbaugh AJ. Oxygen dependence of upper thermal limits in fishes. J Exp Biol. 2016;219:3376–3383. PubMed

Thurston RV, Russo RC, Vinogradov GA. Ammonia toxicity to fishes. Effect of pH on the toxicity of the un-ionized ammonia species. Environ Sci Technol. 1981;15:837–840. doi: 10.1021/es00089a012. DOI

Good C, Davidson J, Welsh C, Snekvik K, Summerfelt S. The effects of carbon dioxide on performance and histopathology of rainbow trout Oncorhynchus mykiss in water recirculation aquaculture systems. Aquac Eng. 2010;42:51–56. doi: 10.1016/j.aquaeng.2009.11.001. DOI

O’Donnell MJ, Regish AM, McCormick SD, Letcher BH. How repeatable is CTmax within individual brook trout over short- and long-time intervals? J Therm Biol. 2020;89:102559. doi: 10.1016/j.jtherbio.2020.102559. PubMed DOI

Chen Z, Snow M, Lawrence CS, Church AR, Narum SR, Devlin RH, et al. Selection for upper thermal tolerance in rainbow trout (Oncorhynchus mykiss Walbaum) J Exp Biol. 2015;218:803–812. doi: 10.1242/jeb.113993. PubMed DOI

Becker CD, Genoway RG. Evaluation of the critical thermal maximum for determining thermal tolerance of freshwater fish. Environ Biol Fishes. 1979;4:245–256. doi: 10.1007/BF00005481. DOI

Agudelo-Cantero GA, Navas CA. Interactive effects of experimental heating rates, ontogeny and body mass on the upper thermal limits of anuran larvae. J Therm Biol. 2019;82:43–51. doi: 10.1016/j.jtherbio.2019.03.010. PubMed DOI

Hill WG. On selection among groups with heterogeneous variance. Anim Prod. 1984;39:473–477.

Prchal M, D’Ambrosio J, Lagarde H, Lallias D, Patrice P, François Y, et al. Genome-wide association study and genomic prediction of hypoxia stress tolerance in rainbow trout. Aquaculture. 2023;565:739068. doi: 10.1016/j.aquaculture.2022.739068. DOI

Heath DD, Fox CW, Heath JW. Maternal effects on offspring size: variation through early development of chinook salmon. Evolution (N Y) 1999;53:1605–1611. PubMed

Lindholm AK, Hunt J, Brooks R. Where do all the maternal effects go? Variation in offspring body size through ontogeny in the live-bearing fish Poecilia parae. Biol Lett. 2006;2:586–589. doi: 10.1098/rsbl.2006.0546. PubMed DOI PMC

Muñoz NJ, Anttila K, Chen Z, Heath JW, Farrell AP, Neff BD. Indirect genetic effects underlie oxygenlimited thermal tolerance within a coastal population of chinook salmon. Proc R Soc B Biol Sci. 2014;281:20141082. doi: 10.1098/rspb.2014.1082. PubMed DOI PMC

Debes PV, Solberg MF, Matre IH, Dyrhovden L, Glover KA. Genetic variation for upper thermal tolerance diminishes within and between populations with increasing acclimation temperature in Atlantic salmon. Heredity (Edinb) 2021;127:455–466. doi: 10.1038/s41437-021-00469-y. PubMed DOI PMC

Shama LNS, Strobel A, Mark FC, Wegner KM. Transgenerational plasticity in marine sticklebacks: maternal effects mediate impacts of a warming ocean. Funct Ecol. 2014;28:1482–1493. doi: 10.1111/1365-2435.12280. DOI

Kim SY, Chiara V, Álvarez-Quintero N, Velando A. Mitochondrial DNA content in eggs as a maternal effect. Proc Biol Sci. 2022;289:20212100. PubMed PMC

Gall GAE, Huang N. Heritability and selection schemes for rainbow trout: body weight. Aquaculture. 1988;73:43–56. doi: 10.1016/0044-8486(88)90040-3. DOI

Leeds TD, Vallejo RL, Weber GM, Gonzalez-Pena D, Silverstein JT. Response to five generations of selection for growth performance traits in rainbow trout (Oncorhynchus mykiss) Aquaculture. 2016;465:341–351. doi: 10.1016/j.aquaculture.2016.08.036. DOI

Blay C, Haffray P, Bugeon J, D’Ambrosio J, Dechamp N, Collewet G, et al. Genetic parameters and genome-wide association studies of quality traits characterised using imaging technologies in Rainbow trout, Oncorhynchus mykiss. Front Genet. 2021;12:639223. doi: 10.3389/fgene.2021.639223. PubMed DOI PMC

van Rheenen W, Peyrot WJ, Schork AJ, Lee SH, Wray NR. Genetic correlations of polygenic disease traits: from theory to practice. Nat Rev Genet. 2019;20:567–581. doi: 10.1038/s41576-019-0137-z. PubMed DOI

McKenzie DJ, Zhang Y, Eliason EJ, Schulte PM, Claireaux G, Blasco FR, et al. Intraspecific variation in tolerance of warming in fishes. J Fish Biol. 2021;98:1536–1555. doi: 10.1111/jfb.14620. PubMed DOI

Kause A, Mäntysaari E, Ritola O, Paananen T, Eskelinen U. Coupling body weight and its composition: a quantitative genetic analysis in rainbow trout. Aquaculture. 2002;211:65–79. doi: 10.1016/S0044-8486(01)00884-5. DOI

Refstie T, Steine TA. Selection experiments with salmon III. Genetic and environmental sources of variation in length and weight of Atlantic salmon in the freshwater phase. Aquaculture. 1978;14:221–234. doi: 10.1016/0044-8486(78)90096-0. DOI

Recsetar MS, Zeigler MP, Ward DL, Bonar SA, Caldwell CA. Relationship between fish size and upper thermal tolerance. Trans Am Fish Soc. 2012;141:1433–1438. doi: 10.1080/00028487.2012.694830. DOI

Pörtner HO, Knust R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science. 2007;315:95–97. doi: 10.1126/science.1135471. PubMed DOI

Norin T, Malte H, Clark TD. Aerobic scope does not predict the performance of a tropical eurythermal fish at elevated temperatures. J Exp Biol. 2014;217:244–251. PubMed

Jutfelt F, Norin T, Ern R, Overgaard J, Wang T, McKenzie DJ, et al. Oxygen- and capacity-limited thermal tolerance: blurring ecology and physiology. J Exp Biol. 2018;221:2016–2019. doi: 10.1242/jeb.169615. PubMed DOI

Ali A, Al-Tobasei R, Lourenco D, Leeds T, Kenney B, Salem M. Genome-wide identification of loci associated with growth in rainbow trout. BMC Genomics. 2020;21:209. doi: 10.1186/s12864-020-6617-x. PubMed DOI PMC

Strowbridge N, Northrup SL, Earhart ML, Blanchard TS, Schulte PM. Acute measures of upper thermal and hypoxia tolerance are not reliable predictors of mortality following environmental challenges in rainbow trout (Oncorhynchus mykiss) Conserv Physiol. 2021;9:coab095. doi: 10.1093/conphys/coab095. PubMed DOI PMC

Mauduit F, Domenici P, Farrell AP, Lacroix C, Le Floch S, Lemaire P, et al. Assessing chronic fish health: an application to a case of an acute exposure to chemically treated crude oil. Aquat Toxicol. 2016;178:197–208. doi: 10.1016/j.aquatox.2016.07.019. PubMed DOI

Perry GML, Ferguson MM, Danzmann RG. Effects of genetic sex and genomic background on epistasis in rainbow trout (Oncorhynchus mykiss) Genetica. 2003;119:35–50. doi: 10.1023/A:1024493013926. PubMed DOI

Tsai HY, Hamilton A, Guy DR, Tinch AE, Bishop SC, Houston RD. The genetic architecture of growth and fillet traits in farmed Atlantic salmon (Salmo salar) BMC Genet. 2015;16:51. doi: 10.1186/s12863-015-0215-y. PubMed DOI PMC

Ma A, Huang Z, X-an W, Xu Y, Guo X. Identification of quantitative trait loci associated with upper temperature tolerance in turbot, Scophthalmus maximus. Sci Rep. 2021;11:21920. doi: 10.1038/s41598-021-01062-3. PubMed DOI PMC

Yoshida GM, Yáñez JM. Increased accuracy of genomic predictions for growth under chronic thermal stress in rainbow trout by prioritizing variants from GWAS using imputed sequence data. Evol Appl. 2021;15:537–552. doi: 10.1111/eva.13240. PubMed DOI PMC

Kelley WL. The J-domain family and the recruitment of chaperone power. Trends Biochem Sci. 1998;23:222–227. doi: 10.1016/S0968-0004(98)01215-8. PubMed DOI

Li Y, Huang J, Liu Z, Zhou Y, Xia B, Wang Y, et al. Transcriptome analysis provides insights into hepatic responses to moderate heat stress in the rainbow trout (Oncorhynchus mykiss) Gene. 2017;619:1–9. doi: 10.1016/j.gene.2017.03.041. PubMed DOI

Li Z, Liu Z, Wang YN, Kang YJ, Wang JF, Shi HN, et al. Effects of heat stress on serum cortisol, alkaline phosphatase activity and heat shock protein 40 and 90β mRNA expression in rainbow trout Oncorhynchus mykiss. Biologia. 2016;71:109–115. doi: 10.1515/biolog-2016-0013. DOI

Ojima N, Mekuchi M, Ineno T, Tamaki K, Kera A, Kinoshita S, et al. Differential expression of heat-shock proteins in F2 offspring from F1 hybrids produced between thermally selected and normal rainbow trout strains. Fish Sci. 2012;78:1051–1057. doi: 10.1007/s12562-012-0523-3. DOI

Tan E, Wongwarangkana C, Kinoshita S, Suzuki Y, Oshima K, Hattori M, et al. Global gene expression analysis of gill tissues from normal and thermally selected strains of rainbow trout. Fish Sci. 2012;78:1041–1049. doi: 10.1007/s12562-012-0522-4. DOI

Mayer MP, Bukau B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci. 2005;62:670–684. doi: 10.1007/s00018-004-4464-6. PubMed DOI PMC

Blair SD, Glover CN. Acute exposure of larval rainbow trout (Oncorhynchus mykiss) to elevated temperature limits hsp70b expression and influences future thermotolerance. Hydrobiologia. 2019;836:155–167. doi: 10.1007/s10750-019-3948-1. DOI

Ojima N, Yamashita M, Watabe S. Quantitative mRNA expression profiling of heat-shock protein families in rainbow trout cells. Biochem Biophys Res Commun. 2005;329:51–57. doi: 10.1016/j.bbrc.2005.01.097. PubMed DOI

Yang C, Wang L, Wang J, Jiang Q, Qiu L, Zhang H, et al. The polymorphism in the promoter of HSP70 gene is associated with heat tolerance of two congener endemic bay scallops ( Argopecten irradians irradians and A. i . concentricus ) PLoS ONE. 2014;9:e102332. doi: 10.1371/journal.pone.0102332. PubMed DOI PMC

Sørensen JG, Michalak P, Justesen J, Loeschcke V. Expression of the heat-shock protein HSP70 in Drosophila buzzatii lines selected for thermal resistance. Hereditas. 1999;131:155–164. doi: 10.1111/j.1601-5223.1999.00155.x. PubMed DOI

Ohtsuka K, Hata M. Molecular chaperone function of mammalian Hsp70 and Hsp40—a review. Int J Hyperth. 2000;16:231–245. doi: 10.1080/026567300285259. PubMed DOI

Qiu XB, Shao YM, Miao S, Wang L. The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol Life Sci. 2006;63:2560–2570. doi: 10.1007/s00018-006-6192-6. PubMed DOI PMC

Li J, Zhang Y, Liu Y, Zhang Y, Xiao S, Yu Z. Co-expression of heat shock protein (HSP) 40 and HSP70 in Pinctada martensii response to thermal, low salinity and bacterial challenges. Fish Shellfish Immunol. 2016;48:239–243. doi: 10.1016/j.fsi.2015.11.038. PubMed DOI

Pearse DE, Barson NJ, Nome T, Gao G, Campbell MA, Abadía-Cardoso A, et al. Sex-dependent dominance maintains migration supergene in rainbow trout. Nat Ecol Evol. 2019;3:1731–1742. doi: 10.1038/s41559-019-1044-6. PubMed DOI

Joron M, Frezal L, Jones RT, Chamberlain NL, Lee SF, Haag CR, et al. Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. Nature. 2011;477:203–206. doi: 10.1038/nature10341. PubMed DOI PMC

Oeckinghaus A, Postler TS, Rao P, Schmitt H, Schmitt V, Grinberg-Bleyer Y, et al. κB-Ras proteins regulate both NF-κB-dependent inflammation and Ral-dependent proliferation. Cell Rep. 2014;8:1793–1807. doi: 10.1016/j.celrep.2014.08.015. PubMed DOI PMC

Sarais F, Rebl H, Verleih M, Ostermann S, Krasnov A, Köllner B, et al. Characterisation of the teleostean κB-Ras family: the two members NKIRAS1 and NKIRAS2 from rainbow trout influence the activity of NF-κB in opposite ways. Fish Shellfish Immunol. 2020;106:1004–1013. doi: 10.1016/j.fsi.2020.08.052. PubMed DOI

Tomalty KMH, Meek MH, Stephens MR, Rincón G, Fangue NA, May BP, et al. Transcriptional response to acute thermal exposure in juvenile Chinook salmon determined by RNAseq. G3 (Bethesda). 2015;5:1335–1349. doi: 10.1534/g3.115.017699. PubMed DOI PMC

Bartkowiak B, Liu P, Phatnani HP, Fuda NJ, Cooper JJ, Price DH, et al. CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. Genes Dev. 2010;24:2303–2316. doi: 10.1101/gad.1968210. PubMed DOI PMC

Blazek D, Kohoutek J, Bartholomeeusen K, Johansen E, Hulinkova P, Luo Z, et al. The cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev. 2011;25:2158–2172. doi: 10.1101/gad.16962311. PubMed DOI PMC

Li X, Chatterjee N, Spirohn K, Boutros M, Bohmann D. Cdk12 is a gene-selective RNA polymerase II kinase that regulates a subset of the transcriptome, including Nrf2 target genes. Sci Rep. 2016;6:21455. doi: 10.1038/srep21455. PubMed DOI PMC

Nijtmans LGJ, Artal Sanz M, Grivell LA, Coates PJ. The mitochondrial PHB complex: roles in mitochondrial respiratory complex assembly, ageing and degenerative disease. Cell Mol Life Sci. 2002;59:143–155. doi: 10.1007/s00018-002-8411-0. PubMed DOI PMC

Mishra S, Ande SR, Nyomba BLG. The role of prohibitin in cell signaling. FEBS J. 2010;277:3937–3946. doi: 10.1111/j.1742-4658.2010.07809.x. PubMed DOI

Peng YT, Chen P, Ouyang RY, Song L. Multifaceted role of prohibitin in cell survival and apoptosis. Apoptosis. 2015;20:1135–1149. doi: 10.1007/s10495-015-1143-z. PubMed DOI PMC

Fields PA, Burmester EM, Cox KM, Karch KR. Rapid proteomic responses to a near-lethal heat stress in the salt marsh mussel Geukensia demissa. J Exp Biol. 2016;219:2673–2686. PubMed

Jiang W, Bian L, Wang N, He Y. Proteomic analysis of protein expression profiles during hyperthermia-induced apoptosis in Tca8113 cells. Oncol Lett. 2013;6:135–143. doi: 10.3892/ol.2013.1354. PubMed DOI PMC

Tong M, Jiang Y. FK506-binding proteins and their diverse functions. Curr Mol Pharmacol. 2015;9:48–65. doi: 10.2174/1874467208666150519113541. PubMed DOI PMC

Akbarzadeh A, Günther OP, Houde AL, Li S, Ming TJ, Jeffries KM, et al. Developing specific molecular biomarkers for thermal stress in salmonids. BMC Genomics. 2018;19:749. doi: 10.1186/s12864-018-5108-9. PubMed DOI PMC

D’Ambrosio J, Phocas F, Haffray P, Bestin A, Brard-Fudulea S, Poncet C, et al. Genome-wide estimates of genetic diversity, inbreeding and effective size of experimental and commercial rainbow trout lines undergoing selective breeding. Genet Sel Evol. 2019;51:26. doi: 10.1186/s12711-019-0468-4. PubMed DOI PMC

Liu Y, Muniz MMM, Lam S, Song D, Zhang Y, Yin J, et al. Gene expression profile of the taimen Hucho taimen in response to acute temperature changes. Comp Biochem Physiol Part D Genomics Proteomics. 2021;38:100824. doi: 10.1016/j.cbd.2021.100824. PubMed DOI

Feng JB, Liu SK, Wang RJ, Zhang JR, Wang XL, Kaltenboeck L, et al. Molecular characterization, phylogenetic analysis and expression profiling of myoglobin and cytoglobin genes in response to heat stress in channel catfish Ictalurus punctatus. J Fish Biol. 2015;86:592–604. doi: 10.1111/jfb.12584. PubMed DOI

Borza R, Salgado-Polo F, Moolenaar WH, Perrakis A. Structure and function of the ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP) family: tidying up diversity. J Biol Chem. 2022;298:101526. doi: 10.1016/j.jbc.2021.101526. PubMed DOI PMC

Yu F, Peng W, Tang B, Zhang Y, Wang Y, Gan Y, et al. A genome-wide association study of heat tolerance in Pacific abalone based on genome resequencing. Aquaculture. 2021;536:736436. doi: 10.1016/j.aquaculture.2021.736436. DOI

Chung DJ, Schulte PM. Mitochondria and the thermal limits of ectotherms. J Exp Biol. 2020;223:jeb227801. doi: 10.1242/jeb.227801. PubMed DOI PMC

Patel MS, Roche TE. Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB J. 1990;4:3224–3233. doi: 10.1096/fasebj.4.14.2227213. PubMed DOI

Patel MS, Nemeria NS, Furey W, Jordan F. The pyruvate dehydrogenase complexes: structure-based function and regulation. J Biol Chem. 2014;289:16615–16623. doi: 10.1074/jbc.R114.563148. PubMed DOI PMC

Chypre M, Zaidi N, Smans K. ATP-citrate lyase: a mini-review. Biochem Biophys Res Commun. 2012;422:1–4. doi: 10.1016/j.bbrc.2012.04.144. PubMed DOI

Feng X, Zhang L, Xu S, A-zong S. ATP-citrate lyase (ACLY) in lipid metabolism and atherosclerosis: an updated review. Prog Lipid Res. 2020;77:101006. doi: 10.1016/j.plipres.2019.101006. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...