Localization of the ventricular pacing site from BSPM and standard 12-lead ECG: a comparison study
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
37316547
PubMed Central
PMC10267217
DOI
10.1038/s41598-023-36768-z
PII: 10.1038/s41598-023-36768-z
Knihovny.cz E-resources
- MeSH
- Cardiomyopathy, Dilated * MeSH
- Electrodes MeSH
- Electrocardiography MeSH
- Humans MeSH
- Cardiac Resynchronization Therapy Devices MeSH
- Cardiac Resynchronization Therapy * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Inverse ECG imaging methods typically require 32-250 leads to create body surface potential maps (BSPM), limiting their routine clinical use. This study evaluated the accuracy of PaceView inverse ECG method to localize the left or right ventricular (LV and RV, respectively) pacing leads using either a 99-lead BSPM or the 12-lead ECG. A 99-lead BSPM was recorded in patients with cardiac resynchronization therapy (CRT) during sinus rhythm and sequential LV/RV pacing. The non-contrast CT was performed to localize precisely both ECG electrodes and CRT leads. From a BSPM, nine signals were selected to obtain the 12-lead ECG. Both BSPM and 12-lead ECG were used to localize the RV and LV lead, and the localization error was calculated. Consecutive patients with dilated cardiomyopathy, previously implanted with a CRT device, were enrolled (n = 19). The localization error for the RV/LV lead was 9.0 [IQR 4.8-13.6] / 7.7 [IQR 0.0-10.3] mm using the 12-lead ECG and 9.1 [IQR 5.4-15.7] / 9.8 [IQR 8.6-13.1] mm for the BSPM. Thus, the noninvasive lead localization using the 12-lead ECG was accurate enough and comparable to 99-lead BSPM, potentially increasing the capability of 12-lead ECG for the optimization of the LV/RV pacing sites during CRT implant or for the most favorable programming.
Department of Cardiology Institute for Clinical and Experimental Medicine Prague Czech Republic
Department of Cardiology University Medical Center Utrecht Utrecht The Netherlands
See more in PubMed
Varma N, et al. Evaluation, management, and outcomes of patients poorly responsive to cardiac resynchronization device therapy. J. Am. Coll. Cardiol. 2019;74(21):2588–2603. doi: 10.1016/j.jacc.2019.09.043. PubMed DOI
Singh JP, et al. Left ventricular lead position and clinical outcome in the multicenter automatic defibrillator implantation trial-cardiac resynchronization therapy (MADIT-CRT) trial. Circulation. 2011;123(11):1159–1166. doi: 10.1161/CIRCULATIONAHA.110.000646. PubMed DOI
Ploux S, et al. Electrical dyssynchrony induced by biventricular pacing: implications for patient selection and therapy improvement. Heart Rhythm. 2015;12(4):782–791. doi: 10.1016/j.hrthm.2014.12.031. PubMed DOI
Johnson WB, et al. Body surface mapping using an ECG belt to characterize electrical heterogeneity for different left ventricular pacing sites during cardiac resynchronization: Relationship with acute hemodynamic improvement. Heart Rhythm. 2017;14(3):385–391. doi: 10.1016/j.hrthm.2016.11.017. PubMed DOI
van Dam PM, Boyle NG, Laks MM, Tung R. Localization of premature ventricular contractions from the papillary muscles using the standard 12-lead electrocardiogram: A feasibility study using a novel cardiac isochrone positioning system. Europace. 2016;18:iv16–iv22. PubMed
Misra S, et al. Initial validation of a novel ECGI system for localization of premature ventricular contractions and ventricular tachycardia in structurally normal and abnormal hearts. J. Electrocardiol. 2018;51(5):801–808. doi: 10.1016/j.jelectrocard.2018.05.018. PubMed DOI
Lesina K, et al. Performance and robustness testing of a non-invasive mapping system for ventricular arrhythmias. Front. Physiol. 2022;13:870435. doi: 10.3389/fphys.2022.870435. PubMed DOI PMC
Griffiths JR, et al. Non-invasive electrocardiographic mapping on the ward to guide ablation of premature ventricular contractions. J. Electrocardiol. 2023;78:65–68. doi: 10.1016/j.jelectrocard.2023.01.015. PubMed DOI
Fruelund PZ, et al. Novel non-invasive ECG imaging method based on the 12-lead ECG for reconstruction of ventricular activation: A proof-of-concept study. Front. Cardiovasc. Med. 2023;10:1087568. doi: 10.3389/fcvm.2023.1087568. PubMed DOI PMC
Roudijk RW, et al. Comparing non-invasive inverse electrocardiography with invasive endocardial and epicardial electroanatomical mapping during sinus rhythm. Front. Physiol. 2021;12:730–736. doi: 10.3389/fphys.2021.730736. PubMed DOI PMC
Rosik V, Karas S, Heblakova E, Tysler M, Filipova S. Portable device for high resolution ECG mapping. Meas. Sci. Rev. 2007;7(6):57–61.
van Dam PM, Gordon JP, Laks MM, Boyle NG. Development of new anatomy reconstruction software to localize cardiac isochrones to the cardiac surface from the 12 lead ECG. J. Electrocardiol. 2015;48(6):959–965. doi: 10.1016/j.jelectrocard.2015.08.036. PubMed DOI
van Oosterom A. Genesis of the T wave as based on an equivalent surface source model. J. Electrocardiol. 2001;34(Suppl):217–227. doi: 10.1054/jelc.2001.28896. PubMed DOI
Janssen AM, Potyagaylo D, Dössel O, Oostendorp TF. Assessment of the equivalent dipole layer source model in the reconstruction of cardiac activation times on the basis of BSPMs produced by an anisotropic model of the heart. Med. Biol. Eng. Comput. 2018;56(6):1013–1025. doi: 10.1007/s11517-017-1715-x. PubMed DOI PMC
Geselowitz DB. On the Theory of the electrocardiogram. Proc. IEEE. 1989;77(6):857–876. doi: 10.1109/5.29327. DOI
Geselowitz DB. Description of cardiac sources in anisotropic cardiac muscle. Application of bidomain model. J. Electrocardiol. 1992;25(Suppl):65–67. doi: 10.1016/0022-0736(92)90063-6. PubMed DOI
Meijs JW, Weier OW, Peters MJ, van Oosterom A. On the numerical accuracy of the boundary element method. IEEE Trans. Biomed. Eng. 1989;36:1038–1049. doi: 10.1109/10.40805. PubMed DOI
van Dam PM, Oostendorp TF, Linnenbank AC, van Oosterom A. Non-invasive imaging of cardiac activation and recovery. Ann. Biomed. Eng. 2009;37(9):1739–1756. doi: 10.1007/s10439-009-9747-5. PubMed DOI PMC
van Dam PM, Oostendorp TF, van Oosterom A. Application of the fastest route algorithm in the interactive simulation of the effect of local ischemia on the ECG. Med. Biol. Eng. Comput. 2009;47(1):11–20. doi: 10.1007/s11517-008-0391-2. PubMed DOI
Oosterhoff P, et al. Experimental validation of noninvasive epicardial and endocardial activation imaging. Circ. Arrhythm. Electrophysiol. 2016;9(8):e004104. doi: 10.1161/CIRCEP.116.004104. PubMed DOI
Boonstra MJ, et al. Modeling the His-Purkinje effect in non-invasive estimation of endocardial and epicardial ventricular activation. Ann. Biomed. Eng. 2022;50(3):343–359. doi: 10.1007/s10439-022-02905-4. PubMed DOI PMC
Durrer D, et al. Total excitation of the isolated human heart. Circulation. 1970;41:899–912. doi: 10.1161/01.CIR.41.6.899. PubMed DOI
Opthof T, et al. Cardiac activation-repolarization patterns and ion channel expression mapping in intact isolated normal human hearts. Heart Rhythm. 2017;14(2):265–272. doi: 10.1016/j.hrthm.2016.10.010. PubMed DOI
van Dam PM, Boonstra M, Locati ET, Loh P. The relation of 12-lead ECG to the cardiac anatomy: The normal CineECG. J. Electrocardiol. 2021;69:67–74. doi: 10.1016/j.jelectrocard.2021.07.014. PubMed DOI
Sadek MM, et al. Idiopathic ventricular arrhythmias originating from the moderator band: Electrocardiographic characteristics and treatment by catheter ablation. Heart Rhythm. 2015;12(1):67–75. doi: 10.1016/j.hrthm.2014.08.029. PubMed DOI
Ghosh S, et al. Electrophysiologic substrate and intraventricular left ventricular dyssynchrony in nonischemic heart failure patients undergoing cardiac resynchronization therapy. Heart Rhythm. 2011;8(5):692–699. doi: 10.1016/j.hrthm.2011.01.017. PubMed DOI PMC
Ploux S, et al. Noninvasive electrocardiographic mapping to improve patient selection for cardiac resynchronization therapy: Beyond QRS duration and left bundle branch block morphology. J. Am. Coll. Cardiol. 2013;61(24):2435–2443. doi: 10.1016/j.jacc.2013.01.093. PubMed DOI
Dawoud F, et al. Non-invasive electromechanical activation imaging as a tool to study left ventricular dyssynchronous patients: Implication for CRT therapy. J. Electrocardiol. 2016;49(3):375–382. doi: 10.1016/j.jelectrocard.2016.02.011. PubMed DOI
Pezzuto S, et al. Reconstruction of three-dimensional biventricular activation based on the 12-lead electrocardiogram via patient-specific modelling. Europace. 2021;23(4):640–647. doi: 10.1093/europace/euaa330. PubMed DOI PMC
Jia P, et al. Electrocardiographic imaging of cardiac resynchronization therapy in heart failure: Observation of variable electrophysiologic responses. Heart Rhythm. 2006;3:296–310. doi: 10.1016/j.hrthm.2005.11.025. PubMed DOI PMC
Ghanem RN, et al. Noninvasive electrocardiographic imaging (ECGI): Comparison to intraoperative mapping in patients. Heart Rhythm. 2005;2:339–354. doi: 10.1016/j.hrthm.2004.12.022. PubMed DOI PMC
Bear LR, et al. How accurate is inverse electrocardiographic mapping? A systematic in vivo evaluation. Circ. Arrhythm. Electrophysiol. 2018;11(5):e006108. doi: 10.1161/CIRCEP.117.006108. PubMed DOI
Han C, Liu Z, Zhang X, Pogwizd S, He B. Noninvasive three-dimensional cardiac activation imaging from body surface potential maps: A computational and experimental study on a rabbit model. IEEE Trans. Med. Imaging. 2008;27:1622–1630. doi: 10.1109/TMI.2008.929094. PubMed DOI PMC
Cluitmans MJM, et al. In vivo validation of electrocardiographic imaging. JACC EP. 2017;3:232–242.
Ali-Ahmed F, et al. Right ventricular lead location and outcomes among patients with cardiac resynchronization therapy: A meta-analysis. Prog. Cardiovasc. Dis. 2021;66:53–60. doi: 10.1016/j.pcad.2021.04.002. PubMed DOI PMC
Nguyen UC, et al. Integration of cardiac magnetic resonance imaging, electrocardiographic imaging, and coronary venous computed tomography angiography for guidance of left ventricular lead positioning. Europace. 2019;21(4):626–635. doi: 10.1093/europace/euy292. PubMed DOI
Revishvili AS, et al. Validation of the mapping accuracy of a novel non-invasive epicardial and endocardial electrophysiology system. Europace. 2015;17:1282–1288. doi: 10.1093/europace/euu339. PubMed DOI PMC
Boonstra M, et al. ECG-based techniques to enhance clinical practice in cardiac genetic disease management. J. Electrocardiol. 2023;76:55–60. doi: 10.1016/j.jelectrocard.2022.10.013. PubMed DOI
Khan FZ, et al. Targeted left ventricular lead placement to guide cardiac resynchronization therapy: The TARGET study: A randomized, controlled trial. J. Am. Coll. Cardiol. 2012;59(17):1509–1518. doi: 10.1016/j.jacc.2011.12.030. PubMed DOI