Pattern of the heart rate performance curve in maximal graded treadmill running from 1100 healthy 18-65 Years old men and women: the 4HAIE study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37324398
PubMed Central
PMC10264846
DOI
10.3389/fphys.2023.1178913
PII: 1178913
Knihovny.cz E-zdroje
- Klíčová slova
- exercise intensity, exercise prescription, heart rate turnpoint, performance diagnostics, thresholds,
- Publikační typ
- časopisecké články MeSH
Introduction: The heart rate performance curve (HRPC) in maximal incremental cycle ergometer exercise demonstrated three different patterns such as downward, linear or inverse versions. The downward pattern was found to be the most common and therefore termed regular. These patterns were shown to differently influence exercise prescription, but no data are available for running. This study investigated the deflection of the HRPC in maximal graded treadmill tests (GXT) of the 4HAIE study. Methods: Additional to maximal values, the first and second ventilatory thresholds as well as the degree and the direction of the HRPC deflection (kHR) were determined from 1,100 individuals (489 women) GXTs. HRPC deflection was categorized as downward (kHR < -0.1), linear (-0.1 ≤ kHR ≤ 0.1) or inverse (kHR > 0.1) curves. Four (even split) age- and two (median split) performance-groups were used to investigate the effects of age and performance on the distribution of regular (= downward deflection) and non-regular (= linear or inverse course) HR curves for male and female subjects. Results: Men (age: 36.8 ± 11.9 years, BMI: 25.0 ± 3.3 kg m-2, VO2max: 46.4 ± 9.4 mL min-1. kg-1) and women (age: 36.2 ± 11.9 years, BMI: 23.3 ± 3.7 kg m-2, VO2max: 37.4 ± 7.8 mL min-1. kg-1) presented 556/449 (91/92%) downward deflecting, 10/8 (2/2%) linear and 45/32 (7/6%) inverse HRPC´s. Chi-squared analysis revealed a significantly higher number of non-regular HRPC´s in the low-performance group and with increasing age. Binary logistic regression revealed that the odds ratio (OR) to show a non-regular HRPC is significantly affected by maximum performance (OR = 0.840, 95% CI = 0.754-0.936, p = 0.002) and age (OR = 1.042, 95% CI = 1.020-1.064, p < 0.001) but not sex. Discussion: As in cycle ergometer exercise, three different patterns for the HRPC were identified from the maximal graded treadmill exercise with the highest frequency of regular downward deflecting curves. Older subjects and subjects with a lower performance level had a higher probability to show a non-regular linear or inverted curve which needs to be considered for exercise prescription.
Zobrazit více v PubMed
ACSM (2021). ACSM’s guidelines for exercise testing and prescription. 11th ed. Philadelphia: Wolters Kluwer.
Binder R. K., Wonisch M., Corra U., Cohen-Solal A., Vanhees L., Saner H., et al. (2008). Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. Eur. J. Cardiovasc. Prev. Rehabil. 15, 726–734. 10.1097/HJR.0b013e328304fed4 PubMed DOI
Birnbaumer P., Traninger H., Borenich A., Falgenhauer M., Modre-Osprian R., Harpf H., et al. (2020). Heart rate performance curve is dependent on age, sex, and performance. Front. Public Heal. 8, 98. 10.3389/fpubh.2020.00098 PubMed DOI PMC
Birnbaumer P., Traninger H., Sattler M. C., Borenich A., Hofmann P. (2021). Pattern of the heart rate performance curve in subjects with beta-blocker treatment and healthy controls. J. Funct. Morphol. Kinesiol. 6, 61. 10.3390/jfmk6030061 PubMed DOI PMC
Bodner M. E., Rhodes E. C. (2000). A review of the concept of the heart rate deflection point. Sports Med. 30, 31–46. 10.2165/00007256-200030010-00004 PubMed DOI
Brooke J. D., Hamley E. J., Thomason H. (1968). Relationship of heart rate to physical work. J. Physiol. 197, 61P–63P. PubMed
Christou D. D., Seals D. R. (2008). Decreased maximal heart rate with aging is related to reduced {beta}-adrenergic responsiveness but is largely explained by a reduction in intrinsic heart rate. J. Appl. Physiol. 105, 24–29. 10.1152/japplphysiol.90401.2008 PubMed DOI PMC
Chwalbinska-Moneta J., Krysztofiak H., Ziemba A., Nazar K., Kaciuba-Uściłko H. (1996). Threshold increases in plasma growth hormone in relation to plasma catecholamine and blood lactate concentrations during progressive exercise in endurance-trained athletes. Eur. J. Appl. Physiol. Occup. Physiol. 73, 117–120. 10.1007/BF00262819 PubMed DOI
Cipryan L., Kutac P., Dostal T., Zimmermann M., Krajcigr M., Jandackova V., et al. (2020). Regular running in an air-polluted environment: Physiological and anthropometric protocol for a prospective cohort study (Healthy Aging in Industrial Environment Study - program 4). BMJ Open 10, e040529. 10.1136/bmjopen-2020-040529 PubMed DOI PMC
Conconi F., Ferrari M., Ziglio P. G., Droghetti P., Codeca L. (1982). Determination of the anaerobic threshold by a noninvasive field test in runners. J. Appl. Physiol. 52, 869–873. 10.1152/jappl.1982.52.4.869 PubMed DOI
Fleg J. L., Schulman S., O’Connor F., Becker L. C., Gerstenblith G., Clulow J. F., et al. (1994). Effects of acute beta-adrenergic receptor blockade on age-associated changes in cardiovascular performance during dynamic exercise. Circulation 90, 2333–2341. 10.1161/01.CIR.90.5.2333 PubMed DOI
Hansen D., Bonné K., Alders T., Hermans A., Copermans K., Swinnen H., et al. (2019). Exercise training intensity determination in cardiovascular rehabilitation: Should the guidelines be reconsidered? Eur. J. Prev. Cardiol. 2047487319859450, 1921–1928. 10.1177/2047487319859450 PubMed DOI
Heber S., Sallaberger‐Lehner M., Hausharter M., Volf I., Ocenasek H., Gabriel H., et al. (2019). Exercise‐based cardiac rehabilitation is associated with a normalization of the heart rate performance curve deflection. Scand. J. Med. Sci. Sports, Sms. 13462, 1364–1374. 10.1111/sms.13462 PubMed DOI PMC
Hofmann P., Pokan R., Preidler K., Leitner H., Szolar D., Eber B., et al. (1994). Relationship between heart rate threshold, lactate turn point and myocardial function. Int. J. Sports Med. 15, 232–237. 10.1055/s-2007-1021052 PubMed DOI
Hofmann P., Pokan R. (2010). Value of the application of the heart rate performance curve in sports. Int. J. Sports Physiol. Perform. 5, 437–447. 10.1123/ijspp.5.4.437 PubMed DOI
Hofmann P., Pokan R., von Duvillard S. P., Seibert F. J., Zweiker R., Schmid P. (1997). Heart rate performance curve during incremental cycle ergometer exercise in healthy young male subjects. Med. Sci. Sports Exerc. 29, 762–768. 10.1097/00005768-199706000-00005 PubMed DOI
Hofmann P., Tschakert G. (2010). Special needs to prescribe exercise intensity for scientific studies. Cardiol. Res. Pract. 2011, 209302. 10.4061/2011/209302 PubMed DOI PMC
Hofmann P., Von Duvillard S. P., Seibert F. J., Pokan R., Wonisch M., Lemura L. M., et al. (2001). %HRmax target heart rate is dependent on heart rate performance curve deflection. Med. Sci. Sports Exerc. 33, 1726–1731. 10.1097/00005768-200110000-00017 PubMed DOI
Hofmann P., Wonisch M., Pokan R., Schwaberger G., Smekal G., von Duvillard S. (2005). Beta1-adrenoceptor mediated origin of the heart rate performance curve deflection. Med. Sci. Sports Exerc. 37, 1704–1709. 10.1249/01.mss.0000176308.70316.cc PubMed DOI
Iannetta D., Inglis E. C., Mattu A. T., Fontana F. Y., Pogliaghi S., Keir D. A., et al. (2019). A critical evaluation of current methods for exercise prescription in women and men. Med. Sci. Sports Exerc. 1, 466–473. 10.1249/MSS.0000000000002147 PubMed DOI
Jamnick N. A., Pettitt R. W., Granata C., Pyne D. B., Bishop D. J. (2020). An examination and critique of current methods to determine exercise intensity. Sport. Med. 50, 1729–1756. 10.1007/s40279-020-01322-8 PubMed DOI
Johansson S. R., Hjalmarson Å. (1988). Age and sex differences in cardiovascular reactivity to adrenergic agonists, mental stress and isometric exercise in normal subjects. Scand. J. Clin. Lab. Invest. 48, 183–191. 10.3109/00365518809085411 PubMed DOI
Lehmann M., Dickhuth H. H., Schmid P., Porzig H., Keul J. (1984). Plasma catecholamines,? adrenergic receptors, and isoproterenol sensitivity in endurance trained and non-endurance trained volunteers. Eur. J. Appl. Physiol. Occup. Physiol. 52, 362–369. 10.1007/BF00943364 PubMed DOI
Loe H., Rognmo Ø., Saltin B., Wisløff U. (2013). Aerobic capacity reference data in 3816 healthy men and women 20-90 years. PLoS One 8, e64319. 10.1371/journal.pone.0064319 PubMed DOI PMC
Lucía A., Carvajal A., Pérez M., Boraita A., Serratosa L., Chicharro J. L. (2000). Heart rate response during incremental exercise in master runners. Jpn. J. Physiol. 50, 155–158. 10.2170/jjphysiol.50.155 PubMed DOI
Meyler S., Bottoms L., Wellsted D., Muniz‐Pumares D. (2023). Variability in exercise tolerance and physiological responses to exercise prescribed relative to physiological thresholds and to maximum oxygen uptake. Exp. Physiol. 108, 581–594. 10.1113/EP090878 PubMed DOI PMC
Mezzani A. (2017). “Cardiopulmonary exercise testing: Basics of methodology and measurements,” in Annals of the American thoracic society (American Thoracic Society; ), S3–S11. 10.1513/AnnalsATS.201612-997FR PubMed DOI
Moser O., Eckstein M. L., McCarthy O., Deere R., Bain S. C., Haahr H. L., et al. (2018). Heart rate dynamics during cardio-pulmonary exercise testing are associated with glycemic control in individuals with type 1 diabetes. PLoS One 13, e0194750. 10.1371/journal.pone.0194750 PubMed DOI PMC
Moser O., Tschakert G., Mueller A., Groeschl W., Hofmann P., Pieber T., et al. (2017). Short-acting insulin reduction strategies for continuous cycle ergometer exercises in patients with type 1 diabetes mellitus. Asian J. Sports Med. 8, 42160. 10.5812/asjsm.42160 DOI
Pokan R., Hofmann P., Lehmann M., Leitner H., Eber B., Gasser R., et al. (1995). Heart rate deflection related to lactate performance curve and plasma catecholamine response during incremental cycle ergometer exercise. Eur. J. Appl. Physiol. Occup. Physiol. 70, 175–179. 10.1007/BF00361546 PubMed DOI
Pokan R., Hofmann P., Preidler K., Leitner H., Dusleag J., Eber B., et al. (1993). Correlation between inflection of heart rate/work performance curve and myocardial function in exhausting cycle ergometer exercise. Eur. J. Appl. Physiol. Occup. Physiol. 67, 385–388. 10.1007/BF00376453 PubMed DOI
Rosic G., Pantovic S., Niciforovic J., Colovic V., Rankovic V., Obradovic Z., et al. (2011). Mathematical analysis of the heart rate performance curve during incremental exercise testing. Acta Physiol. hung. 98, 59–70. 10.1556/aphysiol.98.2011.1.8 PubMed DOI
Shah A. B., Bechis M. Z., Brown M., Finch J. M., Loomer G., Groezinger E., et al. (2019). Catecholamine response to exercise in patients with non-obstructive hypertrophic cardiomyopathy. J. Physiol. 597, 1337–1346. 10.1113/JP277494 PubMed DOI PMC
Turner M. J., Mier C. M., Spina R. J., Schechtman K. B., Ehsani A. A. (1999). Effects of age and gender on the cardiovascular responses to isoproterenol. J. Gerontol. A. Biol. Sci. Med. Sci. 54, B393–B400. 10.1093/gerona/54.9.b393 PubMed DOI
Vainshelboim B., Arena R., Kaminsky L. A., Myers J. (2020). Reference standards for ventilatory threshold measured with cardiopulmonary exercise testing: The fitness registry and the importance of exercise: A national database. Chest 157, 1531–1537. 10.1016/j.chest.2019.11.022 PubMed DOI
Vucetic V., Sentija D., Sporsi G., Trajkovic N., Milanovic Z. (2014). Comparison of ventilation threshold and heart rate deflection point in fast and standard treadmill test protocols. Acta Clin. Croat. 53, 190–203. PubMed
White D. W., Raven P. B. (2014). Autonomic neural control of heart rate during dynamic exercise: Revisited. J. Physiol. 592, 2491–2500. 10.1113/jphysiol.2014.271858 PubMed DOI PMC