VIOLA jones algorithm with capsule graph network for deepfake detection

. 2023 ; 9 () : e1313. [epub] 20230413

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37346538

DeepFake is a forged image or video created using deep learning techniques. The present fake content of the detection technique can detect trivial images such as barefaced fake faces. Moreover, the capability of current methods to detect fake faces is minimal. Many recent types of research have made the fake detection algorithm from rule-based to machine-learning models. However, the emergence of deep learning technology with intelligent improvement motivates this specified research to use deep learning techniques. Thus, it is proposed to have VIOLA Jones's (VJ) algorithm for selecting the best features with Capsule Graph Neural Network (CN). The graph neural network is improved by capsule-based node feature extraction to improve the results of the graph neural network. The experiment is evaluated with CelebDF-FaceForencics++ (c23) datasets, which combines FaceForencies++ (c23) and Celeb-DF. In the end, it is proved that the accuracy of the proposed model has achieved 94.

Zobrazit více v PubMed

Afchar D, Nozick V, Yamagishi J, Echizen I. Mesonet: a compact facial video forgery detection network. 2018 IEEE international workshop on information forensics and security (WIFS); Piscataway. 2018. pp. 1–7.

Chai L, Bau D, Lim S-N, Isola P. What makes fake images detectable? Understanding properties that generalize. In: Vedaldi A, Bischof H, Brox T, Frahm JM, editors. Computer Vision—ECCV 2020. ECCV 2020. vol. 12371. Cham: Springer; 2020. (Lecture Notes in Computer Science). DOI

Chang H, Han Z, Li X, Ma T, Wang Q. Experimental investigation on heat transfer performance based on the average thermal-resistance ratio for supercritical carbon dioxide in asymmetric airfoil-fin printed circuit heat exchanger. Energy. 2022;254:124164. doi: 10.1016/j.energy.2022.124164. DOI

Chen J, Du L, Guo Y. Label constrained convolutional factor analysis for classification with limited training samples. Information Sciences. 2021;544:372–394. doi: 10.1016/j.ins.2020.08.048. DOI

Chen T, Kornblith S, Norouzi M, Hinton G. A simple framework for contrastive learning of visual representations. International conference on machine learning; 2020. pp. 1597–1607.

Cheng L, Yin F, Theodoridis S, Chatzis S, Chang T-H. Rethinking Bayesian learning for data analysis: the art of prior and inference in sparsity-aware modeling. IEEE Signal Processing Magazine. 2022;39(6):18–52.

Choi Y, Choi M, Kim M, Ha J-W, Kim S, Choo J. Stargan: unified generative adversarial networks for multi-domain image-to-image translation. Proceedings of the IEEE conference on computer vision and pattern recognition; 2018. pp. 8789–8797.

Chollet F. Xception: deep learning with depthwise separable convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition; Piscataway. 2017. pp. 1251–1258.

Chugh K, Gupta P, Dhall A, Subramanian R. Not made for each other-audio-visual dissonance-based deepfake detection and localization. Proceedings of the 28th ACM international conference on multimedia; New York. 2020. pp. 439–447.

Creswell A, Bharath AA. Inverting the generator of a generative adversarial network. IEEE Transactions on Neural Networks and Learning Systems. 2018;30(7):1967–1974. doi: 10.1109/TNNLS.2018.2875194. PubMed DOI

Dang H, Liu F, Stehouwer J, Liu X, Jain AK. On the detection of digital face manipulation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition; Piscataway. 2020. pp. 5781–5790. DOI

Demir I, Ciftci UA. Where do deep fakes look? Synthetic face detection via gaze tracking. ACM symposium on eye tracking research and applications; New York. 2021. pp. 1–11.

Dong J, Cong Y, Sun G, Fang Z, Ding Z. Where and how to transfer: knowledge aggregation-induced transferability perception for unsupervised domain adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2021 doi: 10.1109/TPAMI.2021.3128560. Epub ahead of print Nov 16 2021. PubMed DOI

El Alaoui-Elfels O, Gadi T. From auto-encoders to capsule networks: a survey. E3S web of conferences, volume 229; Occitania. 2021. p. 01003.

Galbally J, Marcel S, Fierrez J. Biometric antispoofing methods: a survey in face recognition. IEEE Access. 2014;2:1530–1552. doi: 10.1109/ACCESS.2014.2381273. DOI

Güera D, Delp EJ. Deepfake video detection using recurrent neural networks. 2018 15th IEEE international conference on advanced video and signal based surveillance (AVSS); Piscataway. 2018. pp. 1–6.

He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition; Piscataway. 2016. pp. 770–778.

Hossain S, Umer S, Asari V, Rout RK. A unified framework of deep learning-based facial expression recognition system for diversified applications. Applied Sciences. 2021;11(19):9174. doi: 10.3390/app11199174. DOI

Hu S, Li Y, Lyu S. Exposing GAN-generated faces using inconsistent corneal specular highlights. ICASSP 2021–2021 IEEE international conference on acoustics, speech and signal processing (ICASSP); Piscataway. 2021. pp. 2500–2504.

Huang C-Q, Jiang F, Huang Q-H, Wang X-Z, Han Z-M, Huang W-Y. Dual-graph attention convolution network for 3-D point cloud classification. IEEE Transactions on Neural Networks and Learning Systems. 2022 doi: 10.1109/TNNLS.2022.3162301. Epub ahead of print Apr 6 2022. PubMed DOI

Huang J, Shang Y, Chen H. Improved VIOLA-Jones face detection algorithm based on HoloLens. EURASIP Journal on Image and Video Processing. 2019;2019(1):1–11. doi: 10.1186/s13640-018-0395-2. DOI

Jiang Y, Li X. Broadband cancellation method in an adaptive co-site interference cancellation system. International Journal of Electronics. 2022;109(5):854–874. doi: 10.1080/00207217.2021.1941295. DOI

Jiang Y, Liu S, Li M, Zhao N, Wu M. A new adaptive co-site broadband interference cancellation method with auxiliary channel. Digital Communications and Networks. 2022 doi: 10.1016/j.dcan.2022.10.025. Epub ahead of print Oct 29 2022. DOI

Karras T, Laine S, Aila T. A style-based generator architecture for generative adversarial networks. Conference on computer vision and pattern recognition (IEEE/CVPR); Piscataway. 2019. PubMed

Khodabakhsh A, Ramachandra R, Raja K, Wasnik P, Busch C. Fake face detection methods: can they be generalized?. 2018 international conference of the biometrics special interest group (BIOSIG); Piscataway. 2018. pp. 1–6.

Kong H, Lu L, Yu J, Chen Y, Tang F. Continuous authentication through finger gesture interaction for smart homes using WiFi. IEEE Transactions on Mobile Computing. 2020;20(11):3148–3162.

Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems. 2012;25:84–90.

Li J, Xu K, Chaudhuri S, Yumer E, Zhang H, Guibas L. Grass: generative recursive autoencoders for shape structures. ACM Transactions on Graphics. 2017;36(4):1–14.

Li Y, Du L, Wei D. Multiscale CNN based on component analysis for SAR ATR. IEEE Transactions on Geoscience and Remote Sensing. 2021;60:1–12.

Lin Y, Song H, Ke F, Yan W, Liu Z, Cai F. Optimal caching scheme in D2D networks with multiple robot helpers. Computer Communications. 2022;181:132–142. doi: 10.1016/j.comcom.2021.09.027. DOI

Liu F, Zhang G, Lu J. Multisource heterogeneous unsupervised domain adaptation via fuzzy relation neural networks. IEEE Transactions on Fuzzy Systems. 2020;29(11):3308–3322.

Liu K, Ke F, Huang X, Yu R, Lin F, Wu Y, Ng DWK. DeepBAN: a temporal convolution-based communication framework for dynamic WBANs. IEEE Transactions on Communications. 2021a;69(10):6675–6690. doi: 10.1109/TCOMM.2021.3094581. DOI

Liu R, Wang X, Lu H, Wu Z, Fan Q, Li S, Jin X. SCCGAN: style and characters inpainting based on CGAN. Mobile Networks and Applications. 2021b;26(1):3–12. doi: 10.1007/s11036-020-01717-x. DOI

Lugstein F, Baier S, Bachinger G, Uhl A. PRNU-based deepfake detection. Proceedings of the 2021 ACM workshop on information hiding and multimedia security; New York. 2021. pp. 7–12.

Ma Z, Zheng W, Chen X, Yin L. Joint embedding VQA model based on dynamic word vector. PeerJ Computer Science. 2021;7:e353. doi: 10.7717/peerj-cs.353. PubMed DOI PMC

Mi C, Huang S, Zhang Y, Zhang Z, Postolache O. Design and implementation of 3-D measurement method for container handling target. Journal of Marine Science and Engineering. 2022;10(12):1961. doi: 10.3390/jmse10121961. DOI

Neves JC, Tolosana R, Vera-Rodriguez R, Lopes V, Proença H, Fierrez J. Ganprintr: improved fakes and evaluation of the state of the art in face manipulation detection. IEEE Journal of Selected Topics in Signal Processing. 2020;14(5):1038–1048. doi: 10.1109/JSTSP.2020.3007250. DOI

Nguyen HH, Yamagishi J, Echizen I. Capsule-forensics: using capsule networks to detect forged images and videos. ICASSP 2019-2019 IEEE international conference on acoustics, speech and signal processing (ICASSP); Piscataway. 2019. pp. 2307–2311.

Nirkin Y, Wolf L, Keller Y, Hassner T. DeepFake detection based on discrepancies between faces and their context. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2021;44(10):6111–6121. doi: 10.1109/TPAMI.2021.3093446. PubMed DOI

Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. 20151511.06434

Rathgeb C, Botaljov A, Stockhardt F, Isadskiy S, Debiasi L, Uhl A, Busch C. PRNU-based detection of facial retouching. IET Biometrics. 2020;9(4):154–164. doi: 10.1049/iet-bmt.2019.0196. DOI

Rössler A, Cozzolino D, Verdoliva L, Riess C, Thies J, Nießner M. Faceforensics: a large-scale video dataset for forgery detection in human faces. 20181803.09179

Rössler A, Cozzolino D, Verdoliva L, Riess C, Thies J, Nießner M. FaceForensics++: learning to detect manipulated facial images. International conference on computer vision (ICCV).2019.

Sabir E, Cheng J, Jaiswal A, AbdAlmageed W, Masi I, Natarajan P. Recurrent convolutional strategies for face manipulation detection in videos. Interfaces. 2019;3(1):80–87.

Sabour S, Frosst N, Hinton GE. Dynamic routing between capsules. Advances in Neural Information Processing Systems. 2017;30:3856–3866.

Scherhag U, Debiasi L, Rathgeb C, Busch C, Uhl A. Detection of face morphing attacks based on PRNU analysis. IEEE Transactions on Biometrics, Behavior, and Identity Science. 2019;1(4):302–317. doi: 10.1109/TBIOM.2019.2942395. DOI

Shi Y, Xu X, Xi J, Hu X, Hu D, Xu K. Learning to detect 3D symmetry from single-view RGB-D images with weak supervision. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2022;45(4):4882–4896. doi: 10.1109/TPAMI.2022.3186876. PubMed DOI

Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 20141409.1556

Tian H, Qin Y, Niu Z, Wang L, Ge S. Summer maize mapping by compositing time series sentinel-1A imagery based on crop growth cycles. Journal of the Indian Society of Remote Sensing. 2021a;49:2863–2874. doi: 10.1007/s12524-021-01428-0. DOI

Tian H, Wang Y, Chen T, Zhang L, Qin Y. Early-season mapping of winter crops using sentinel-2 optical imagery. Remote Sensing. 2021b;13(19):3822. doi: 10.3390/rs13193822. DOI

Umer S, Dhara BC, Chanda B. Face recognition using fusion of feature learning techniques. Measurement. 2019;146:43–54. doi: 10.1016/j.measurement.2019.06.008. DOI

Umer S, Rout RK, Pero C, Nappi M. Facial expression recognition with trade-offs between data augmentation and deep learning features. Journal of Ambient Intelligence and Humanized Computing. 2022;13:721–735. doi: 10.1007/s12652-020-02845-8. DOI

Wang H, Gao Q, Li H, Wang H, Yan L, Liu G. A structural evolution-based anomaly detection method for generalized evolving social networks. The Computer Journal. 2022a;65(5):1189–1199. doi: 10.1093/comjnl/bxaa168. DOI

Wang J, Yang M, Liang F, Feng K, Zhang K, Wang Q. An algorithm for painting large objects based on a nine-axis UR5 robotic manipulator. Applied Sciences. 2022b;12(14):7219. doi: 10.3390/app12147219. DOI

Wang M, Deng W. Deep face recognition: a survey. Neurocomputing. 2021;429:215–244. doi: 10.1016/j.neucom.2020.10.081. DOI

Wang W, Yuan X, Wu X, Liu Y. Fast image dehazing method based on linear transformation. IEEE Transactions on Multimedia. 2017;19(6):1142–1155. doi: 10.1109/TMM.2017.2652069. DOI

Wang Y, Han X, Jin S. MAP-based modeling method and performance study of a task offloading scheme with time-correlated traffic and VM repair in MEC systems. Wireless Networks. 2022;29:47–68. doi: 10.1007/s11276-022-03099-2. DOI

Wu H, Jin S, Yue W. Pricing policy for a dynamic spectrum allocation scheme with batch requests and impatient packets in cognitive radio networks. Journal of Systems Science and Systems Engineering. 2022;31(2):133–149. doi: 10.1007/s11518-022-5521-0. DOI

Xie B, Li S, Lv F, Liu CH, Wang G, Wu D. A collaborative alignment framework of transferable knowledge extraction for unsupervised domain adaptation. IEEE Transactions on Knowledge and Data Engineering. 2022 doi: 10.1109/TKDE.2022.3185233. Epub ahead of print Jun 22 2022. DOI

Xu J, Zhang X, Park SH, Guo K. The alleviation of perceptual blindness during driving in urban areas guided by saccades recommendation. IEEE Transactions on Intelligent Transportation Systems. 2022a;23(9):16386–16396. doi: 10.1109/TITS.2022.3149994. DOI

Xu S, He Q, Tao S, Chen H, Chai Y, Zheng W. Pig face recognition based on trapezoid normalized pixel difference feature and trimmed mean attention mechanism. IEEE Transactions on Instrumentation and Measurement. 2022b doi: 10.1109/TKDE.2022.3185233. Epub ahead of print Jun 22 2022. DOI

Xuan X, Peng B, Wang W, Dong J. On the generalization of GAN image forensics. In: Sun Z, He R, Feng J, Shan S, Guo Z, editors. Biometric recognition. CCBR 2019. vol. 11818. Springer; Cham: 2019. pp. 134–141. (Lecture notes in computer science). DOI

Yi D, Lei Z, Liao S, Li SZ. Learning face representation from scratch. 20141411.7923

Yu J, Lu L, Chen Y, Zhu Y, Kong L. An indirect eavesdropping attack of keystrokes on touch screen through acoustic sensing. IEEE Transactions on Mobile Computing. 2019;20(2):337–351. doi: 10.1109/TMC.2019.2947468. DOI

Li Y, Yang X, PSHQ. Lyu S. Celeb-DF: a large-scale challenging dataset for DeepFake forensics. IEEE conference on computer vision and patten recognition (CVPR); Piscataway. 2020.

Zhang H, Luo G, Li J, Wang F-Y. C2FDA: coarse-to-fine domain adaptation for traffic object detection. IEEE Transactions on Intelligent Transportation Systems. 2021a;23(8):12633–12647.

Zhang J, Tang Y, Wang H, Xu K. ASRO-DIO: active subspace random optimization based depth inertial odometry. IEEE Transactions on Robotics. 2022a doi: 10.1109/TRO.2022.3208503. Epub ahead of print Oct 11 2022. DOI

Zhang J, Zhu C, Zheng L, Xu K. ROSEFusion: random optimization for online dense reconstruction under fast camera motion. ACM Transactions on Graphics. 2021b;40(4):1–17. doi: 10.1145/3450626.3459676. DOI

Zhang Y, Huang Y, Zhang Z, Postolache O, Mi C. A vision-based container position measuring system for ARMG. Measurement and Control. 2022b;56(3–4):596–605.

Zhao H, Zhu C, Xu X, Huang H, Xu K. Learning practically feasible policies for online 3D bin packing. Science China Information Sciences. 2022;65(1):112105. doi: 10.1007/s11432-021-3348-6. DOI

Zheng W, Cheng J, Wu X, Sun R, Wang X, Sun X. Domain knowledge-based security bug reports prediction. Knowledge-Based Systems. 2022;241:108293. doi: 10.1016/j.knosys.2022.108293. DOI

Zheng W, Liu X, Ni X, Yin L, Yang B. Improving visual reasoning through semantic representation. IEEE Access. 2021a;9:91476–91486. doi: 10.1109/ACCESS.2021.3074937. DOI

Zheng W, Liu X, Yin L. Research on image classification method based on improved multi-scale relational network. PeerJ Computer Science. 2021;7:e613. doi: 10.7717/peerj-cs.613. PubMed DOI PMC

Zheng W, Yin L, Chen X, Ma Z, Liu S, Yang B. Knowledge base graph embedding module design for Visual question answering model. Pattern Recognition. 2021b;120:108153. doi: 10.1016/j.patcog.2021.108153. DOI

Zhou W, Guo Q, Lei J, Yu L, Hwang J-N. IRFR-Net: interactive recursive feature-reshaping network for detecting salient objects in RGB-D images. IEEE Transactions on Neural Networks and Learning Systems. 2021 doi: 10.1109/TNNLS.2021.3105484. Epub ahead of print Aug 20 2021. PubMed DOI

Zhou W, Lv Y, Lei J, Yu L. Global and local-contrast guides content-aware fusion for RGB-D saliency prediction. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2019;51(6):3641–3649.

Zhou X, Zhang L. SA-FPN: an effective feature pyramid network for crowded human detection. Applied Intelligence. 2022;52(11):12556–12568. doi: 10.1007/s10489-021-03121-8. DOI

Zhuang Y, Chen S, Jiang N, Hu H. An effective WSSENet-based similarity retrieval method of large lung CT image databases. KSII Transactions on Internet & Information Systems. 2022;16(7):2359–2376.

Zhuang Y, Jiang N, Xu Y. Progressive distributed and parallel similarity retrieval of large CT image sequences in mobile telemedicine networks. Wireless Communications and Mobile Computing. 2022 doi: 10.1155/2022/6458350. Epub ahead of print Jan 01 2022. DOI

Zong C, Wan Z. Container ship cell guide accuracy check technology based on improved 3D point cloud instance segmentation. Brodogradnja: Teorija I Praksa Brodogradnje I Pomorske Tehnike. 2022;73(1):23–35. doi: 10.21278/brod73102. DOI

Zong C, Wang H, Wan Z. An improved 3D point cloud instance segmentation method for overhead catenary height detection. Computers & Electrical Engineering. 2022;98:107685. doi: 10.1016/j.compeleceng.2022.107685. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...