VIOLA jones algorithm with capsule graph network for deepfake detection
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37346538
PubMed Central
PMC10280569
DOI
10.7717/peerj-cs.1313
PII: cs-1313
Knihovny.cz E-zdroje
- Klíčová slova
- Capsule graph network, Deep fake, Deep learning, Fake face detection, Machine learning, VIOLA Jones,
- Publikační typ
- časopisecké články MeSH
DeepFake is a forged image or video created using deep learning techniques. The present fake content of the detection technique can detect trivial images such as barefaced fake faces. Moreover, the capability of current methods to detect fake faces is minimal. Many recent types of research have made the fake detection algorithm from rule-based to machine-learning models. However, the emergence of deep learning technology with intelligent improvement motivates this specified research to use deep learning techniques. Thus, it is proposed to have VIOLA Jones's (VJ) algorithm for selecting the best features with Capsule Graph Neural Network (CN). The graph neural network is improved by capsule-based node feature extraction to improve the results of the graph neural network. The experiment is evaluated with CelebDF-FaceForencics++ (c23) datasets, which combines FaceForencies++ (c23) and Celeb-DF. In the end, it is proved that the accuracy of the proposed model has achieved 94.
Zobrazit více v PubMed
Afchar D, Nozick V, Yamagishi J, Echizen I. Mesonet: a compact facial video forgery detection network. 2018 IEEE international workshop on information forensics and security (WIFS); Piscataway. 2018. pp. 1–7.
Chai L, Bau D, Lim S-N, Isola P. What makes fake images detectable? Understanding properties that generalize. In: Vedaldi A, Bischof H, Brox T, Frahm JM, editors. Computer Vision—ECCV 2020. ECCV 2020. vol. 12371. Cham: Springer; 2020. (Lecture Notes in Computer Science). DOI
Chang H, Han Z, Li X, Ma T, Wang Q. Experimental investigation on heat transfer performance based on the average thermal-resistance ratio for supercritical carbon dioxide in asymmetric airfoil-fin printed circuit heat exchanger. Energy. 2022;254:124164. doi: 10.1016/j.energy.2022.124164. DOI
Chen J, Du L, Guo Y. Label constrained convolutional factor analysis for classification with limited training samples. Information Sciences. 2021;544:372–394. doi: 10.1016/j.ins.2020.08.048. DOI
Chen T, Kornblith S, Norouzi M, Hinton G. A simple framework for contrastive learning of visual representations. International conference on machine learning; 2020. pp. 1597–1607.
Cheng L, Yin F, Theodoridis S, Chatzis S, Chang T-H. Rethinking Bayesian learning for data analysis: the art of prior and inference in sparsity-aware modeling. IEEE Signal Processing Magazine. 2022;39(6):18–52.
Choi Y, Choi M, Kim M, Ha J-W, Kim S, Choo J. Stargan: unified generative adversarial networks for multi-domain image-to-image translation. Proceedings of the IEEE conference on computer vision and pattern recognition; 2018. pp. 8789–8797.
Chollet F. Xception: deep learning with depthwise separable convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition; Piscataway. 2017. pp. 1251–1258.
Chugh K, Gupta P, Dhall A, Subramanian R. Not made for each other-audio-visual dissonance-based deepfake detection and localization. Proceedings of the 28th ACM international conference on multimedia; New York. 2020. pp. 439–447.
Creswell A, Bharath AA. Inverting the generator of a generative adversarial network. IEEE Transactions on Neural Networks and Learning Systems. 2018;30(7):1967–1974. doi: 10.1109/TNNLS.2018.2875194. PubMed DOI
Dang H, Liu F, Stehouwer J, Liu X, Jain AK. On the detection of digital face manipulation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition; Piscataway. 2020. pp. 5781–5790. DOI
Demir I, Ciftci UA. Where do deep fakes look? Synthetic face detection via gaze tracking. ACM symposium on eye tracking research and applications; New York. 2021. pp. 1–11.
Dong J, Cong Y, Sun G, Fang Z, Ding Z. Where and how to transfer: knowledge aggregation-induced transferability perception for unsupervised domain adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2021 doi: 10.1109/TPAMI.2021.3128560. Epub ahead of print Nov 16 2021. PubMed DOI
El Alaoui-Elfels O, Gadi T. From auto-encoders to capsule networks: a survey. E3S web of conferences, volume 229; Occitania. 2021. p. 01003.
Galbally J, Marcel S, Fierrez J. Biometric antispoofing methods: a survey in face recognition. IEEE Access. 2014;2:1530–1552. doi: 10.1109/ACCESS.2014.2381273. DOI
Güera D, Delp EJ. Deepfake video detection using recurrent neural networks. 2018 15th IEEE international conference on advanced video and signal based surveillance (AVSS); Piscataway. 2018. pp. 1–6.
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition; Piscataway. 2016. pp. 770–778.
Hossain S, Umer S, Asari V, Rout RK. A unified framework of deep learning-based facial expression recognition system for diversified applications. Applied Sciences. 2021;11(19):9174. doi: 10.3390/app11199174. DOI
Hu S, Li Y, Lyu S. Exposing GAN-generated faces using inconsistent corneal specular highlights. ICASSP 2021–2021 IEEE international conference on acoustics, speech and signal processing (ICASSP); Piscataway. 2021. pp. 2500–2504.
Huang C-Q, Jiang F, Huang Q-H, Wang X-Z, Han Z-M, Huang W-Y. Dual-graph attention convolution network for 3-D point cloud classification. IEEE Transactions on Neural Networks and Learning Systems. 2022 doi: 10.1109/TNNLS.2022.3162301. Epub ahead of print Apr 6 2022. PubMed DOI
Huang J, Shang Y, Chen H. Improved VIOLA-Jones face detection algorithm based on HoloLens. EURASIP Journal on Image and Video Processing. 2019;2019(1):1–11. doi: 10.1186/s13640-018-0395-2. DOI
Jiang Y, Li X. Broadband cancellation method in an adaptive co-site interference cancellation system. International Journal of Electronics. 2022;109(5):854–874. doi: 10.1080/00207217.2021.1941295. DOI
Jiang Y, Liu S, Li M, Zhao N, Wu M. A new adaptive co-site broadband interference cancellation method with auxiliary channel. Digital Communications and Networks. 2022 doi: 10.1016/j.dcan.2022.10.025. Epub ahead of print Oct 29 2022. DOI
Karras T, Laine S, Aila T. A style-based generator architecture for generative adversarial networks. Conference on computer vision and pattern recognition (IEEE/CVPR); Piscataway. 2019. PubMed
Khodabakhsh A, Ramachandra R, Raja K, Wasnik P, Busch C. Fake face detection methods: can they be generalized?. 2018 international conference of the biometrics special interest group (BIOSIG); Piscataway. 2018. pp. 1–6.
Kong H, Lu L, Yu J, Chen Y, Tang F. Continuous authentication through finger gesture interaction for smart homes using WiFi. IEEE Transactions on Mobile Computing. 2020;20(11):3148–3162.
Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems. 2012;25:84–90.
Li J, Xu K, Chaudhuri S, Yumer E, Zhang H, Guibas L. Grass: generative recursive autoencoders for shape structures. ACM Transactions on Graphics. 2017;36(4):1–14.
Li Y, Du L, Wei D. Multiscale CNN based on component analysis for SAR ATR. IEEE Transactions on Geoscience and Remote Sensing. 2021;60:1–12.
Lin Y, Song H, Ke F, Yan W, Liu Z, Cai F. Optimal caching scheme in D2D networks with multiple robot helpers. Computer Communications. 2022;181:132–142. doi: 10.1016/j.comcom.2021.09.027. DOI
Liu F, Zhang G, Lu J. Multisource heterogeneous unsupervised domain adaptation via fuzzy relation neural networks. IEEE Transactions on Fuzzy Systems. 2020;29(11):3308–3322.
Liu K, Ke F, Huang X, Yu R, Lin F, Wu Y, Ng DWK. DeepBAN: a temporal convolution-based communication framework for dynamic WBANs. IEEE Transactions on Communications. 2021a;69(10):6675–6690. doi: 10.1109/TCOMM.2021.3094581. DOI
Liu R, Wang X, Lu H, Wu Z, Fan Q, Li S, Jin X. SCCGAN: style and characters inpainting based on CGAN. Mobile Networks and Applications. 2021b;26(1):3–12. doi: 10.1007/s11036-020-01717-x. DOI
Lugstein F, Baier S, Bachinger G, Uhl A. PRNU-based deepfake detection. Proceedings of the 2021 ACM workshop on information hiding and multimedia security; New York. 2021. pp. 7–12.
Ma Z, Zheng W, Chen X, Yin L. Joint embedding VQA model based on dynamic word vector. PeerJ Computer Science. 2021;7:e353. doi: 10.7717/peerj-cs.353. PubMed DOI PMC
Mi C, Huang S, Zhang Y, Zhang Z, Postolache O. Design and implementation of 3-D measurement method for container handling target. Journal of Marine Science and Engineering. 2022;10(12):1961. doi: 10.3390/jmse10121961. DOI
Neves JC, Tolosana R, Vera-Rodriguez R, Lopes V, Proença H, Fierrez J. Ganprintr: improved fakes and evaluation of the state of the art in face manipulation detection. IEEE Journal of Selected Topics in Signal Processing. 2020;14(5):1038–1048. doi: 10.1109/JSTSP.2020.3007250. DOI
Nguyen HH, Yamagishi J, Echizen I. Capsule-forensics: using capsule networks to detect forged images and videos. ICASSP 2019-2019 IEEE international conference on acoustics, speech and signal processing (ICASSP); Piscataway. 2019. pp. 2307–2311.
Nirkin Y, Wolf L, Keller Y, Hassner T. DeepFake detection based on discrepancies between faces and their context. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2021;44(10):6111–6121. doi: 10.1109/TPAMI.2021.3093446. PubMed DOI
Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. 20151511.06434
Rathgeb C, Botaljov A, Stockhardt F, Isadskiy S, Debiasi L, Uhl A, Busch C. PRNU-based detection of facial retouching. IET Biometrics. 2020;9(4):154–164. doi: 10.1049/iet-bmt.2019.0196. DOI
Rössler A, Cozzolino D, Verdoliva L, Riess C, Thies J, Nießner M. Faceforensics: a large-scale video dataset for forgery detection in human faces. 20181803.09179
Rössler A, Cozzolino D, Verdoliva L, Riess C, Thies J, Nießner M. FaceForensics++: learning to detect manipulated facial images. International conference on computer vision (ICCV).2019.
Sabir E, Cheng J, Jaiswal A, AbdAlmageed W, Masi I, Natarajan P. Recurrent convolutional strategies for face manipulation detection in videos. Interfaces. 2019;3(1):80–87.
Sabour S, Frosst N, Hinton GE. Dynamic routing between capsules. Advances in Neural Information Processing Systems. 2017;30:3856–3866.
Scherhag U, Debiasi L, Rathgeb C, Busch C, Uhl A. Detection of face morphing attacks based on PRNU analysis. IEEE Transactions on Biometrics, Behavior, and Identity Science. 2019;1(4):302–317. doi: 10.1109/TBIOM.2019.2942395. DOI
Shi Y, Xu X, Xi J, Hu X, Hu D, Xu K. Learning to detect 3D symmetry from single-view RGB-D images with weak supervision. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2022;45(4):4882–4896. doi: 10.1109/TPAMI.2022.3186876. PubMed DOI
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 20141409.1556
Tian H, Qin Y, Niu Z, Wang L, Ge S. Summer maize mapping by compositing time series sentinel-1A imagery based on crop growth cycles. Journal of the Indian Society of Remote Sensing. 2021a;49:2863–2874. doi: 10.1007/s12524-021-01428-0. DOI
Tian H, Wang Y, Chen T, Zhang L, Qin Y. Early-season mapping of winter crops using sentinel-2 optical imagery. Remote Sensing. 2021b;13(19):3822. doi: 10.3390/rs13193822. DOI
Umer S, Dhara BC, Chanda B. Face recognition using fusion of feature learning techniques. Measurement. 2019;146:43–54. doi: 10.1016/j.measurement.2019.06.008. DOI
Umer S, Rout RK, Pero C, Nappi M. Facial expression recognition with trade-offs between data augmentation and deep learning features. Journal of Ambient Intelligence and Humanized Computing. 2022;13:721–735. doi: 10.1007/s12652-020-02845-8. DOI
Wang H, Gao Q, Li H, Wang H, Yan L, Liu G. A structural evolution-based anomaly detection method for generalized evolving social networks. The Computer Journal. 2022a;65(5):1189–1199. doi: 10.1093/comjnl/bxaa168. DOI
Wang J, Yang M, Liang F, Feng K, Zhang K, Wang Q. An algorithm for painting large objects based on a nine-axis UR5 robotic manipulator. Applied Sciences. 2022b;12(14):7219. doi: 10.3390/app12147219. DOI
Wang M, Deng W. Deep face recognition: a survey. Neurocomputing. 2021;429:215–244. doi: 10.1016/j.neucom.2020.10.081. DOI
Wang W, Yuan X, Wu X, Liu Y. Fast image dehazing method based on linear transformation. IEEE Transactions on Multimedia. 2017;19(6):1142–1155. doi: 10.1109/TMM.2017.2652069. DOI
Wang Y, Han X, Jin S. MAP-based modeling method and performance study of a task offloading scheme with time-correlated traffic and VM repair in MEC systems. Wireless Networks. 2022;29:47–68. doi: 10.1007/s11276-022-03099-2. DOI
Wu H, Jin S, Yue W. Pricing policy for a dynamic spectrum allocation scheme with batch requests and impatient packets in cognitive radio networks. Journal of Systems Science and Systems Engineering. 2022;31(2):133–149. doi: 10.1007/s11518-022-5521-0. DOI
Xie B, Li S, Lv F, Liu CH, Wang G, Wu D. A collaborative alignment framework of transferable knowledge extraction for unsupervised domain adaptation. IEEE Transactions on Knowledge and Data Engineering. 2022 doi: 10.1109/TKDE.2022.3185233. Epub ahead of print Jun 22 2022. DOI
Xu J, Zhang X, Park SH, Guo K. The alleviation of perceptual blindness during driving in urban areas guided by saccades recommendation. IEEE Transactions on Intelligent Transportation Systems. 2022a;23(9):16386–16396. doi: 10.1109/TITS.2022.3149994. DOI
Xu S, He Q, Tao S, Chen H, Chai Y, Zheng W. Pig face recognition based on trapezoid normalized pixel difference feature and trimmed mean attention mechanism. IEEE Transactions on Instrumentation and Measurement. 2022b doi: 10.1109/TKDE.2022.3185233. Epub ahead of print Jun 22 2022. DOI
Xuan X, Peng B, Wang W, Dong J. On the generalization of GAN image forensics. In: Sun Z, He R, Feng J, Shan S, Guo Z, editors. Biometric recognition. CCBR 2019. vol. 11818. Springer; Cham: 2019. pp. 134–141. (Lecture notes in computer science). DOI
Yi D, Lei Z, Liao S, Li SZ. Learning face representation from scratch. 20141411.7923
Yu J, Lu L, Chen Y, Zhu Y, Kong L. An indirect eavesdropping attack of keystrokes on touch screen through acoustic sensing. IEEE Transactions on Mobile Computing. 2019;20(2):337–351. doi: 10.1109/TMC.2019.2947468. DOI
Li Y, Yang X, PSHQ. Lyu S. Celeb-DF: a large-scale challenging dataset for DeepFake forensics. IEEE conference on computer vision and patten recognition (CVPR); Piscataway. 2020.
Zhang H, Luo G, Li J, Wang F-Y. C2FDA: coarse-to-fine domain adaptation for traffic object detection. IEEE Transactions on Intelligent Transportation Systems. 2021a;23(8):12633–12647.
Zhang J, Tang Y, Wang H, Xu K. ASRO-DIO: active subspace random optimization based depth inertial odometry. IEEE Transactions on Robotics. 2022a doi: 10.1109/TRO.2022.3208503. Epub ahead of print Oct 11 2022. DOI
Zhang J, Zhu C, Zheng L, Xu K. ROSEFusion: random optimization for online dense reconstruction under fast camera motion. ACM Transactions on Graphics. 2021b;40(4):1–17. doi: 10.1145/3450626.3459676. DOI
Zhang Y, Huang Y, Zhang Z, Postolache O, Mi C. A vision-based container position measuring system for ARMG. Measurement and Control. 2022b;56(3–4):596–605.
Zhao H, Zhu C, Xu X, Huang H, Xu K. Learning practically feasible policies for online 3D bin packing. Science China Information Sciences. 2022;65(1):112105. doi: 10.1007/s11432-021-3348-6. DOI
Zheng W, Cheng J, Wu X, Sun R, Wang X, Sun X. Domain knowledge-based security bug reports prediction. Knowledge-Based Systems. 2022;241:108293. doi: 10.1016/j.knosys.2022.108293. DOI
Zheng W, Liu X, Ni X, Yin L, Yang B. Improving visual reasoning through semantic representation. IEEE Access. 2021a;9:91476–91486. doi: 10.1109/ACCESS.2021.3074937. DOI
Zheng W, Liu X, Yin L. Research on image classification method based on improved multi-scale relational network. PeerJ Computer Science. 2021;7:e613. doi: 10.7717/peerj-cs.613. PubMed DOI PMC
Zheng W, Yin L, Chen X, Ma Z, Liu S, Yang B. Knowledge base graph embedding module design for Visual question answering model. Pattern Recognition. 2021b;120:108153. doi: 10.1016/j.patcog.2021.108153. DOI
Zhou W, Guo Q, Lei J, Yu L, Hwang J-N. IRFR-Net: interactive recursive feature-reshaping network for detecting salient objects in RGB-D images. IEEE Transactions on Neural Networks and Learning Systems. 2021 doi: 10.1109/TNNLS.2021.3105484. Epub ahead of print Aug 20 2021. PubMed DOI
Zhou W, Lv Y, Lei J, Yu L. Global and local-contrast guides content-aware fusion for RGB-D saliency prediction. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2019;51(6):3641–3649.
Zhou X, Zhang L. SA-FPN: an effective feature pyramid network for crowded human detection. Applied Intelligence. 2022;52(11):12556–12568. doi: 10.1007/s10489-021-03121-8. DOI
Zhuang Y, Chen S, Jiang N, Hu H. An effective WSSENet-based similarity retrieval method of large lung CT image databases. KSII Transactions on Internet & Information Systems. 2022;16(7):2359–2376.
Zhuang Y, Jiang N, Xu Y. Progressive distributed and parallel similarity retrieval of large CT image sequences in mobile telemedicine networks. Wireless Communications and Mobile Computing. 2022 doi: 10.1155/2022/6458350. Epub ahead of print Jan 01 2022. DOI
Zong C, Wan Z. Container ship cell guide accuracy check technology based on improved 3D point cloud instance segmentation. Brodogradnja: Teorija I Praksa Brodogradnje I Pomorske Tehnike. 2022;73(1):23–35. doi: 10.21278/brod73102. DOI
Zong C, Wang H, Wan Z. An improved 3D point cloud instance segmentation method for overhead catenary height detection. Computers & Electrical Engineering. 2022;98:107685. doi: 10.1016/j.compeleceng.2022.107685. DOI