• This record comes from PubMed

Increased blood reactive oxygen species and hepcidin in obstructive sleep apnea precludes expected erythrocytosis

. 2023 Aug ; 98 (8) : 1265-1276. [epub] 20230623

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.

Grant support
R01 DK065029 NIDDK NIH HHS - United States
1R01DK126680 NIDDK NIH HHS - United States
5T32DK007115 NIDDK NIH HHS - United States
2T32HL007576-31 NHLBI NIH HHS - United States

Obstructive sleep apnea (OSA) causes intermittent hypoxia during sleep. Hypoxia predictably initiates an increase in the blood hemoglobin concentration (Hb); yet in our analysis of 527 patients with OSA, >98% did not have an elevated Hb. To understand why patients with OSA do not develop secondary erythrocytosis due to intermittent hypoxia, we first hypothesized that erythrocytosis occurs in these patients, but is masked by a concomitant increase in plasma volume. However, we excluded that explanation by finding that the red cell mass was normal (measured by radionuclide labeling of erythrocytes and carbon monoxide inhalation). We next studied 45 patients with OSA before and after applying continuous positive airway pressure (CPAP). We found accelerated erythropoiesis in these patients (increased erythropoietin and reticulocytosis), but it was offset by neocytolysis (lysis of erythrocytes newly generated in hypoxia upon return to normoxia). Parameters of neocytolysis included increased reactive oxygen species from expanded reticulocytes' mitochondria. The antioxidant catalase was also downregulated in these cells from hypoxia-stimulated microRNA-21. In addition, inflammation-induced hepcidin limited iron availability for erythropoiesis. After CPAP, some of these intermediaries diminished but Hb did not change. We conclude that in OSA, the absence of significant increase in red cell mass is integral to the pathogenesis, and results from hemolysis via neocytolysis combined with inflammation-mediated suppression of erythropoiesis.

See more in PubMed

Senaratna CV, Perret JL, Lodge CJ, et al. Prevalence of obstructive sleep apnea in the general population: a systematic review. Sleep Med Rev. 2017;34:70-81. doi:10.1016/j.smrv.2016.07.002

Eckert DJ, Malhotra A. Pathophysiology of adult obstructive sleep apnea. Proc Am Thorac Soc. 2008;5(2):144-153. doi:10.1513/pats.200707-114MG

Prabhakar NR. Oxygen sensing during intermittent hypoxia: cellular and molecular mechanisms. J Appl Physiol. 1985;90(5):1986-1994. doi:10.1152/jappl.2001.90.5.1986

Sullivan CE, Issa FG, Berthon-Jones M, McCauley VB, Costas LJ. Home treatment of obstructive sleep apnoea with continuous positive airway pressure applied through a nose-mask. Bull Eur Physiopathol Respir. 1984;20(1):49-54.

Ayas NT, Hirsch AA, Laher I, et al. New frontiers in obstructive sleep apnoea. Clin Sci. 2014;127(4):209-216. doi:10.1042/CS20140070

Semenza GL, Prabhakar NR. Neural regulation of hypoxia-inducible factors and redox state drives the pathogenesis of hypertension in a rodent model of sleep apnea. J Appl Physiol. 1985;119(10):1152-1156. doi:10.1152/japplphysiol.00162.2015

Yoon D, Ponka P, Prchal JT. Hypoxia. 5. Hypoxia and hematopoiesis. Am J Physiol Cell Physiol. 2011;300(6):C1215-C1222. doi:10.1152/ajpcell.00044.2011

Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148(3):399-408. doi:10.1016/j.cell.2012.01.021

Manalo DJ, Rowan A, Lavoie T, et al. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood. 2005;105(2):659-669. doi:10.1182/blood-2004-07-2958

Rankin EB, Biju MP, Liu Q, et al. Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J Clin Invest. 2007;117(4):1068-1077. doi:10.1172/JCI30117

Prchal JT. Primary and secondary erythrocytoses/polycythemias. In: Kaushansky K, Prchal JT, Burns LJ, Lichtman MA, Levi M, Linch DC, eds. Williams Hematology. 10th ed. McGraw-Hill Education; 2021:491-520 chap 58.

Weis JC, Sundar K, Jihyun S, Swierczek S, Prchal JT. HIF-mediated changes in erythropoiesis and gene expression in chronic intermittent hypoxia due to obstructive sleep apnea. Blood. 2014;124(21):1334. doi:10.1182/blood.V124.21.1334.1334

Stembridge M, Williams AM, Gasho C, et al. The overlooked significance of plasma volume for successful adaptation to high altitude in Sherpa and Andean natives. Proc Natl Acad Sci U S A. 2019;116(33):16177-16179. doi:10.1073/pnas.1909002116

Kremyanskaya M, Mascarenhas J, Hoffman R. Why does my patient have erythrocytosis? Hematol Oncol Clin North Am. 2012;26(2):267-283, vii-viii. doi:10.1016/j.hoc.2012.02.011

Gangaraju R, Sundar KM, Song J, Prchal JT. Polycythemia is rarely caused by obstructive sleep apnea. Blood. 2016;128(22):2444. doi:10.1182/blood.V128.22.2444.2444

Martelli V, Carelli E, Tomlinson GA, et al. Prevalence of elevated hemoglobin and hematocrit levels in patients with obstructive sleep apnea and the impact of treatment with continuous positive airway pressure: a meta-analysis. Hematology. 2022;27(1):889-901. doi:10.1080/16078454.2022.2109346

Alfrey CP, Rice L, Udden MM, Driscoll TB. Neocytolysis: physiological down-regulator of red-cell mass. Lancet. 1997;349(9062):1389-1390. doi:10.1016/S0140-6736(96)09208-2

Song J, Yoon D, Christensen RD, Horvathova M, Thiagarajan P, Prchal JT. HIF-mediated increased ROS from reduced mitophagy and decreased catalase causes neocytolysis. J Mol Med. 2015;93(8):857-866. doi:10.1007/s00109-015-1294-y

Li S, Qian XH, Zhou W, et al. Time-dependent inflammatory factor production and NFκB activation in a rodent model of intermittent hypoxia. Swiss Med Wkly. 2011;141:w13309. doi:10.4414/smw.2011.13309

Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352(16):1685-1695. doi:10.1056/NEJMra043430

Ganz T, Nemeth E. Hepcidin and iron homeostasis. Biochim Biophys Acta. 2012;1823(9):1434-1443. doi:10.1016/j.bbamcr.2012.01.014

Song J, Sundar KM, Robert C, et al. Pathophysiology of obstructive sleep apnea (OSA)-blood cells' reactive oxygen species and inflammation prevent polycythemia. Blood. 2018;132(suppl 1):1028. doi:10.1182/blood-2018-99-116658

Staub K, Haeusler M, Bender N, et al. Hemoglobin concentration of young men at residential altitudes between 200 and 2000 m mirrors Switzerland's topography. Blood. 2020;135(13):1066-1069. doi:10.1182/blood.2019004135

Gassmann M, Mairbäurl H, Livshits L, et al. The increase in hemoglobin concentration with altitude varies among human populations. Ann N Y Acad Sci. 2019;1450(1):204-220. doi:10.1111/nyas.14136

Christensen RD, Lambert DK, Henry E, Yaish HM, Prchal JT. End-tidal carbon monoxide as an indicator of the hemolytic rate. Blood Cells Mol Dis. 2015;54(3):292-296. doi:10.1016/j.bcmd.2014.11.018

Ahlgrim C, Birkner P, Seiler F, et al. Applying the optimized CO rebreathing method for measuring blood volumes and hemoglobin mass in heart failure patients. Front Physiol. 2018;9:1603. doi:10.3389/fphys.2018.01603

International Committee for Standardization in Haematology. Recommended methods for measurement of red-cell and plasma volume. J Nucl Med. 1980;21(8):793-800.

Beckman RL, Pittenger GL, Swanson DP, Thrall JH, Fiddian-Green RG. Blood loss measured with indium-111-labeled red blood cells in dogs. Radiology. 1983;148(1):243-245. doi:10.1148/radiology.148.1.6856843

Prchal JT, Throckmorton DW, Carroll AJ 3rd, Fuson EW, Gams RA, Prchal JF. A common progenitor for human myeloid and lymphoid cells. Nature. 1978;274(5671):590-591.

Ganz T, Jung G, Naeim A, et al. Immunoassay for human serum erythroferrone. Blood. 2017;130(10):1243-1246. doi:10.1182/blood-2017-04-777987

Ohlander SJ, Varghese B, Pastuszak AW. Erythrocytosis following testosterone therapy. Sex Med Rev. 2018;6(1):77-85. doi:10.1016/j.sxmr.2017.04.001

Lee HL, Chen CL, Yeh ST, Zweier JL, Chen YR. Biphasic modulation of the mitochondrial electron transport chain in myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol. 2012;302(7):H1410-H1422. doi:10.1152/ajpheart.00731.2011

Uchida T, Rossignol F, Matthay MA, et al. Prolonged hypoxia differentially regulates hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha expression in lung epithelial cells: implication of natural antisense HIF-1alpha. J Biol Chem. 2004;279(15):14871-14878. doi:10.1074/jbc.M400461200

Koh MY, Lemos R Jr, Liu X, Powis G. The hypoxia-associated factor switches cells from HIF-1alpha- to HIF-2alpha-dependent signaling promoting stem cell characteristics, aggressive tumor growth and invasion. Cancer Res. 2011;71(11):4015-4027. doi:10.1158/0008-5472.CAN-10-4142

Rha M-S, Jeong Y, Kim J, Kim C-H, Yoon J-H, Cho H-J. Is obstructive sleep apnea associated with erythrocytosis? A systematic review and meta-analysis. Laryngoscope Investig Otolaryngol. 2022;7(2):627-635. doi:10.1002/lio2.751

Christensen RD, Malleske DT, Lambert DK, et al. Measuring end-tidal carbon monoxide of jaundiced neonates in the birth hospital to identify those with hemolysis. Neonatology. 2016;109(1):1-5. doi:10.1159/000438482

Stal PS, Johansson B. Abnormal mitochondria organization and oxidative activity in the palate muscles of long-term snorers with obstructive sleep apnea. Respiration. 2012;83(5):407-417. doi:10.1159/000336040

Wang N, Khan SA, Prabhakar NR, Nanduri J. Impairment of pancreatic beta-cell function by chronic intermittent hypoxia. Exp Physiol. 2013;98(9):1376-1385. doi:10.1113/expphysiol.2013.072454

Wang Y, Zhang SX, Gozal D. Reactive oxygen species and the brain in sleep apnea. Respir Physiol Neurobiol. 2010;174(3):307-316. doi:10.1016/j.resp.2010.09.001

Blaser H, Dostert C, Mak TW, Brenner D. TNF and ROS crosstalk in inflammation. Trends Cell Biol. 2016;26(4):249-261. doi:10.1016/j.tcb.2015.12.002

Ryan S, Taylor CT, McNicholas WT. Predictors of elevated nuclear factor-kappaB-dependent genes in obstructive sleep apnea syndrome. Am J Respir Crit Care Med. 2006;174(7):824-830. doi:10.1164/rccm.200601-066OC

Lavie L. Oxidative stress in obstructive sleep apnea and intermittent hypoxia-revisited-the bad ugly and good: implications to the heart and brain. Sleep Med Rev. 2015;20:27-45. doi:10.1016/j.smrv.2014.07.003

Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood. 2003;102(3):783-788. doi:10.1182/blood-2003-03-0672

Ganz T. Iron deficiency and overload. In: Kaushansky K, Lichtman MA, Prchal JT, et al., eds. Williams Hematology. 9th ed. McGraw-Hill Education; 2015.

Wang CY, Babitt JL. Hepcidin regulation in the anemia of inflammation. Curr Opin Hematol. 2016;23(3):189-197. doi:10.1097/MOH.0000000000000236

Yoon D, Pastore YD, Divoky V, et al. Hypoxia-inducible factor-1 deficiency results in dysregulated erythropoiesis signaling and iron homeostasis in mouse development. J Biol Chem. 2006;281(35):25703-25711. doi:10.1074/jbc.M602329200

Prabhakar NR, Kumar GK, Peng YJ. Sympatho-adrenal activation by chronic intermittent hypoxia. J Appl Physiol. 1985;113(8):1304-1310. doi:10.1152/japplphysiol.00444.2012

Nanduri J, Peng YJ, Wang N, et al. Epigenetic regulation of redox state mediates persistent cardiorespiratory abnormalities after long-term intermittent hypoxia. J Physiol. 2017;595(1):63-77. doi:10.1113/JP272346

Nanduri J, Semenza GL, Prabhakar NR. Epigenetic changes by DNA methylation in chronic and intermittent hypoxia. Am J Physiol Lung Cell Mol Physiol. 2017;313(6):L1096-L1100. doi:10.1152/ajplung.00325.2017

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...