Zhilong Huoxue Tongyu capsule attenuates intracerebral hemorrhage induced redox imbalance by modulation of Nrf2 signaling pathway
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37351503
PubMed Central
PMC10282143
DOI
10.3389/fphar.2023.1197433
PII: 1197433
Knihovny.cz E-zdroje
- Klíčová slova
- Nrf2 signalling, antioxidants, intracerebal haemorrhage, redox imbalance, traditional Chinese medicine,
- Publikační typ
- časopisecké články MeSH
Background: One of the severely debilitating and fatal subtypes of hemorrhagic stroke is intracerebral hemorrhage (ICH), which lacks an adequate cure at present. The Zhilong Huoxue Tongyu (ZLHXTY) capsule has been utilized effectively since last decade to treat ICH, in some provinces of China but the scientific basis for its mechanism is lacking. Purpose: To investigate the neuroprotective role of ZLHXTY capsules for ICH-induced oxidative injury through the regulation of redox imbalance with the Nrf2 signaling pathway. Methods: Autologous blood injection model of ICH in C57BL/6J mice was employed. Three treatment groups received ZLHXTY once daily through oral gavage at doses 0.35 g/kg, 0.7 g/kg, and 1.4 g/kg, started after 2 h and continued for 72 h of ICH induction. The neurological outcome was measured using a balance beam test. Serum was tested for inflammatory markers IL-1β, IL-6, and TNF-α through ELISA, oxidative stress through hydrogen peroxide content assay, and antioxidant status by total antioxidant capacity (T-AOC) assay. Nuclear extract from brain tissue was assayed for Nrf2 transcriptional factor activity. RT-qPCR was performed for Nfe2l2, Sod1, Hmox1, Nqo1, and Mgst1; and Western blotting for determination of protein expression of Nrf2, p62, Pp62, Keap, HO1, and NQO1. Fluoro-jade C staining was also used to examine neuronal damage. Results: ZLHXTY capsule treatment following ICH demonstrated a protective effect against oxidative brain injury. Neurological scoring showed improvement in behavioral outcomes. ELISA-based identification demonstrated a significant decline in the expression of serum inflammatory markers. Hydrogen peroxide content in serum was found to be reduced. The total antioxidant capacity was also reduced in serum, but the ZLHXTY extract showed a concentration-dependent increase in T-AOC speculating at its intrinsic antioxidant potential. Nrf2 transcriptional factor activity, mRNA and protein expression analyses revealed normalization of Nrf2 and its downstream targets, which were previously elevated as a result of oxidative stress induced by ICH. Neuronal damage was also reduced markedly after ZLHXTY treatment as revealed by Fluoro-jade C staining. Conclusion: ZLHXTY capsules possess an intrinsic antioxidant potential that can modulate the ICH-induced redox imbalance in the brain as revealed by the normalization of Nrf2 and its downstream antioxidant targets.
Chengdu University of Traditional Chinese Medicine Chengdu Sichuan China
Institute of Integrated Chinese and Western Medicine of Southwest Medical University Luzhou China
The Czech Center for Traditional Chinese Medicine Olomouc Czechia
Zobrazit více v PubMed
Ahmed S. M. U., Luo L., Namani A., Wang X. J., Tang X. (2017). Nrf2 signaling pathway: Pivotal roles in inflammation. Biochimica Biophysica Acta (BBA) - Mol. Basis Dis. 1863 (2), 585–597. 10.1016/j.bbadis.2016.11.005 PubMed DOI
An S. J., Kim T. J., Yoon B. W. (2017). Epidemiology, risk factors, and clinical features of intracerebral hemorrhage: An update. J. Stroke 19 (1), 3–10. 10.5853/jos.2016.00864 PubMed DOI PMC
Chen-Roetling J., Regan R. F. (2017). Targeting the nrf2-heme oxygenase-1 Axis after intracerebral hemorrhage. Curr. Pharm. Des. 23 (15), 2226–2237. 10.2174/1381612822666161027150616 PubMed DOI PMC
Durazzo A., Nazhand A., Lucarini M., Silva A. M., Souto S. B., Guerra F., et al. (2021). Astragalus (Astragalus membranaceus Bunge): Botanical, geographical, and historical aspects to pharmaceutical components and beneficial role. Rendiconti Lincei Sci. Fis. Nat. 32 (3), 625–642. 10.1007/s12210-021-01003-2 DOI
Feeney D. M., Gonzalez A., Law W. A. (1982). Amphetamine, haloperidol, and experience interact to affect rate of recovery after motor cortex injury. Science 217 (4562), 855–857. 10.1126/science.7100929 PubMed DOI
He F., Ru X., Wen T. (2020). NRF2, a transcription factor for stress response and beyond. Int. J. Mol. Sci. 21 (13), 4777. 10.3390/ijms21134777 PubMed DOI PMC
Hennig P., Garstkiewicz M., Grossi S., Di Filippo M., French L. E., Beer H. D. (2018). The crosstalk between Nrf2 and inflammasomes. Int. J. Mol. Sci. 19 (2), 562. 10.3390/ijms19020562 PubMed DOI PMC
Hohl A., Gullo J. S., Silva C. C. P., Bertotti M. M., Felisberto F., Nunes J. C., et al. (2012). Plasma levels of oxidative stress biomarkers and hospital mortality in severe head injury: A multivariate analysis. J. Crit. Care 27 (5), e11–e19. 10.1016/j.jcrc.2011.06.007 PubMed DOI
Hu X., Tao C., Gan Q., Zheng J., Li H., You C. (2016). Oxidative stress in intracerebral hemorrhage: Sources, mechanisms, and therapeutic targets. Oxid. Med. Cell. Longev. 2016, 3215391. 10.1155/2016/3215391 PubMed DOI PMC
Ichimura Y., Waguri S., Sou Y. S., Kageyama S., Hasegawa J., Ishimura R., et al. (2013). Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol. Cell. 51 (5), 618–631. 10.1016/j.molcel.2013.08.003 PubMed DOI
Katsuragi Y., Ichimura Y., Komatsu M. (2016). Regulation of the keap1–nrf2 pathway by p62/SQSTM1. Curr. Opin. Toxicol. 1, 54–61. 10.1016/j.cotox.2016.09.005 DOI
Keep R. F., Hua Y., Xi G. (2012). Intracerebral haemorrhage: Mechanisms of injury and therapeutic targets. Lancet Neurology 11 (8), 720–731. 10.1016/S1474-4422(12)70104-7 PubMed DOI PMC
Kensler T. W., Wakabayashi N., Biswal S. (2006). Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 47, 89–116. 10.1146/annurev.pharmtox.46.120604.141046 PubMed DOI
Lam W. C., Lyu A., Bian Z. (2019). ICD-11: Impact on traditional Chinese medicine and World healthcare systems. Pharm. Med. 33 (5), 373–377. 10.1007/s40290-019-00295-y PubMed DOI
Lan X., Han X., Liu X., Wang J. (2019). Inflammatory responses after intracerebral hemorrhage: From cellular function to therapeutic targets. J. Cereb. blood flow metabolism 39 (1), 184–186. 10.1177/0271678X18805675 PubMed DOI PMC
Lau A., Wang X. J., Zhao F., Villeneuve N. F., Wu T., Jiang T., et al. (2010). A noncanonical mechanism of Nrf2 activation by autophagy deficiency: Direct interaction between Keap1 and p62. Mol. Cell. Biol. 30 (13), 3275–3285. 10.1128/MCB.00248-10 PubMed DOI PMC
Lee O. H., Jain A. K., Papusha V., Jaiswal A. K. (2007). An auto-regulatory loop between stress sensors INrf2 and Nrf2 controls their cellular abundance. J. Biol. Chem. 282 (50), 36412–36420. 10.1074/jbc.M706517200 PubMed DOI
Li P., Lin B., Tang P., Ye Y., Wu Z., Gui S., et al. (2021). Aqueous extract of Whitmania pigra Whitman ameliorates ferric chloride-induced venous thrombosis in rats via antioxidation. J. Thrombosis Thrombolysis 52 (1), 59–68. 10.1007/s11239-020-02337-8 PubMed DOI
Liang P., Mao L., Ma Y., Ren W., Yang S. (2021). A systematic review on Zhilong Huoxue Tongyu capsule in treating cardiovascular and cerebrovascular diseases: Pharmacological actions, molecular mechanisms and clinical outcomes. J. Ethnopharmacol. 277, 114234. 10.1016/j.jep.2021.114234 PubMed DOI
Liddle L. J., Ralhan S., Ward D. L., Colbourne F. (2020). Translational intracerebral hemorrhage research: Has current neuroprotection research ARRIVEd at a standard for experimental design and reporting? Transl. Stroke. Res. 11 (6), 1203–1213. 10.1007/s12975-020-00824-x PubMed DOI PMC
Liu Y., Yang S., Cai E., Lin L., Zeng P., Nie B., et al. (2020). Functions of lactate in the brain of rat with intracerebral hemorrhage evaluated with MRI/MRS and in vitro approaches. CNS Neurosci. Ther. 26 (10), 1031–1044. 10.1111/cns.13399 PubMed DOI PMC
Lorente L., Martín M. M., Abreu-González P., Ramos L., Cáceres J. J., Argueso M., et al. (2019). Maintained high sustained serum malondialdehyde levels after severe brain trauma injury in non-survivor patients. BMC Res. notes 12 (1), 789. 10.1186/s13104-019-4828-5 PubMed DOI PMC
Lorente L., Martín M. M., Almeida T., Abreu-González P., Ramos L., Argueso M., et al. (2015). Total antioxidant capacity is associated with mortality of patients with severe traumatic brain injury. BMC Neurol. 15 (1), 115. 10.1186/s12883-015-0378-1 PubMed DOI PMC
Ma Q. (2013). Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 53, 401–426. 10.1146/annurev-pharmtox-011112-140320 PubMed DOI PMC
Mazhar M., Yang G., Mao L., Liang P., Tan R., Wang L., et al. (2022). Zhilong Huoxue Tongyu capsules ameliorate early brain inflammatory injury induced by intracerebral hemorrhage via inhibition of canonical NFкβ signalling pathway. Front. Pharmacol. 13, 850060. 10.3389/fphar.2022.850060 PubMed DOI PMC
Morimoto M., Hashimoto T., Tsuda Y., Kitaoka T., Kyotani S. (2019). Evaluation of oxidative stress and antioxidant capacity in healthy children. J. Chin. Med. Assoc. 82 (8), 651–654. 10.1097/JCMA.0000000000000045 PubMed DOI
Nayak C., Nayak D., Raja A., Rao A. (2008). Relationship between markers of lipid peroxidation, thiol oxidation and Glasgow coma scale scores of moderate head injury patients in the 7 day post-traumatic period. Neurological Res. 30 (5), 461–464. 10.1179/016164107X251790 PubMed DOI
Ogawa F., Shimizu K., Muroi E., Hara T., Sato S. (2011). Increasing levels of serum antioxidant status, total antioxidant power, in systemic sclerosis. Clin. Rheumatol. 30 (7), 921–925. 10.1007/s10067-011-1695-4 PubMed DOI
Paolin A., Nardin L., Gaetani P., Rodriguez Y. B. R., Pansarasa O., Marzatico F. (2002). Oxidative damage after severe head injury and its relationship to neurological outcome. Neurosurgery 51 (4), 949–954. 10.1097/00006123-200210000-00018 PubMed DOI
Park G. J., Ro Y. S., Yoon H., Lee S. G. W., Jung E., Moon S. B., et al. (2022). Serum vitamin E level and functional prognosis after traumatic brain injury with intracranial injury: A multicenter prospective study. Front. neurology 13, 1008717. 10.3389/fneur.2022.1008717 PubMed DOI PMC
Rao P. V., Gan S. H. (2014). Cinnamon: A multifaceted medicinal plant. Evidence-Based Complementary Altern. Med. 2014, 642942. 10.1155/2014/642942 PubMed DOI PMC
Saha S., Buttari B., Panieri E., Profumo E., Saso L. (2020). An overview of Nrf2 signaling pathway and its role in inflammation. Molecules 25 (22), 5474. 10.3390/molecules25225474 PubMed DOI PMC
Samuel A. O., Huang B-T., Chen Y., Guo F-X., Yang D-D., Jin J-Q. (2021). Antioxidant and antibacterial insights into the leaves, leaf tea and medicinal roots from Astragalus membranaceus (Fisch) Bge. Sci. Rep. 11 (1), 19625. 10.1038/s41598-021-97109-6 PubMed DOI PMC
Shang H., Yang D., Zhang W., Li T., Ren X., Wang X., et al. (2013). Time course of keap1-nrf2 pathway expression after experimental intracerebral haemorrhage: Correlation with brain oedema and neurological deficit. Free Radic. Res. 47 (5), 368–375. 10.3109/10715762.2013.778403 PubMed DOI
Silva-Islas C. A., Maldonado P. D. (2018). Canonical and non-canonical mechanisms of Nrf2 activation. Pharmacol. Res. 134, 92–99. 10.1016/j.phrs.2018.06.013 PubMed DOI
World Health Organization (2019). WHO global report on traditional and complementary medicine. Available at: https://www.who.int/traditionalcomplementaryintegrativemedicine/WhoGlobalReportOnTraditionalAndComplementaryMedicine2019 .
Xiong X-Y., Wang J., Qian Z-M., Yang Q-W. (2014). Iron and intracerebral hemorrhage: From mechanism to translation. Transl. stroke Res. 5 (4), 429–441. 10.1007/s12975-013-0317-7 PubMed DOI
Xu T., Liu X., Wang S., Kong H., Yu X., Liu C., et al. (2022). Effect of Pheretima aspergillum on reducing fibrosis: A systematic review and meta-analysis. Front. Pharmacol. 13, 1039553. 10.3389/fphar.2022.1039553 PubMed DOI PMC
Yang C. H., Li R. X., Chuang L. Y. (2012). Antioxidant activity of various parts of Cinnamomum cassia extracted with different extraction methods. Mol. (Basel, Switz. 17 (6), 7294–7304. 10.3390/molecules17067294 PubMed DOI PMC
Yao Z., Bai Q., Wang G. (2021). Mechanisms of oxidative stress and therapeutic targets following intracerebral hemorrhage. Oxidative Med. Cell. Longev. 2021, 8815441. 10.1155/2021/8815441 PubMed DOI PMC
Zhang W., Sun C., Zhou S., Zhao W., Wang L., Sheng L., et al. (2021). Recent advances in chemistry and bioactivity of Sargentodoxa cuneata. J. Ethnopharmacol. 270, 113840. 10.1016/j.jep.2021.113840 PubMed DOI
Zhao J., Kobori N., Aronowski J., Dash P. K. (2006). Sulforaphane reduces infarct volume following focal cerebral ischemia in rodents. Neurosci. Lett. 393, 108–112. 10.1016/j.neulet.2005.09.065 PubMed DOI
Zhao X., Aronowski J. (2013). Nrf2 to pre-condition the brain against injury caused by products of hemolysis after ICH. Transl. stroke Res. 4 (1), 71–75. 10.1007/s12975-012-0245-y PubMed DOI PMC
Zhao X., Sun G., Ting S. M., Song S., Zhang J., Edwards N. J., et al. (2015). Cleaning up after ICH: The role of Nrf2 in modulating microglia function and hematoma clearance. J. Neurochem. 133 (1), 144–152. 10.1111/jnc.12974 PubMed DOI PMC
Zhao X., Sun G., Zhang J., Strong R., Dash P. K., Kan Y. W., et al. (2007). Transcription factor Nrf2 protects the brain from damage produced by intracerebral hemorrhage. Stroke 38 (12), 3280–3286. 10.1161/STROKEAHA.107.486506 PubMed DOI
Zhao X., Tan X., Shi H., Xia D. (2021). Nutrition and traditional Chinese medicine (TCM): A system's theoretical perspective. Eur. J. Clin. Nutr. 75 (2), 267–273. 10.1038/s41430-020-00737-w PubMed DOI
Zhou Y., Wang Y., Wang J., Anne Stetler R., Yang Q. W. (2014). Inflammation in intracerebral hemorrhage: From mechanisms to clinical translation. Prog. Neurobiol. 115, 25–44. 10.1016/j.pneurobio.2013.11.003 PubMed DOI