Attenuated Total Reflection Fourier Transform Infrared Spectroscopy for Forensic Screening of Long-Term Alcohol Consumption from Human Nails
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
37360459
PubMed Central
PMC10286297
DOI
10.1021/acsomega.3c02579
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Fourier transform infrared (FT-IR) spectroscopy is used throughout forensic laboratories for many applications. FT-IR spectroscopy can be useful with ATR accessories in forensic analysis for several reasons. It provides excellent data quality combined with high reproducibility, with minimal user-induced variations and no sample preparation. Spectra from heterogeneous biological systems, including the integumentary system, can be associated with hundreds or thousands of biomolecules. The nail matrix of keratin possesses a complicated structure with captured circulating metabolites whose presence may vary in space and time depending on context and history. We developed a new approach by using machine-learning (ML) tools to leverage the potential and enhance the selectivity of the instrument, create classification models, and provide invaluable information saved in human nails with statistical confidence. Here, we report chemometric analysis of ATR FT-IR spectra for the classification and prediction of long-term alcohol consumption from nail clippings in 63 donors. A partial least squares discriminant analysis (PLS-DA) was used to create a classification model that was validated against an independent data set which resulted in 91% correctly classified spectra. However, when considering the prediction results at the donor level, 100% accuracy was achieved, and all donors were correctly classified. To the best of our knowledge, this proof-of-concept study demonstrates for the first time the ability of ATR FT-IR spectroscopy to discriminate donors who do not drink alcohol from those who drink alcohol on a regular basis.
See more in PubMed
Lach M.Nailing the Gold Standard; USDTL, 2015, 6.
Paul R.; Tsanaclis L.; Murray C.; Boroujerdi R.; Facer L.; Corbin A. Ethyl Glucuronide as a Long-term Alcohol Biomarker in Fingernail and Hair. Matrix Comparison and Evaluation of Gender Bias. Alcohol Alcohol. 2019, 54, 402–407. 10.1093/alcalc/agz015. PubMed DOI
Muddasani S.; Lin G.; Hooper J.; Sloan S. B. Nutrition and nail disease. Clin. Dermatol. 2021, 39, 819–828. 10.1016/j.clindermatol.2021.05.009. PubMed DOI
Daniel C. R. 3rd; Piraccini B. M.; Tosti A. The nail and hair in forensic science. J. Am. Acad. Dermatol. 2004, 50, 258–261. 10.1016/j.jaad.2003.06.008. PubMed DOI
Sharma A.; Verma R.; Kumar R.; Chauhan R.; Sharma V. Chemometric analysis of ATR-FTIR spectra of fingernail clippings for classification and prediction of sex in forensic context. Microchem. J. 2020, 159, 10550410.1016/j.microc.2020.105504. DOI
Solimini R.; Minutillo A.; Kyriakou C.; Pichini S.; Pacifici R.; Busardo F. P. Nails in Forensic Toxicology: An Update. Curr. Pharm. Des. 2018, 23, 5468–5479. 10.2174/1381612823666170704123126. PubMed DOI
Grover C.; Bansal S. The nail as an investigative tool in medicine: What a dermatologist ought to know. Indian J. Dermatol. Venereol. Leprol. 2017, 83, 635–643. 10.4103/ijdvl.IJDVL_1050_16. PubMed DOI
Toprak S.; Kahriman F.; Dogan Z.; Ersoy G. A.-O.; Can E. A.-O.; Akpolat M. A.-O.; Can M. A.-O. The potential of Raman and FT-IR spectroscopic methods for the detection of chlorine in human nail samples. Forensic Sci. Med. Pathol. 2020, 16, 633–640. 10.1007/s12024-020-00313-5. PubMed DOI
Caccia G.; Re L.; Caccianiga M.; Cattaneo C. Traces under nails in clinical forensic medicine: not just DNA. Int. J. Legal Med. 2021, 135, 1709–1715. 10.1007/s00414-021-02519-w. PubMed DOI
Ali E. M. A. A.; Edwards H. G. M.; Hargreaves M. D.; Scowen I. J. Detection of explosives on human nail using confocal Raman microscopy. J. Raman Spectrosc. 2009, 40, 144–149. 10.1002/jrs.2096. DOI
Berger L.; Fendrich M.; Jones J.; Fuhrmann D.; Plate C.; Lewis D. Ethyl glucuronide in hair and fingernails as a long-term alcohol biomarker. Addiction 2014, 109, 425–431. 10.1111/add.12402. PubMed DOI PMC
Shu I.; Jones J.; Jones M.; Lewis D.; Negrusz A. Detection of Drugs in Nails: Three Year Experience. J. Anal. Toxicol. 2015, 39, 624–628. 10.1093/jat/bkv067. PubMed DOI
Mari F.; Politi L.; Bertol E. Nails of newborns in monitoring drug exposure during pregnancy. Forensic Sci. Int. 2008, 179, 176–180. 10.1016/j.forsciint.2008.06.001. PubMed DOI
Cappelle D.; Yegles M.; Neels H.; van Nuijs A. L. N.; De Doncker M.; Maudens K.; Covaci A.; Crunelle C. L. Nail analysis for the detection of drugs of abuse and pharmaceuticals: a review. Forensic Toxicol. 2015, 33, 12–36. 10.1007/s11419-014-0258-1. DOI
Cobo-Golpe M.; de-Castro-Ríos A.; Cruz A.; López-Rivadulla M.; Lendoiro E. Determination and Distribution of Cannabinoids in Nail and Hair Samples. J. Anal. Toxicol. 2021, 45, 969–975. 10.1093/jat/bkaa164. PubMed DOI
Go D. M.; Al-Delaimy W. K.; Schilling D.; Vuylsteke B.; Mehess S.; Spindel E. R.; McEvoy C. T. Hair and nail nicotine levels of mothers and their infants as valid biomarkers of exposure to intrauterine tobacco smoke. Tob. Induc. Dis. 2021, 19, 100.10.18332/tid/143209. PubMed DOI PMC
Engelhart D. A.; Jenkins A. J. Detection of cocaine analytes and opiates in nails from postmortem cases. J. Anal. Toxicol. 2002, 26, 489–492. 10.1093/jat/26.7.489. PubMed DOI
Garside D.; Ropero-Miller J. D.; Goldberger B. A.; Hamilton W. F.; Maples W. R. Identification of cocaine analytes in fingernail and toenail specimens. J. Forensic Sci. 1998, 43, 974–979. 10.1520/JFS14344J. PubMed DOI
Pelissier-Alicot A.-L.; Kintz P.; Ameline A.; Bosdure E.; Chabrol B.; Neant N.; Torrents R.; Sastre C.; Baillif-Couniou V.; Tuchtan-Torrents L.; Leonetti G. Bromazepam intoxication in an infant: Contribution of hair and nail analysis. Drug Test. Anal. 2020, 12, 397–401. 10.1002/dta.2774. PubMed DOI
Sagar G. Nail as Evidence in Forensic Toxicology. Int. Med.-Leg. Report. J. 2021, 8, 99–106.
Zieba-Palus J.; Kunicki M. Application of the micro-FTIR spectroscopy, Raman spectroscopy and XRF method examination of inks. Forensic Sci. Int. 2006, 158, 164–172. 10.1016/j.forsciint.2005.04.044. PubMed DOI
Szafarska M.; Wozniakiewicz M.; Pilch M.; Zięba-Palus J.; Kościelniak P. Computer analysis of ATR-FTIR spectra of paint samples for forensic purposes. J. Mol. Struct. 2009, 924-926, 504–513. 10.1016/j.molstruc.2008.11.048. DOI
Sonnex E.; Almond M. J.; Baum J. V.; Bond J. W. Identification of forged Bank of England £20 banknotes using IR spectroscopy. Spectrochim. Acta, A Mol. Biomol. Spectrosc. 2014, 118, 1158–1163. 10.1016/j.saa.2013.09.115. PubMed DOI
Fredericks P., Forensic analysis of fibres by vibrational spectroscopy. Chalmers J. M.; Edwards H. G. M.; Hargreaves M. D., Eds.; John Wiley & Sons: 2012; 153–169.
Kalasinsky K. S., Forensic Analysis of Hair by Infrared Spectroscopy. Chalmers J. M.; Edwards H. G. M.; Hargreaves M. D., Eds.; Wiley: 2012.
Manheim J.; Doty K. C.; McLaughlin G.; Lednev I. K. Forensic Hair Differentiation Using Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy. Appl. Spectrosc. 2016, 70, 1109.10.1177/0003702816652321. PubMed DOI
Bueno J.; Sikirzhytski V.; Lednev I. K. Attenuated total reflectance-FT-IR spectroscopy for gunshot residue analysis: potential for ammunition determination. Anal. Chem. 2013, 85, 7287–7294. 10.1021/ac4011843. PubMed DOI
Giuliano S.; Mistek-Morabito E.; Lednev I. K. Forensic Phenotype Profiling Based on the Attenuated Total Reflection Fourier Transform-Infrared Spectroscopy of Blood: Chronological Age of the Donor. ACS Omega 2020, 5, 27026–27031. 10.1021/acsomega.0c01914. PubMed DOI PMC
Mistek E.; Halámková L.; Lednev I. K. Phenotype profiling for forensic purposes: Nondestructive potentially on scene attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy of bloodstains. Forensic Chem. 2019, 16, 10017610.1016/j.forc.2019.100176. DOI
Takamura A.; Halámková L.; Ozawa T.; Lednev I. K. Phenotype Profiling for Forensic Purposes: Determining Donor Sex Based on Fourier Transform Infrared Spectroscopy of Urine Traces. Anal. Chem. 2019, 91, 6288–6295. 10.1021/acs.analchem.9b01058. PubMed DOI
Mistek-Morabito E.; Lednev I. K. Discrimination between human and animal blood by attenuated total reflection Fourier transform-infrared spectroscopy. Commun. Chem. 2020, 3, 178.10.1038/s42004-020-00424-8. PubMed DOI PMC
Weber A.; Hoplight B.; Ogilvie R.; Muro C.; Khandasammy S. R.; Pérez-Almodóvar L.; Sears S.; Lednev I. K. Innovative Vibrational Spectroscopy Research for Forensic Application. Anal. Chem. 2023, 95, 167–205. 10.1021/acs.analchem.2c05094. PubMed DOI
Standard A. N., Standard Practice for Identification of Seized Drugs. 2022.
Perry P. J.; Doroudgar S.; Van Dyke P. Ethanol Forensic Toxicology. J. Am. Acad. Psychiatry Law 2017, 45, 429–438. PubMed
Hargreaves M. D., Drugs of Abuse – Application of Handheld FT-IR and Raman Spectrometers. In Infrared and Raman Spectroscopy in Forensic Science, CHalmers J. M.; Edwards H. G. M.; Hargreeaves M. D., Eds.; Wiley: 2012; 339–348.
He X.; Wang J.; You X.; Niu F.; Fan L.; Lv Y. Classification of heroin, methamphetamine, ketamine and their additives by attenuated total reflection-Fourier transform infrared spectroscopy and chemometrics. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 241, 11866510.1016/j.saa.2020.118665. PubMed DOI
Kranenburg R. F.; Stuyver L. I.; de Ridder R.; van Beek A.; Colmsee E.; van Asten A. C. Deliberate evasion of narcotic legislation: Trends visualized in commercial mixtures of new psychoactive substances analyzed by GC-solid deposition-FTIR. Forensic Chem. 2021, 25, 10034610.1016/j.forc.2021.100346. DOI
Custódio M. F.; Magalhães L. O.; Arantes L. C.; Braga J. W. B. Identification of Synthetic Drugs on Seized Blotter Papers Using ATR-FTIR and PLS-DA: Routine Application in a Forensic Laboratory. J. Braz. Chem. Soc. 2021, 32, 513–522. 10.21577/0103-5053.20200205. DOI
Salerno T. M. G.; Donato P.; Frison G.; Zamengo L.; Mondello L. Gas Chromatography—Fourier Transform Infrared Spectroscopy for Unambiguous Determination of Illicit Drugs: A Proof of Concept. Front. Chem. 2020, 8, 624.10.3389/fchem.2020.00624. PubMed DOI PMC
Coopman R.; Van de Vyver T.; Kishabongo A. S.; Katchunga P.; Van Aken E. H.; Cikomola J.; Monteyne T.; Speeckaert M. M.; Delanghe J. R. Glycation in human fingernail clippings using ATR-FTIR spectrometry, a new marker for the diagnosis and monitoring of diabetes mellitus. Clin. Biochem. 2017, 50, 62–67. 10.1016/j.clinbiochem.2016.09.001. PubMed DOI
Biancolillo A.; Marini F.; Ruckebusch C.; Vitale R. Chemometric Strategies for Spectroscopy-Based Food Authentication. Appl. Sci. 2020, 10, 6544.10.3390/app10186544. DOI
Rohart F.; Gautier B.; Singh A.; Lê Cao K.-A. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 2017, 13, e100575210.1371/journal.pcbi.1005752. PubMed DOI PMC
Robin X.; Turck N.; Hainard A.; Tiberti N.; Lisacek F.; Sanchez J.-C.; Müller M. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 2011, 12, 77.10.1186/1471-2105-12-77. PubMed DOI PMC
Diago M. P.; Fernández-Novales J.; Gutiérrez S.; Marañón M.; Tardaguila J. Development and Validation of a New Methodology to Assess the Vineyard Water Status by On-the-Go Near Infrared Spectroscopy. Front. Plant Sci. 2018, 9, 59.10.3389/fpls.2018.00059. PubMed DOI PMC
Hastie T.; Tibshirani R.; Friedman J., The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: 2009; 764.
Rubingh C. M.; Bijlsma S.; Derks E. P. P. A.; Bobeldijk I.; Verheij E. R.; Kochhar S.; Smilde A. K. Assessing the Performance of Statistical Validation Tools for Megavariate Metabolomics Data. Metabolomics 2006, 2, 53–61. 10.1007/s11306-006-0022-6. PubMed DOI PMC
Fawcett T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. 10.1016/j.patrec.2005.10.010. DOI
Lê Cao K.-A.; Boitard S.; Besse P. Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems. BMC Bioinformatics 2011, 12, 253.10.1186/1471-2105-12-253. PubMed DOI PMC
Selvam J. P.; Gunasekaran S. Biological analysis of Fingernails of Healthy and Thyroid disordered subjects by FTIR-ATR spectroscopic technique. Int. J. PharmTech Res. 2018, 11, 242–252. 10.20902/IJPTR.2018.11306. DOI
Sundaram K.; Gunasekaran S.; Sailatha E.; Marthandam P.; Kuppuraj P. FTIR-ATR Spectroscopic Technique on Human Single Intact Hair Fibre -A Case Study of Thyroid Patients. Int. J. Adv. Sci. Technol. Eng. Manag. Sci. 2016, 2, 2454–2356.
Bantignies J. L.; Fuchs G.; Carr G. L.; Williams G. P.; Lutz D.; Marull S. Organic reagent interaction with hair spatially characterized by infrared microspectroscopy using synchrotron radiation. Int. J. Cosmet. Sci. 1998, 20, 381–394. 10.1046/j.1467-2494.1998.177055.x. PubMed DOI
Lehtinen J. Spectroscopic Studies of Human Hair, Nail, and Saliva Samples Using a Cantilever-Based Photoacoustic Detection. Int. J. Thermophys. 2013, 34, 1559–1568. 10.1007/s10765-013-1488-x. DOI
Olsztyńska-Janus S.; Szymborska-Małek K.; Gąsior-Głogowska M.; Walski T.; Komorowska M.; Witkiewicz W.; Pezowicz C.; Kobielarz M.; Szotek S. Spectroscopic techniques in the study of human tissues and their components. Part I: IR spectroscopy. Acta Bioeng. Biomech. 2012, 14, 101–115. PubMed
Scott D. A.; Renaud D. E.; Krishnasamy S.; Meriç P.; Buduneli N.; Çetinkalp Ş.; Liu K.-Z. Diabetes-related molecular signatures in infrared spectra of human saliva. Diabetol. Metab. Syndr. 2010, 2, 48.10.1186/1758-5996-2-48. PubMed DOI PMC
Drotár P.; Dobeš M. Dysgraphia detection through machine learning. Sci. Rep. 2020, 10, 21541.10.1038/s41598-020-78611-9. PubMed DOI PMC
Beleites C.; Neugebauer U.; Bocklitz T.; Krafft C.; Popp J. Sample size planning for classification models. Anal. Chim. Acta 2013, 760, 25–33. 10.1016/j.aca.2012.11.007. PubMed DOI
Pragst F.; Yegles M. Determination of fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) in hair: a promising way for retrospective detection of alcohol abuse during pregnancy?. Ther. Drug Monit. 2008, 30, 255.10.1097/FTD.0b013e318167d602. PubMed DOI
From Spectra to Signatures: Detecting Fentanyl in Human Nails with ATR-FTIR and Machine Learning