Statistics of the Sum of Double Random Variables and Their Applications in Performance Analysis and Optimization of Simultaneously Transmitting and Reflecting Reconfigurable Intelligent Surface-Assisted Non-Orthogonal Multi-Access Systems
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
CZ.10.03.01/00/22_003/0000048
REFRESH project - Research Excellence For Region Sustainability and High-tech Industries
PubMed
39338893
PubMed Central
PMC11435853
DOI
10.3390/s24186148
PII: s24186148
Knihovny.cz E-resources
- Keywords
- energy harvesting, ergodic capacity, non-orthogonal multiple access (NOMA), outage probability (OP), reconfigurable intelligent surface (RIS), simultaneously transmitting and reflecting (STAR), symbol error rate,
- Publication type
- Journal Article MeSH
For the future of sixth-generation (6G) wireless communication, simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) technology is emerging as a promising solution to achieve lower power transmission and flawless coverage. To facilitate the performance analysis of RIS-assisted networks, the statistics of the sum of double random variables, i.e., the sum of the products of two random variables of the same distribution type, become vitally necessary. This paper applies the statistics of the sum of double random variables in the performance analysis of an integrated power beacon (PB) energy-harvesting (EH)-based NOMA-assisted STAR-RIS network to improve its outage probability (OP), ergodic rate, and average symbol error rate. Furthermore, the impact of imperfect successive interference cancellation (ipSIC) on system performance is also analyzed. The analysis provides the closed-form expressions of the OP and ergodic rate derived for both imperfect and perfect SIC (pSIC) cases. All analyses are supported by extensive simulation results, which help recommend optimized system parameters, including the time-switching factor, the number of reflecting elements, and the power allocation coefficients, to minimize the OP. Finally, the results demonstrate the superiority of the proposed framework compared to conventional NOMA and OMA systems.
See more in PubMed
Lin Z., Lin M., de Cola T., Wang J.B., Zhu W.P., Cheng J. Supporting IoT With Rate-Splitting Multiple Access in Satellite and Aerial-Integrated Networks. IEEE Internet Things J. 2021;8:11123–11134. doi: 10.1109/JIOT.2021.3051603. DOI
Khan W.U., Liu J., Jameel F., Sharma V., Jäntti R., Han Z. Spectral Efficiency Optimization for Next Generation NOMA-Enabled IoT Networks. IEEE Trans. Veh. Technol. 2020;69:15284–15297. doi: 10.1109/TVT.2020.3038387. DOI
Nguyen T.T.T., Do D.T. Exploiting Full-duplex and Fixed Power Allocation Approaches for Dual-hop Transmission in Downlink NOMA. Adv. Electr. Electron. Eng. 2021;19:212–221. doi: 10.15598/aeee.v19i3.4116. DOI
Islam S.M.R., Avazov N., Dobre O.A., Kwak K.s. Power-Domain Non-Orthogonal Multiple Access (NOMA) in 5G Systems: Potentials and Challenges. IEEE Commun. Surv. Tutorials. 2017;19:721–742. doi: 10.1109/COMST.2016.2621116. DOI
Nguyen H., Nguyen T.N., Minh B.V., Pham T.H.T., Le A.T., Voznak M. Security-Reliability Analysis in CR-NOMA IoT Network Under I/Q Imbalance. IEEE Access. 2023;11:119045–119056. doi: 10.1109/ACCESS.2023.3327789. DOI
Le A.T., Tran D.H., Le C.B., Tin P.T., Nguyen T.N., Ding Z., Poor H.V., Voznak M. Power Beacon and NOMA-Assisted Cooperative IoT Networks With Co-Channel Interference: Performance Analysis and Deep Learning Evaluation. IEEE Trans. Mob. Comput. 2024;23:7270–7283. doi: 10.1109/TMC.2023.3333764. DOI
Thuan D.H., Nguyen N.T., Nguyen X.T., Hau N.T., Minh B.V., Nguyen T.N. Uplink and downlink of energy harvesting NOMA system: Performance analysis. J. Inf. Telecommun. 2024;8:92–107. doi: 10.1080/24751839.2023.2260230. DOI
Wan D., Huang R., Wen M., Chen G., Ji F., Li J. A Simple Multicarrier Transmission Technique Combining Transmit Diversity and Data Multiplexing for Non-Orthogonal Multiple Access. IEEE Trans. Veh. Technol. 2021;70:7216–7220. doi: 10.1109/TVT.2021.3084325. DOI
Nguyen H.S., Ly T.T.H., Nguyen T.S., Huynh V.V., Nguyen T.L., Voznak M. Outage Performance Analysis and SWIPT Optimization in Energy-Harvesting Wireless Sensor Network Deploying NOMA. Sensors. 2019;19:613. doi: 10.3390/s19030613. PubMed DOI PMC
Do D.T., Nguyen T.T.T., Nguyen T.N., Li X., Voznak M. Uplink and downlink NOMA transmission using full-duplex UAV. IEEE Access. 2020;8:164347–164364. doi: 10.1109/ACCESS.2020.3023163. DOI
Ly T.T.H., Nguyen H.S., Nguyen T.S., Huynh V.V., Nguyen T.L., Voznak M. Outage Probability Analysis in Relaying Cooperative Systems with NOMA Considering Power Splitting. Symmetry. 2019;11:72. doi: 10.3390/sym11010072. DOI
Nguyen V.V., Tran T.T., Tri V.V., Huynh V.V., Nguyen H.S., Voznak M. Power-splitting protocol non-orthogonal multiple access (NOMA) in 5G systems: Outage performance; Proceedings of the 10th International Symposium on Information and Communication Technology; Hanoi Ha Long Bay, Vietnam. 4–6 December 2019; pp. 224–228. DOI
Hoc L.T.T., Nguyen H.S., Ma Q.P., Huynh V.V., Nguyen T.L., Phuoc H.T., Voznak M. Outage and Bit Error Probability Analysis in Energy Harvesting Wireless Cooperative Networks. Elektron. Ir Elektrotechnika. 2019;25:69–74. doi: 10.5755/j01.eie.25.5.24359. DOI
Van H.T., Nguyen H.S., Nguyen T.S., Huynh V.V., Nguyen T.L., Sevcik L., Voznak M. Outage Performance Analysis of Non-Orthogonal Multiple Access with Time-Switching Energy Harvesting. Elektron. Ir Elektrotechnika. 2019;25:85–91. doi: 10.5755/j01.eie.25.3.23682. DOI
Phan V.D., Nguyen B.C., Hoang T.M., Nguyen T.N., Tran P.T., Minh B.V., Voznak M. Performance of Cooperative Communication System With Multiple Reconfigurable Intelligent Surfaces Over Nakagami-m Fading Channels. IEEE Access. 2022;10:9806–9816. doi: 10.1109/ACCESS.2022.3144364. DOI
Quang P., Kien N., Duy T., An N., Tung N., Le A.V. Performance evaluation of reconfigurable intelligent surface aided multi-hop relaying schemes with short packet communication. Adv. Electr. Electron. Eng. 2024;22:97–106. doi: 10.15598/aeee.v22i1.5583. DOI
Lin Z., Niu H., An K., Wang Y., Zheng G., Chatzinotas S., Hu Y. Refracting RIS-Aided Hybrid Satellite-Terrestrial Relay Networks: Joint Beamforming Design and Optimization. IEEE Trans. Aerosp. Electron. Syst. 2022;58:3717–3724. doi: 10.1109/TAES.2022.3155711. DOI
Niu H., Chu Z., Zhou F., Zhu Z., Zhen L., Wong K.K. Robust Design for Intelligent Reflecting Surface-Assisted Secrecy SWIPT Network. IEEE Trans. Wirel. Commun. 2022;21:4133–4149. doi: 10.1109/TWC.2021.3126833. DOI
Zhu Z., Li Z., Chu Z., Sun G., Hao W., Liu P., Lee I. Resource Allocation for Intelligent Reflecting Surface Assisted Wireless Powered IoT Systems With Power Splitting. IEEE Trans. Wirel. Commun. 2022;21:2987–2998. doi: 10.1109/TWC.2021.3117346. DOI
Yang G., Xu X., Liang Y.C. Intelligent Reflecting Surface Assisted Non-Orthogonal Multiple Access; Proceedings of the 2020 IEEE Wireless Communications and Networking Conference (WCNC); Seoul, Republic of Korea. 25–28 May 2020; pp. 1–6. DOI
Le A.T., Hieu T.D., Nguyen T.N., Le T.L., Nguyen S.Q., Voznak M. Physical layer security analysis for RIS-aided NOMA systems with non-colluding eavesdroppers. Comput. Commun. 2024;219:194–203. doi: 10.1016/j.comcom.2024.03.011. DOI
Ding Z., Schober R., Poor H.V. On the Impact of Phase Shifting Designs on IRS-NOMA. IEEE Wirel. Commun. Lett. 2020;9:1596–1600. doi: 10.1109/LWC.2020.2991116. DOI
Mu X., Liu Y., Guo L., Lin J., Al-Dhahir N. Exploiting Intelligent Reflecting Surfaces in NOMA Networks: Joint Beamforming Optimization. IEEE Trans. Wirel. Commun. 2020;19:6884–6898. doi: 10.1109/TWC.2020.3006915. DOI
Elhattab M., Arfaoui M.A., Assi C., Ghrayeb A. Reconfigurable Intelligent Surface Assisted Coordinated Multipoint in Downlink NOMA Networks. IEEE Commun. Lett. 2021;25:632–636. doi: 10.1109/LCOMM.2020.3029717. DOI
Hou T., Liu Y., Song Z., Sun X., Chen Y., Hanzo L. Reconfigurable Intelligent Surface Aided NOMA Networks. IEEE J. Sel. Areas Commun. 2020;38:2575–2588. doi: 10.1109/JSAC.2020.3007039. DOI
Zhang C., Yi W., Liu Y., Wang Q. Multi-cell NOMA: Coherent Reconfigurable Intelligent Surfaces Model With Stochastic Geometry; Proceedings of the ICC 2021—IEEE International Conference on Communications; Montreal, QC, Canada. 14–23 June 2021; pp. 1–6. DOI
Ding Z., Vincent Poor H. A Simple Design of IRS-NOMA Transmission. IEEE Commun. Lett. 2020;24:1119–1123. doi: 10.1109/LCOMM.2020.2974196. DOI
Yue X., Liu Y. Performance Analysis of Intelligent Reflecting Surface Assisted NOMA Networks. IEEE Trans. Wirel. Commun. 2022;21:2623–2636. doi: 10.1109/TWC.2021.3114221. DOI
Xu J., Liu Y., Mu X., Dobre O.A. STAR-RISs: Simultaneous Transmitting and Reflecting Reconfigurable Intelligent Surfaces. IEEE Commun. Lett. 2021;25:3134–3138. doi: 10.1109/LCOMM.2021.3082214. DOI
Liu Y., Mu X., Xu J., Schober R., Hao Y., Poor H.V., Hanzo L. STAR: Simultaneous Transmission and Reflection for 360° Coverage by Intelligent Surfaces. IEEE Wirel. Commun. 2021;28:102–109. doi: 10.1109/MWC.001.2100191. DOI
Wu C., Liu Y., Mu X., Gu X., Dobre O.A. Coverage Characterization of STAR-RIS Networks: NOMA and OMA. IEEE Commun. Lett. 2021;25:3036–3040. doi: 10.1109/LCOMM.2021.3091807. DOI
Mu X., Liu Y., Guo L., Lin J., Schober R. Simultaneously Transmitting and Reflecting (STAR) RIS Aided Wireless Communications. IEEE Trans. Wirel. Commun. 2022;21:3083–3098. doi: 10.1109/TWC.2021.3118225. DOI
Ni W., Liu Y., Eldar Y.C., Yang Z., Tian H. STAR-RIS Integrated Nonorthogonal Multiple Access and Over-the-Air Federated Learning: Framework, Analysis, and Optimization. IEEE Internet Things J. 2022;9:17136–17156. doi: 10.1109/JIOT.2022.3188544. DOI
Hou T., Wang J., Liu Y., Sun X., Li A., Ai B. A Joint Design for STAR-RIS Enhanced NOMA-CoMP Networks: A Simultaneous-Signal-Enhancement-and-Cancellation-Based (SSECB) Design. IEEE Trans. Veh. Technol. 2022;71:1043–1048. doi: 10.1109/TVT.2021.3129178. DOI
Niu H., Chu Z., Zhou F., Xiao P., Al-Dhahir N. Weighted Sum Rate Optimization for STAR-RIS-Assisted MIMO System. IEEE Trans. Veh. Technol. 2022;71:2122–2127. doi: 10.1109/TVT.2021.3131568. DOI
Niu H., Chu Z., Zhou F., Zhu Z. Simultaneous Transmission and Reflection Reconfigurable Intelligent Surface Assisted Secrecy MISO Networks. IEEE Commun. Lett. 2021;25:3498–3502. doi: 10.1109/LCOMM.2021.3109164. DOI
Zuo J., Liu Y., Ding Z., Song L., Poor H.V. Joint Design for Simultaneously Transmitting and Reflecting (STAR) RIS Assisted NOMA Systems. IEEE Trans. Wirel. Commun. 2023;22:611–626. doi: 10.1109/TWC.2022.3197079. DOI
Zhang C., Yi W., Liu Y., Ding Z., Song L. STAR-IOS Aided NOMA Networks: Channel Model Approximation and Performance Analysis. IEEE Trans. Wirel. Commun. 2022;21:6861–6876. doi: 10.1109/TWC.2022.3152703. DOI
Xie Z., Yi W., Wu X., Liu Y., Nallanathan A. STAR-RIS Aided NOMA in Multicell Networks: A General Analytical Framework With Gamma Distributed Channel Modeling. IEEE Trans. Commun. 2022;70:5629–5644. doi: 10.1109/TCOMM.2022.3186409. DOI
Liu Y., Mu X., Schober R., Poor H.V. Simultaneously Transmitting and Reflecting (STAR)-RISs: A Coupled Phase-Shift Model; Proceedings of the ICC 2022—IEEE International Conference on Communications; Seoul, Republic of Korea. 16–20 May 2022; pp. 2840–2845. DOI
Aldababsa M., Khaleel A., Basar E. Simultaneous transmitting and ReflectingIntelligent surfaces-empowered NOMA networks. arXiv. 2021 doi: 10.48550/arXiv.2110.05311.2110.05311 DOI
Zuo J., Liu Y., Ding Z., Wang X. Uplink noma for star-ris networks. arXiv. 2021 doi: 10.48550/arXiv.2110.05686.2110.05686 DOI
Zhang Z., Chen J., Liu Y., Wu Q., He B., Yang L. On the Secrecy Design of STAR-RIS Assisted Uplink NOMA Networks. IEEE Trans. Wirel. Commun. 2022;21:11207–11221. doi: 10.1109/TWC.2022.3190563. DOI
Wu C., Mu X., Liu Y., Gu X., Wang X. Resource Allocation in STAR-RIS-Aided Networks: OMA and NOMA. IEEE Trans. Wirel. Commun. 2022;21:7653–7667. doi: 10.1109/TWC.2022.3160151. DOI
Zhao B., Zhang C., Yi W., Liu Y. Ergodic Rate Analysis of STAR-RIS Aided NOMA Systems. IEEE Commun. Lett. 2022;26:2297–2301. doi: 10.1109/LCOMM.2022.3194363. DOI
Do D.T. Optimal Energy Har vesting Scheme for Power Beacon-Assisted Wireless-Powered Networks. Indones. J. Electr. Eng. Comput. Sci. 2017;7:802–808.
Tin P.T., Dinh B.H., Nguyen T.N., Ha D.H., Trang T.T. Power Beacon-Assisted Energy Harvesting Wireless Physical Layer Cooperative Relaying Networks: Performance Analysis. Symmetry. 2020;12:106. doi: 10.3390/sym12010106. DOI
Nguyen T.N., Tu L.T., Fazio P., Van Chien T., Le C.V., Binh H.T.T., Voznak M. On the Dilemma of Reliability or Security in Unmanned Aerial Vehicle Communications Assisted by Energy Harvesting Relaying. IEEE J. Sel. Areas Commun. 2024;42:52–67. doi: 10.1109/JSAC.2023.3322756. DOI
Minh B., Tran M., Phan V., Hieu N. D2D Communication Network with the Assistance of Power Beacon under the Impact of Co-channel Interferences and Eavesdropper: Performance Analysis. Adv. Electr. Electron. Eng. 2024;21:351–359. doi: 10.15598/aeee.v21i4.5495. DOI
Vu T.H., Kim S. Performance Evaluation of Power-Beacon-Assisted Wireless-Powered NOMA IoT-Based Systems. IEEE Internet Things J. 2021;8:11655–11665. doi: 10.1109/JIOT.2021.3058680. DOI
Do D.T., Nguyen M.S.V., Nguyen T.N., Li X., Choi K. Enabling Multiple Power Beacons for Uplink of NOMA-Enabled Mobile Edge Computing in Wirelessly Powered IoT. IEEE Access. 2020;8:148892–148905. doi: 10.1109/ACCESS.2020.3015741. DOI
Zhang Y., Feng S., Tang W. Performance Analysis and Optimization for Power Beacon-Assisted Wireless Powered Cooperative NOMA Systems. IEEE Access. 2020;8:198436–198450. doi: 10.1109/ACCESS.2020.3034917. DOI
Lei J., Zhang T., Mu X., Liu Y. NOMA for STAR-RIS Assisted UAV Networks. IEEE Trans. Commun. 2024;72:1732–1745. doi: 10.1109/TCOMM.2023.3333880. DOI
Alanazi F. Intelligent reflecting surfaces with energy harvesting for Nakagami fading channels. Telecommun. Syst. 2021;78:351–361. doi: 10.1007/s11235-021-00811-z. DOI
Zhang B., Yang K., Wang K., Zhang G. Performance Analysis of RIS-Assisted Wireless Communications With Energy Harvesting. IEEE Trans. Veh. Technol. 2023;72:1325–1330. doi: 10.1109/TVT.2022.3205448. DOI
Alanazi F. Non orthogonal multiple access with energy harvesting using reconfigurable intelligent surfaces for Rayleigh channels. Wirel. Pers. Commun. 2022;12:2161–2181. doi: 10.1007/s11277-021-08986-z. DOI
Alakoca H., Babaei M., Durak-Ata L., Basar E. RIS-Empowered Non-Linear Energy Harvesting Communications Over Nakagami-m Channels. IEEE Commun. Lett. 2022;26:2215–2219. doi: 10.1109/LCOMM.2022.3182482. DOI
Badarneh O.S. Statistics of the Product of Two α-F Variates With Applications. IEEE Commun. Lett. 2021;25:1761–1765. doi: 10.1109/LCOMM.2021.3062598. DOI
Tegos S.A., Tyrovolas D., Diamantoulakis P.D., Liaskos C.K., Karagiannidis G.K. On the Distribution of the Sum of Double-Nakagami-m Random Vectors and Application in Randomly Reconfigurable Surfaces. IEEE Trans. Veh. Technol. 2022;71:7297–7307. doi: 10.1109/TVT.2022.3164846. DOI
Silva H.S., Lourenço G.B.L.C., Queiroz W.J.L., Oliveira A.S.R., Madeiro F., Badarneh O.S., Dias U.S., de Souza R.A.A. On the Sum of α-F and Double α-F VariatesWith Application to MRC and RIS. IEEE Commun. Lett. 2022;26:2894–2898. doi: 10.1109/LCOMM.2022.3205861. DOI
Do T.N., Kaddoum G., Nguyen T.L., da Costa D.B., Haas Z.J. Multi-RIS-Aided Wireless Systems: Statistical Characterization and Performance Analysis. IEEE Trans. Commun. 2021;69:8641–8658. doi: 10.1109/TCOMM.2021.3117599. DOI
Gradshteyn I.S., Ryzhik I.M. Table of Integrals, Series, and Products. Academic Press; Cambridge, MA, USA: 2014.
Yacoub M.D. The κ-μ distribution and the η-μ distribution. IEEE Antennas Propag. Mag. 2007;49:68–81. doi: 10.1109/MAP.2007.370983. DOI
Li X., Zheng Y., Zeng M., Liu Y., Dobre O.A. Enhancing Secrecy Performance for STAR-RIS NOMA Networks. IEEE Trans. Veh. Technol. 2023;72:2684–2688. doi: 10.1109/TVT.2022.3213334. DOI
Goldsmith A. Wireless Communications. Cambridge University Press; Cambridge, UK: 2005.
Abramowitz M., Stegun I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Volume 55 US Government Printing Office; Washington, DC, USA: 1948.
An K., Lin M., Ouyang J., Zhu W.P. Secure Transmission in Cognitive Satellite Terrestrial Networks. IEEE J. Sel. Areas Commun. 2016;34:3025–3037. doi: 10.1109/JSAC.2016.2615261. DOI
Nguyen T.N., Tran D.H., Chien T.V., Phan V.D., Voznak M., Tin P.T., Chatzinotas S., Ng D.W.K., Poor H.V. Security–Reliability Tradeoff Analysis for SWIPT- and AF-Based IoT Networks With Friendly Jammers. IEEE Internet Things J. 2022;9:21662–21675. doi: 10.1109/JIOT.2022.3182755. DOI
Nguyen T.N., Tu L.T., Tran D.H., Phan V.D., Voznak M., Chatzinotas S., Ding Z. Outage Performance of Satellite Terrestrial Full-Duplex Relaying Networks With co-Channel Interference. IEEE Wirel. Commun. Lett. 2022;11:1478–1482. doi: 10.1109/LWC.2022.3175734. DOI
Nguyen T.N., Duy T.T., Tran P.T., Voznak M., Li X., Poor H.V. Partial and Full Relay Selection Algorithms for AF Multi-Relay Full-Duplex Networks With Self-Energy Recycling in Non-Identically Distributed Fading Channels. IEEE Trans. Veh. Technol. 2022;71:6173–6188. doi: 10.1109/TVT.2022.3158340. DOI
Huynh V.V., Tan-Loc N., Quoc-Phu M., Sevcik L., Nguyen H.S., Voznak M. Energy Efficiency Maximization of Two-Time-Slot and Three-Time-Slot Two-Way Relay-Assisted Device-to-Device Underlaying Cellular Networks. Energies. 2020;13:3422. doi: 10.3390/en13133422. DOI
Al-qudah Z., Darabkh K. A simple Encoding Scheme to Achieve the Capacity of Half-Duplex Relay Channel. Adv. Electr. Electron. Eng. 2022;20:33–42. doi: 10.15598/aeee.v20i1.4347. DOI
Paris J.F. Statistical Characterization of κ − μ Shadowed Fading. IEEE Trans. Veh. Technol. 2014;63:518–526. doi: 10.1109/TVT.2013.2281213. DOI