Outage Performance Analysis and SWIPT Optimization in Energy-Harvesting Wireless Sensor Network Deploying NOMA
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
no. SP2018/59
VSB Technical University of Ostrava, Czech Republic
no LM2015070
partly by The Ministry of Education, Youth and Sports from the Large Infrastructures for Research, Experimental Development, and Innovations project
PubMed
30717155
PubMed Central
PMC6387152
DOI
10.3390/s19030613
PII: s19030613
Knihovny.cz E-zdroje
- Klíčová slova
- NOMA, energy-harvesting, outage probability, power-splitting, throughput, time-switching, wireless sensor network,
- Publikační typ
- časopisecké články MeSH
Thanks to the benefits of non-orthogonal multiple access (NOMA) in wireless communications, we evaluate a wireless sensor network deploying NOMA (WSN-NOMA), where the destination can receive two data symbols in a whole transmission process with two time slots. In this work, two relaying protocols, so-called time-switching-based relaying WSN-NOMA (TSR WSN-NOMA) and power-splitting-based relaying WSN-NOMA (PSR WSN-NOMA) are deployed to study energy-harvesting (EH). Regarding the system performance analysis, we obtain the closed-form expressions for the exact and approximate outage probability (OP) in both protocols, and the delay-limited throughput is also evaluated. We then compare the two protocols theoretically, and two optimization problems are formulated to reduce the impact of OP and optimize the data rate. Our numerical and simulation results are provided to prove the theoretical and analytical analysis. Thanks to these results, a great performance gain can be achieved for both TSR WSN-NOMA and PSR WSN-NOMA if optimal values of TS and PS ratios are found. In addition, the optimized TSR WSN-NOMA outperforms that of PSR WSN-NOMA in terms of OP.
Nguyen Tat Thanh University Ho Chi Minh City Vietnam
VSB Technical University of Ostrava 17 listopadu 15 2172 708 33 Ostrava Poruba Czech Republic
Zobrazit více v PubMed
Agiwal M., Roy A., Saxena N. Next Generation 5G Wireless Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2016;18:1617–1655. doi: 10.1109/COMST.2016.2532458. DOI
Jaber M., Imran M.A., Tafazolli R., Tukmanov A. 5G Backhaul Challenges and Emerging Research Directions: A Survey. IEEE Access. 2016;4:1743–1766. doi: 10.1109/ACCESS.2016.2556011. DOI
Savaglio C., Fortino G., Zhou M. Towards interoperable, cognitive and autonomic IoT systems: An agent-based approach; Proceedings of the 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT); Reston, VA, USA. 12–14 December 2016; pp. 58–63.
Abedin S.F., Alam M.G.R., Haw R., Hong C.S. A system model for energy efficient green-IoT network; Proceedings of the International Conference on Information Networking (ICOIN); Siem Reap, Cambodia. 12–14 January 2015; pp. 177–182.
Mowla M.M., Ahmad I., Habibi D., Phung Q.V. A Green Communication Model for 5G Systems. IEEE Trans. Green Commun. Netw. 2017;1:264–280. doi: 10.1109/TGCN.2017.2700855. DOI
Anwar M., Abdullah A.H., Altameem A., Qureshi K.N., Masud F., Faheem M., Cao Y., Kharel R. Green Communication for Wireless Body Area Networks: Energy Aware Link Efficient Routing Approach. Sensors. 2018;18:3237. doi: 10.3390/s18103237. PubMed DOI PMC
Nguyen H.S., Nguyen T.S., Vo V.T., Voznak M. Hybrid full-duplex/half-duplex relay selection scheme with optimal power under individual power constraints and energy harvesting. Comput. Commun. 2018;124:31–44. doi: 10.1016/j.comcom.2018.04.014. DOI
Tung N., Vinh P. The Energy-Aware Operational Time of Wireless Ad-Hoc Sensor Networks. Mob. Netw. Appl. 2013;18:454–463. doi: 10.1007/s11036-012-0403-1. DOI
Peng C., Li F., Liu H. Wireless Energy Harvesting Two-Way Relay Networks with Hardware Impairments. Sensors. 2017;17:2604. doi: 10.3390/s17112604. PubMed DOI PMC
Ruan T., Chew Z.J., Zhu M. Energy-Aware Approaches for Energy Harvesting Powered Wireless Sensor Nodes. IEEE Sens. J. 2017;17:2165–2173. doi: 10.1109/JSEN.2017.2665680. DOI
Lee H., Lee K.J., Kim H., Lee I. Joint Transceiver Optimization for MISO SWIPT Systems with Time Switching. IEEE Trans. Wirel. Commun. 2018;17:3298–3312. doi: 10.1109/TWC.2018.2809734. DOI
Nguyen H.S., Nguyen T.S., Voznak M. Relay selection for SWIPT: Performance analysis of optimization problems and the trade-off between ergodic capacity and energy harvesting. AEU Int. J. Electron. Commun. 2018;85:59–67. doi: 10.1016/j.aeue.2017.12.012. DOI
Nasir A.A., Zhou X., Durrani S., Kennedy R.A. Relaying Protocols for Wireless Energy Harvesting and Information Processing. IEEE Trans. Wirel. Commun. 2013;12:3622–3636. doi: 10.1109/TWC.2013.062413.122042. DOI
Nguyen H.S., Nguyen T.S., Nguyen M.T., Voznak M. Optimal Time Switching-Based Policies for Efficient Transmit Power in Wireless Energy Harvesting Small Cell Cognitive Relaying Networks. Wirel. Person. Commun. 2018;99:1605–1624. doi: 10.1007/s11277-018-5296-2. DOI
Do N.T., Bao V.N.Q., An B. Outage Performance Analysis of Relay Selection Schemes in Wireless Energy Harvesting Cooperative Networks over Non-Identical Rayleigh Fading Channels. Sensors. 2016;16:295. doi: 10.3390/s16030295. PubMed DOI PMC
Son P.N., Duy T.T. Performance analysis of underlay cooperative cognitive full-duplex networks with energy-harvesting relay. Comput. Commun. 2018;122:9–19.
Kim J.B., Lee I.H. Capacity Analysis of Cooperative Relaying Systems Using Non-Orthogonal Multiple Access. IEEE Commun. Lett. 2015;19:1949–1952. doi: 10.1109/LCOMM.2015.2472414. DOI
Haci H. Performance study of non-orthogonal multiple access (NOMA) with triangular successive interference cancellation. Wirel. Netw. 2018;24:2145–2163. doi: 10.1007/s11276-017-1464-7. DOI
Ye N., Han H., Zhao L., Wang A. Uplink Nonorthogonal Multiple Access Technologies Toward 5G: A Survey. Wirel. Commun. Mob. Comput. 2018;2018:6187580. doi: 10.1155/2018/6187580. DOI
Dai L., Wang B., Yuan Y., Han S., I C.-L., Wang Z. Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Commun. Mag. 2015;53:74–81. doi: 10.1109/MCOM.2015.7263349. DOI
Nguyen H.S., Nguyen T.S., Tin P.T., Voznak M. Outage performance of time switching energy harvesting wireless sensor networks deploying NOMA; Proceedings of the 20th International Conference on e-Health Networking, Applications and Services (Healthcom); Ostrava, Czech Republic. 17–20 September 2018; pp. 1–4.
Kim J., Kim T., Noh J., Cho S. Fractional Frequency Reuse Scheme for Device to Device Communication Underlaying Cellular on Wireless Multimedia Sensor Networks. Sensors. 2018;18:2661. doi: 10.3390/s18082661. PubMed DOI PMC
Fang F., Zhang H., Cheng J., Roy S., Leung V. Joint User Scheduling and Power Allocation Optimization for Energy-Efficient NOMA Systems with Imperfect CSI. IEEE J. Sel. Areas Commun. 2017;35:2874–2885. doi: 10.1109/JSAC.2017.2777672. DOI
Ly T.T. H; Nguyen, H.S; Nguyen, T.S; Huynh, V.V; Nguyen, T.T; Voznak, M. Outage Probability Analysis in Relaying Cooperative Systems with NOMA Considering Power Splitting. Symmetry. 2019;11:72. doi: 10.3390/sym11010072. DOI
Wei C., Liu H., Zhang Z., Dang J., Wu L. Approximate message passing based joint user activity and data detection for NOMA. IEEE Commun. Lett. 2017;21:640–643. doi: 10.1109/LCOMM.2016.2624297. DOI
Luo S., Teh K.C. Adaptive transmission for cooperative NOMA system with buffer-aided relaying. IEEE Commun. Lett. 2017;21:937–940. doi: 10.1109/LCOMM.2016.2647250. DOI
Ding Z., Peng M., Poor H.V. Cooperative non-orthogonal multiple access in 5G systems. IEEE Commun. Lett. 2015;19:1462–1465. doi: 10.1109/LCOMM.2015.2441064. DOI
Liu X., Wang X., Liu Y. Power allocation and performance analysis of the collaborative NOMA assisted relaying systems in 5G. China Commun. 2017;14:50–60. doi: 10.1109/CC.2017.7839757. DOI
Ding Z., Yang Z., Fan P., Poor H.V. On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Process. Lett. 2014;21:1501–1505. doi: 10.1109/LSP.2014.2343971. DOI
Liu Y., Ding Z., Elkashlan M., Poor H.V. Cooperative Non-orthogonal Multiple Access with Simultaneous Wireless Information and Power Transfer. IEEE J. Sel. Areas Commun. 2016;34:938–953. doi: 10.1109/JSAC.2016.2549378. DOI
Jiao R., Dai L., Zhang J., MacKenzie R., Hao M. On the Performance of NOMA-Based Cooperative Relaying Systems over Rician Fading Channels. IEEE Trans. Veh. Technol. 2017;66:11409–11413. doi: 10.1109/TVT.2017.2728608. DOI
Zhong C., Zhang Z. Non-Orthogonal Multiple Access With Cooperative Full-Duplex Relaying. IEEE Commun. Lett. 2016;20:2478–2481. doi: 10.1109/LCOMM.2016.2611500. DOI
Wang X., Wang J., He L., Song J. Outage Analysis for Downlink NOMA With Statistical Channel State Information. IEEE Wirel. Commun. Lett. 2018;7:42–145. doi: 10.1109/LWC.2017.2761343. DOI
Men J., Ge J., Zhang C. Performance Analysis of Nonorthogonal Multiple Access for Relaying Networks over Nakagami-m Fading Channels. IEEE Trans. Veh. Technol. 2017;66:1200–1208. doi: 10.1109/TVT.2016.2555399. DOI
Liang X., Wu Y., Ng D.W.K., Zuo Y., Jin S., Zhu H. Outage Performance for Cooperative NOMA Transmission with an AF Relay. IEEE Commun. Lett. 2017;21:2428–2431. doi: 10.1109/LCOMM.2017.2681661. DOI
Gradshteyn I., Ryzhik I. Table of Integrals, Series, and Products. 4th ed. Academic Press Inc.; New York, NY, USA: 1980.