Outage Performance Analysis and SWIPT Optimization in Energy-Harvesting Wireless Sensor Network Deploying NOMA

. 2019 Feb 01 ; 19 (3) : . [epub] 20190201

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30717155

Grantová podpora
no. SP2018/59 VSB Technical University of Ostrava, Czech Republic
no LM2015070 partly by The Ministry of Education, Youth and Sports from the Large Infrastructures for Research, Experimental Development, and Innovations project

Thanks to the benefits of non-orthogonal multiple access (NOMA) in wireless communications, we evaluate a wireless sensor network deploying NOMA (WSN-NOMA), where the destination can receive two data symbols in a whole transmission process with two time slots. In this work, two relaying protocols, so-called time-switching-based relaying WSN-NOMA (TSR WSN-NOMA) and power-splitting-based relaying WSN-NOMA (PSR WSN-NOMA) are deployed to study energy-harvesting (EH). Regarding the system performance analysis, we obtain the closed-form expressions for the exact and approximate outage probability (OP) in both protocols, and the delay-limited throughput is also evaluated. We then compare the two protocols theoretically, and two optimization problems are formulated to reduce the impact of OP and optimize the data rate. Our numerical and simulation results are provided to prove the theoretical and analytical analysis. Thanks to these results, a great performance gain can be achieved for both TSR WSN-NOMA and PSR WSN-NOMA if optimal values of TS and PS ratios are found. In addition, the optimized TSR WSN-NOMA outperforms that of PSR WSN-NOMA in terms of OP.

Zobrazit více v PubMed

Agiwal M., Roy A., Saxena N. Next Generation 5G Wireless Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2016;18:1617–1655. doi: 10.1109/COMST.2016.2532458. DOI

Jaber M., Imran M.A., Tafazolli R., Tukmanov A. 5G Backhaul Challenges and Emerging Research Directions: A Survey. IEEE Access. 2016;4:1743–1766. doi: 10.1109/ACCESS.2016.2556011. DOI

Savaglio C., Fortino G., Zhou M. Towards interoperable, cognitive and autonomic IoT systems: An agent-based approach; Proceedings of the 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT); Reston, VA, USA. 12–14 December 2016; pp. 58–63.

Abedin S.F., Alam M.G.R., Haw R., Hong C.S. A system model for energy efficient green-IoT network; Proceedings of the International Conference on Information Networking (ICOIN); Siem Reap, Cambodia. 12–14 January 2015; pp. 177–182.

Mowla M.M., Ahmad I., Habibi D., Phung Q.V. A Green Communication Model for 5G Systems. IEEE Trans. Green Commun. Netw. 2017;1:264–280. doi: 10.1109/TGCN.2017.2700855. DOI

Anwar M., Abdullah A.H., Altameem A., Qureshi K.N., Masud F., Faheem M., Cao Y., Kharel R. Green Communication for Wireless Body Area Networks: Energy Aware Link Efficient Routing Approach. Sensors. 2018;18:3237. doi: 10.3390/s18103237. PubMed DOI PMC

Nguyen H.S., Nguyen T.S., Vo V.T., Voznak M. Hybrid full-duplex/half-duplex relay selection scheme with optimal power under individual power constraints and energy harvesting. Comput. Commun. 2018;124:31–44. doi: 10.1016/j.comcom.2018.04.014. DOI

Tung N., Vinh P. The Energy-Aware Operational Time of Wireless Ad-Hoc Sensor Networks. Mob. Netw. Appl. 2013;18:454–463. doi: 10.1007/s11036-012-0403-1. DOI

Peng C., Li F., Liu H. Wireless Energy Harvesting Two-Way Relay Networks with Hardware Impairments. Sensors. 2017;17:2604. doi: 10.3390/s17112604. PubMed DOI PMC

Ruan T., Chew Z.J., Zhu M. Energy-Aware Approaches for Energy Harvesting Powered Wireless Sensor Nodes. IEEE Sens. J. 2017;17:2165–2173. doi: 10.1109/JSEN.2017.2665680. DOI

Lee H., Lee K.J., Kim H., Lee I. Joint Transceiver Optimization for MISO SWIPT Systems with Time Switching. IEEE Trans. Wirel. Commun. 2018;17:3298–3312. doi: 10.1109/TWC.2018.2809734. DOI

Nguyen H.S., Nguyen T.S., Voznak M. Relay selection for SWIPT: Performance analysis of optimization problems and the trade-off between ergodic capacity and energy harvesting. AEU Int. J. Electron. Commun. 2018;85:59–67. doi: 10.1016/j.aeue.2017.12.012. DOI

Nasir A.A., Zhou X., Durrani S., Kennedy R.A. Relaying Protocols for Wireless Energy Harvesting and Information Processing. IEEE Trans. Wirel. Commun. 2013;12:3622–3636. doi: 10.1109/TWC.2013.062413.122042. DOI

Nguyen H.S., Nguyen T.S., Nguyen M.T., Voznak M. Optimal Time Switching-Based Policies for Efficient Transmit Power in Wireless Energy Harvesting Small Cell Cognitive Relaying Networks. Wirel. Person. Commun. 2018;99:1605–1624. doi: 10.1007/s11277-018-5296-2. DOI

Do N.T., Bao V.N.Q., An B. Outage Performance Analysis of Relay Selection Schemes in Wireless Energy Harvesting Cooperative Networks over Non-Identical Rayleigh Fading Channels. Sensors. 2016;16:295. doi: 10.3390/s16030295. PubMed DOI PMC

Son P.N., Duy T.T. Performance analysis of underlay cooperative cognitive full-duplex networks with energy-harvesting relay. Comput. Commun. 2018;122:9–19.

Kim J.B., Lee I.H. Capacity Analysis of Cooperative Relaying Systems Using Non-Orthogonal Multiple Access. IEEE Commun. Lett. 2015;19:1949–1952. doi: 10.1109/LCOMM.2015.2472414. DOI

Haci H. Performance study of non-orthogonal multiple access (NOMA) with triangular successive interference cancellation. Wirel. Netw. 2018;24:2145–2163. doi: 10.1007/s11276-017-1464-7. DOI

Ye N., Han H., Zhao L., Wang A. Uplink Nonorthogonal Multiple Access Technologies Toward 5G: A Survey. Wirel. Commun. Mob. Comput. 2018;2018:6187580. doi: 10.1155/2018/6187580. DOI

Dai L., Wang B., Yuan Y., Han S., I C.-L., Wang Z. Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Commun. Mag. 2015;53:74–81. doi: 10.1109/MCOM.2015.7263349. DOI

Nguyen H.S., Nguyen T.S., Tin P.T., Voznak M. Outage performance of time switching energy harvesting wireless sensor networks deploying NOMA; Proceedings of the 20th International Conference on e-Health Networking, Applications and Services (Healthcom); Ostrava, Czech Republic. 17–20 September 2018; pp. 1–4.

Kim J., Kim T., Noh J., Cho S. Fractional Frequency Reuse Scheme for Device to Device Communication Underlaying Cellular on Wireless Multimedia Sensor Networks. Sensors. 2018;18:2661. doi: 10.3390/s18082661. PubMed DOI PMC

Fang F., Zhang H., Cheng J., Roy S., Leung V. Joint User Scheduling and Power Allocation Optimization for Energy-Efficient NOMA Systems with Imperfect CSI. IEEE J. Sel. Areas Commun. 2017;35:2874–2885. doi: 10.1109/JSAC.2017.2777672. DOI

Ly T.T. H; Nguyen, H.S; Nguyen, T.S; Huynh, V.V; Nguyen, T.T; Voznak, M. Outage Probability Analysis in Relaying Cooperative Systems with NOMA Considering Power Splitting. Symmetry. 2019;11:72. doi: 10.3390/sym11010072. DOI

Wei C., Liu H., Zhang Z., Dang J., Wu L. Approximate message passing based joint user activity and data detection for NOMA. IEEE Commun. Lett. 2017;21:640–643. doi: 10.1109/LCOMM.2016.2624297. DOI

Luo S., Teh K.C. Adaptive transmission for cooperative NOMA system with buffer-aided relaying. IEEE Commun. Lett. 2017;21:937–940. doi: 10.1109/LCOMM.2016.2647250. DOI

Ding Z., Peng M., Poor H.V. Cooperative non-orthogonal multiple access in 5G systems. IEEE Commun. Lett. 2015;19:1462–1465. doi: 10.1109/LCOMM.2015.2441064. DOI

Liu X., Wang X., Liu Y. Power allocation and performance analysis of the collaborative NOMA assisted relaying systems in 5G. China Commun. 2017;14:50–60. doi: 10.1109/CC.2017.7839757. DOI

Ding Z., Yang Z., Fan P., Poor H.V. On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Process. Lett. 2014;21:1501–1505. doi: 10.1109/LSP.2014.2343971. DOI

Liu Y., Ding Z., Elkashlan M., Poor H.V. Cooperative Non-orthogonal Multiple Access with Simultaneous Wireless Information and Power Transfer. IEEE J. Sel. Areas Commun. 2016;34:938–953. doi: 10.1109/JSAC.2016.2549378. DOI

Jiao R., Dai L., Zhang J., MacKenzie R., Hao M. On the Performance of NOMA-Based Cooperative Relaying Systems over Rician Fading Channels. IEEE Trans. Veh. Technol. 2017;66:11409–11413. doi: 10.1109/TVT.2017.2728608. DOI

Zhong C., Zhang Z. Non-Orthogonal Multiple Access With Cooperative Full-Duplex Relaying. IEEE Commun. Lett. 2016;20:2478–2481. doi: 10.1109/LCOMM.2016.2611500. DOI

Wang X., Wang J., He L., Song J. Outage Analysis for Downlink NOMA With Statistical Channel State Information. IEEE Wirel. Commun. Lett. 2018;7:42–145. doi: 10.1109/LWC.2017.2761343. DOI

Men J., Ge J., Zhang C. Performance Analysis of Nonorthogonal Multiple Access for Relaying Networks over Nakagami-m Fading Channels. IEEE Trans. Veh. Technol. 2017;66:1200–1208. doi: 10.1109/TVT.2016.2555399. DOI

Liang X., Wu Y., Ng D.W.K., Zuo Y., Jin S., Zhu H. Outage Performance for Cooperative NOMA Transmission with an AF Relay. IEEE Commun. Lett. 2017;21:2428–2431. doi: 10.1109/LCOMM.2017.2681661. DOI

Gradshteyn I., Ryzhik I. Table of Integrals, Series, and Products. 4th ed. Academic Press Inc.; New York, NY, USA: 1980.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...