Hydrocolloids from the Mushroom Auricularia heimuer: Composition and Properties
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
37367617
PubMed Central
PMC10302321
DOI
10.3390/jof9060681
PII: jof9060681
Knihovny.cz E-resources
- Keywords
- Auricularia heimuer, composition, extract, hydrocolloids, moisture retention, polysaccharides, stability, sustainable production,
- Publication type
- Journal Article MeSH
The ear- to shell-shaped fruiting bodies of the genus Auricularia are widely used as food and in traditional medicinal remedies. This study was primarily focused on the composition, properties and potential use of the gel-forming extract from Auricularia heimuer. The dried extract contained 50% soluble homo- and heteropolysaccharides, which were mainly composed of mannose and glucose, acetyl residues, glucuronic acid and a small amount of xylose, galactose, glucosamine, fucose, arabinose and rhamnose. The minerals observed in the extract included approximately 70% potassium followed by calcium. Among the fatty and amino acids, 60% unsaturated fatty acids and 35% essential amino acids could be calculated. At both acidic (pH 4) and alkaline (pH 10) conditions, the thickness of the 5 mg/mL extract did not change in a temperature range from -24 °C to room temperature, but decreased statistically significantly after storage at elevated temperature. At neutral pH, the studied extract demonstrated good thermal and storage stability, as well as a moisture retention capacity comparable to the high molecular weight sodium hyaluronate, a well-known moisturizer. Hydrocolloids that can be sustainably produced from Auricularia fruiting bodies offer great application potential in the food and cosmetic industries.
See more in PubMed
Bandara A.R., Rapior S., Mortimer P.E., Kakumyan P., Hyde K.D., Xu J. A Review of the Polysaccharide, Protein and Selected Nutrient Content of Auricularia, and their Potential Pharmacological Value. Mycosphere. 2019;10:579–607. doi: 10.5943/mycosphere/10/1/10. DOI
Khatua S., Sett S., Acharya K. Auricularia spp.: From Farm to Pharmacy. In: Arya A., Rusevska K., editors. Biology, Cultivation and Applications of Mushrooms. Springer Nature; Berlin, Germany: Singapore Pte Ltd.; Singapore: 2022. pp. 301–355. Chapter 11. DOI
Yao F.J., Lu L.X., Wang P., Fang M., Zhang Y.M., Chen Y., Zhang W.T., Kong X.H., Lu J., Honda Y. Development of a Molecular Marker for Fruiting Body Pattern in Auricularia auricula-judae. Mycobiology. 2018;46:72–78. doi: 10.1080/12298093.2018.1454004. PubMed DOI PMC
Singh M., Kamal S., Sharma V.P. Status and Trends in World Mushroom Production-III. World Production of Different Mushroom Species in 21st Century. Mushroom Res. 2021;29:75–111. doi: 10.36036/MR.29.2.2020.113703. DOI
Xu S., Xu X., Zhang L. Branching Structure and Chain Conformation of Water-Soluble Glucan Extracted from Auricularia auricula-judae. J. Agric. Food Chem. 2012;60:3498–3506. doi: 10.1021/jf300423z. PubMed DOI
Sone Y., Kakuta M., Misaki A. Isolation and Characterization of Polysaccharides of “Kikurage”, Fruit Body of Auricularia auricula-judae. Agric. Biol.Chem. 1978;42:417–425. doi: 10.1271/bbb1961.42.417. DOI
Bao H., You S., Cao L., Zhou R., Wang Q., Cui S.W. Chemical and Rheological Properties of Polysaccharides from Fruit Body of Auricularia auricular-judae. Food Hydrocoll. 2016;57:30–37. doi: 10.1016/j.foodhyd.2015.12.031. DOI
Chang A.K.T., Frias R.R., Alvarez L.V., Bigol U.G., Guzman J.P.M. Comparative Antibacterial Activity of Commercial Chitosan and Chitosan Extracted from Auricularia sp. Biocatal. Agric. Biotechnol. 2019;17:189–195. doi: 10.1016/j.bcab.2018.11.016. DOI
Commission Implementing Decision (EU) 2022/677 of 31 March 2022 Laying Down Rules for the Application of Regulation (EC) No 1223/2009 of the European Parliament and of the Council as Regards the Glossary of Common Ingredient Names for Use in the Labelling of Cosmetic Products (Text with EEA Relevance) [(accessed on 6 January 2023)]. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2022.127.01.0001.01.ENG&toc=OJ%3AL%3A2022%3A127%3ATOC.
Li L., Yang X.Y., Pan L., Su Y., Wang Y. Comparing Three Methods of Extraction of Auricularia auricula Polysaccharides. Curr. Top. Nutraceutical Res. 2019;17:7–10.
Elkhateeb W.A., El-Hagrassi A.M., Fayad W., El-Manawaty M.A., Zaghlol G.M., Daba G.M., Ahmed E.F. Cytotoxicity and Hypoglycemic Effect of the Japanese Jelly Mushroom Auricularia auricula-judae. Chem. Res. J. 2018;3:123–133.
Yuan Z., He P., Takeuchi H. Ameliorating Effects of Water-Soluble Polysaccharides from Woody Ear (Auricularia auricula-judae Quel.) in Genetically Diabetic KK-Ay Mice. J. Nutr. Sci. Vitaminol. 1998;44:829–840. doi: 10.3177/jnsv.44.829. PubMed DOI
Alvarado P., Moreno G., Vizzini A., Consiglio G., Manjon J.L., Setti L. Atractosporocybe, Leucocybe and Rhizocybe: Three New Clitocyboid Genera in the Tricholomatoid Clade (Agaricales) with Notes on Clitocybe and Lepista. Mycologia. 2015;107:123–136. doi: 10.3852/13-369. PubMed DOI
Wu F., Yuan Y., Malysheva V.F., Du P., Dai Y.C. Species Clarification of the Most Important and Cultivated Auricularia Mushroom “Heimuer”: Evidence from Morphological and Molecular Data. Phytotaxa. 2014;186:241–253. doi: 10.11646/phytotaxa.186.5.1. DOI
Kalitukha L., Sari M., Lexut A., Lexut P. Gel-Forming Extracts from the Fungi of the Genus Auricularia and Method for their Preparation. DE 102021104013A1. Germany Patent. 2021 February 19;
Chizhov A.O., Dell A., Morris H.R., Haslam S.M., McDowell R.A., Shashkov A.S., Nifant’ev N.E., Khatuntseva E.A., Usov A.I. A study of fucoidan from the brown seaweed Chorda filum. Carbohydr. Res. 1999;320:108–119. doi: 10.1016/S0008-6215(99)00148-2. PubMed DOI
Kleber H.P., Schlee D., Schöpp W. Biochemisches Praktikum [Practical Course in Biochemistry] Gustav Fischer Verlag; Jena, Germany: 1997.
Megazyme International Ireland Ltd. Mushroom and Yeast β-glucan Assay Procedure Booklet (K-YBGL 11/19) Megazyme International Ireland Ltd.; Wicklow, Ireland: 2019.
Sluiter A., Hames B., Ruiz R., Scarlata C., Sluiter J., Templeton D., Crocker D. Technical Report No. NREL/TP-510-42618 [Issued April 2008; Revised July 2011] National Renewable Energy Laboratory; Golden, CO, USA: 2011. Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure (LAP) Contract No. DE-AC36-08GO28308.
Ekblad A., Näsholm T. Determination of Chitin in Fungi and Mycorrhizal Roots by an Improved HPLC Analysis of Glucosamine. Carbohydr. Res. 1996;178:29–35. doi: 10.1007/BF00011160. DOI
Sluiter A., Ruiz R., Scarlata C., Sluiter J., Templeton D. Technical Report No. NREL/TP-510-42619 [Issued 17 July 2005] National Renewable Energy Laboratory; Golden, CO, USA: 2008. Determination of Extractives in Biomass: Laboratory Analytical Procedure (LAP) Contract No. DE-AC36-99-GO10337.
German Society of Fats Science . German Standard Methods for the Analysis of Fats, Fat Products, Surfactants and Related Substances. 2nd ed. Wissenschaftliche Verlagsgesellschaft; Stuttgart, Germany: 2019.
Algermissen B., Nündel M., Riedel E. Analysis of Amino Acids with Fluorescence HPLC. GIT Fachz. Lab. 1989;33:783–790.
Kjeldahl J. New Method for the Determination of Nitrogen in Organic Bodies. Z. Für Anal. Chemie. 1883;22:366–382. doi: 10.1007/BF01338151. DOI
Petrovska B. Protein Fraction in Edible Macedonian Mushrooms. Eur. Food Res. Technol. 2001;212:469–472. doi: 10.1007/s002170000285. DOI
Sluiter A., Ruiz R., Scarlata C., Sluiter J., Templeton D. Technical Report No. NREL/TP-510-42622 [Issued 17 July 2005] Contract No. DE-AC36-99-GO10337; National Renewable Energy Laboratory; Golden, CO, USA: 2008. Determination of ash in biomass: Laboratory analytical procedure (LAP)
Fruit and Vegetable Juices—Determination of Sodium, Potassium, Calcium and Magnesium Content by Atomic Absorption Spectrometry (AAS) Deutsches Institut für Normung; Berlin, Germany: 1994.
Foodstuffs—Determination of Trace Elements—Pressure Digestion. German Version of EN 13805:2014. Deutsches Institut für Normung; Berlin, Germany: 2014.
Milczarek R.R., McCarthy K.L. Relationship between the Bostwick Measurement and Fluid Properties. J. Texture Stud. 2006;37:640–654. doi: 10.1111/j.1745-4603.2006.00075.x. DOI
Standard Test Method for Determining the Consistency of Viscous Liquids Using a Consistometer. American Society for Testing and Materials (ASTM); West Conshohocken, PA, USA: 2019.
Malouh M.A., Cichero J.A.Y., Manrique Y.J., Crino L., Lau E.T.L., Nissen L.M., Steadman K.J. Are Medication Swallowing Lubricants Suitable for Use in Dysphagia? Consistency, Viscosity, Texture, and Application of the International Dysphagia Diet Standardization Initiative (IDDSI) Framework. Pharmaceutics. 2020;12:924. doi: 10.3390/pharmaceutics12100924. PubMed DOI PMC
Li H., Xu J., Liu Y., Ai S., Qin F., Li Z., Zhang H., Huang Z. Antioxidant and Moisture-Retention Activities of the Polysaccharide from Nostoc commune. Carbohyd. Polym. 2011;83:1821–1827. doi: 10.1016/j.carbpol.2010.10.046. DOI
Pak S., Chen F., Ma L., Hu X., Ji J. Functional perspective of black fungi (Auricularia auricula): Major bioactive components, health benefits and potential mechanisms. Trends Food Sci. Technol. 2021;114:245–261. doi: 10.1016/j.tifs.2021.05.013. DOI
Mapoung S., Umsumarng S., Semmarath W., Arjsri P., Thippraphan P., Yodkeeree S., Limtrakul P. Skin wound-healing potential of polysaccharides from medicinal mushroom Auricularia auricula-judae (Bull.) J. Fungi. 2021;7:247. doi: 10.3390/jof7040247. PubMed DOI PMC
Perera N., Yang F.L., Chern J., Chiu H.W., Hsieh C.Y., Li L.H., Zhang Y.L., Hua K.F., Wu S.H. Carboxylic and O-acetyl moieties are essential for the immunostimulatory activity of glucuronoxylomannan: A novel TLR4 specific immunostimulator from Auricularia auricula-judae. Chem. Commun. 2018;54:6995–6998. doi: 10.1039/C7CC09927D. PubMed DOI
Yoon S.J., Yu M.A., Pyun Y.R., Hwang J.K., Chu D.C., Juneja L.R., Mourão P.A. The nontoxic mushroom Auricularia auricula contains a polysaccharide with anticoagulant activity mediated by antithrombin. Thromb. Res. 2003;112:151–158. doi: 10.1016/j.thromres.2003.10.022. PubMed DOI
Bao H., Zhou R., You S.G., Wu S., Wang Q., Cui S.W. Gelation Mechanism of Polysaccharides from Auricularia auricula-judae. Food Hydrocoll. 2018;76:35–41. doi: 10.1016/j.foodhyd.2017.07.023. DOI
Guilhem G., Doering T.L. Biosynthesis and Genetics of the Cryptococcus Capsule. In: Heitman J., Kozel T.R., Kwon-Chung K.J., Perfect J.R., Casadevall A., editors. Cryptococcus: From Human Pathogen to Model Yeast. ASM Press; Washington, DC, USA: 2011. pp. 27–41. Chapter 3. DOI
Vetvicka V., Vannucci L., Sima P., Richter J. Beta Glucan: Supplement or Drug? From Laboratory to Clinical Trials. Molecules. 2019;24:1251. doi: 10.3390/molecules24071251. PubMed DOI PMC
Chang H.H., Chien P.J., Tong M.H., Sheu F. Mushroom Immunomodulatory Proteins Possess Potential Thermal/Freezing Resistance, Acid/Alkali Tolerance and Dehydration Stability. Food Chem. 2007;105:597–605. doi: 10.1016/j.foodchem.2007.04.048. DOI
Sheu F., Chien P.J., Chien A.L., Chen Y.F., Chin K.L. Isolation and Characterization of an Immunomodulatory Protein (APP) from the Jew’s Ear Mushroom Auricularia polytricha. Food Chem. 2004;87:593–600. doi: 10.1016/j.foodchem.2004.01.015. DOI
Oli A.N., Edeh P.A., Al-Mosawi R.M., Mbachu N.A., Al-Dahmoshi H.O.M., Al-Khafaji N.S.K., Ekuma U.O., Okezie U.M., Saki M. Evaluation of the Phytoconstituents of Auricularia auricula-judae Mushroom and Antimicrobial Activity of its Protein Extract. Eur. J. Integr. Med. 2020;38:101176. doi: 10.1016/j.eujim.2020.101176. PubMed DOI PMC
Cai M., Lin Y., Luo Y.L., Liang H.H., Sun P. Extraction, Antimicrobial, and Antioxidant Activities of Crude Polysaccharides from the Wood Ear Medicinal Mushroom Auricularia auricula-judae (Higher Basidiomycetes) Int. J. Med. Mushrooms. 2015;17:591–600. doi: 10.1615/IntJMedMushrooms.v17.i6.90. PubMed DOI
Gebreyohannes G., Nyerere A., Bii C., Sbhatu D.B. Investigation of Antioxidant and Antimicrobial Activities of Different Extracts of Auricularia and Termitomyces Species of Mushrooms. Sci. World J. 2019;2019:7357048. doi: 10.1155/2019/7357048. PubMed DOI PMC
Yao H., Liu Y., Ma Z.F., Zhang H., Fu T., Li Z., Li Y., Hu W., Han S., Zhao F., et al. Analysis of Nutritional Quality of Black Fungus Cultivated with Corn Stalks. J. Food Qual. 2019;2019:9590251. doi: 10.1155/2019/9590251. DOI
Synytsya A., Čopíková J., Matějka P., Machovič V.J. Fourier transform Raman and infrared spectroscopy of pectins. Carbohydr. Polym. 2003;54:97–106. doi: 10.1016/S0144-8617(03)00158-9. DOI
Papageorgiou S.K., Kouvelos E.P., Favvas E.P., Sapalidis A.A., Romanos G.E., Katsaros F.K. Metal-carboxylate interactions in metal-alginate complexes studied with FTIR spectroscopy. Carbohydr. Res. 2010;345:469–473. doi: 10.1016/j.carres.2009.12.010. PubMed DOI
Wellner N., Kačuráková M., Malovíková A., Wilson R.H., Belton P.S. FT-IR study of pectate and pectinate gels formed by divalent cations. Carbohydr. Res. 1998;308:123–131. doi: 10.1016/S0008-6215(98)00065-2. DOI
Yuan Q., Zhang X., Ma M., Long T., Xiao C., Zhang J., Liu J., Zhao L. Immunoenhancing glucuronoxylomannan from Tremella aurantialba Bandoni et Zang and its low-molecular-weight fractions by radical depolymerization: Properties, structures and effects on macrophages. Carbohydr. Polym. 2020;238:116184. doi: 10.1016/j.carbpol.2020.116184. PubMed DOI
Bacon B.E., Cherniak R., Kwon-Chung K.J., Jacobson E.S. Structure of the O-deacetylated glucuronoxylomannan from Cryptococcus neoformans Cap70 as determined by 2D NMR spectroscopy. Carbohydr. Res. 1996;283:95–110. doi: 10.1016/0008-6215(95)00397-5. PubMed DOI
Skelton M.A., Cherniak R., Poppe L., van Halbeek H. Structure of the De-O-acetylated glucuronoxylomannan from Cryptococcus neoformans serotype D, as determined by 2D NMR spectroscopy. Magn. Reson. Chem. 1991;29:786–793. doi: 10.1002/mrc.1260290808. DOI
Cherniak R., Jones R.G., Reiss E. Structure determination of Cryptococcus neoformans serotype A-variant glucuronoxylomannan by 13C-nmr spectroscopy. Carbohydr. Res. 1988;172:113–138. doi: 10.1016/S0008-6215(00)90846-2. PubMed DOI
Synytsya A., Novak M. Structural Analysis of Glucans. Ann. Transl. Med. 2014;2:17. PubMed PMC
Synytsya A., Míčková K., Synytsya A., Jablonský I., Spěváček J., Erban V., Kováříková E., Čopíková J. Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydr. Polym. 2009;76:548–556. doi: 10.1016/j.carbpol.2008.11.021. DOI
Ma Z., Wang J., Zhang L. Structure and chain conformation of beta-glucan isolated from Auricularia auricula-judae. Biopolym. Orig. Res. Biomol. 2008;89:614–622. doi: 10.1002/bip.20971. PubMed DOI
Necas J., Bartosikova L., Brauner P., Kolar J. Hyaluronic Acid (Hyaluronan): A Review. Vet. Med. 2008;53:397–411. doi: 10.17221/1930-VETMED. DOI
Snetkov P., Zakharova K., Morozkina S., Olekhnovich R., Uspenskaya M. Hyaluronic Acid: The Influence of Molecular Weight on Structural, Physical, Physico-Chemical, and Degradable Properties of Biopolymer. Polymers. 2020;12:1800. doi: 10.3390/polym12081800. PubMed DOI PMC
Scott J.E., Cummings C., Brass A., Chen Y. Secondary and Tertiary structures of Hyaluronan in Aqueous Solution, Investigated by Rotary Shadowing-Electron Microscopy and Computer Simulation. Hyaluronan is a Very Efficient Network-Forming Polymer. Biochem. J. 1991;274:699–705. doi: 10.1042/bj2740699. PubMed DOI PMC
Patel B.K., Campanella O.H., Janaswamy S. Impact of Urea on the Three-Dimensional Structure, Viscoelastic and Thermal Behavior of Iota-Carrageenan. Carbohydr. Polym. 2013;92:1873–1879. doi: 10.1016/j.carbpol.2012.11.026. PubMed DOI PMC
Liao W.C., Hsueh C.Y., Chan C.F. Antioxidative Activity, Moisture Retention, Film Formation, and Viscosity Stability of Auricularia fuscosuccinea, White Strain Water Extract. Biosci. Biotechnol. Biochem. 2014;78:1029–1036. doi: 10.1080/09168451.2014.912113. PubMed DOI