Feeding-Regime-Dependent Intestinal Response of Rainbow Trout after Administration of a Novel Probiotic Feed
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-19-0234
Slovak Research and Development Agency
CZ.02.1.01/0.0/0.0/16_019/0000869
European Regional Development Fund / European Social Fund
PubMed
37370408
PubMed Central
PMC10295207
DOI
10.3390/ani13121892
PII: ani13121892
Knihovny.cz E-zdroje
- Klíčová slova
- gut microbiota, intestinal immune answer, probiotic feed, salmonid,
- Publikační typ
- časopisecké články MeSH
Intensive fish farming is associated with a high level of stress, causing immunosuppression. Immunomodulators of natural origin, such as probiotics or phytoadditives, represent a promising alternative for increasing the immune function of fish. In this study, we tested the autochthonous trout probiotic strain L. plantarum R2 in a newly developed, low-cost application form ensuring the rapid revitalization of bacteria. We tested continuous and cyclic feeding regimes with regard to their effect on the intestinal immune response and microbiota of rainbow trout. We found that during the continuous application of probiotic feed, the immune system adapts to the immunomodulator and there is no substantial stimulation of the intestinal immune response. During the cyclic treatment, after a 3-week break in probiotic feeding and the reintroduction of probiotics, there was a significant stimulation of the gene expression of molecules associated with both cellular and humoral immunity (CD8, TGF-β, IL8, TLR9), without affecting the gene expression for IL1 and TNF-α. We can conclude that, in aquaculture, this probiotic feed can be used with a continuous application, which does not cause excessive immunostimulation, or with a cyclic application, which provides the opportunity to stimulate the immunity of trout, for example, in periods of stress.
Zobrazit více v PubMed
FAO . The State of World Fisheries and Aquaculture 2020. Sustainability in Action. FAO; Rome, Italy: 2020.
Billard R., Bry C., Gillet C. Gillet Stress, Environment and Reproduction in Teleost Fish. Stress Fish. 1981;4:185–201.
Pickering A.D., Pottinger T. Pottinger Stress Responses and Disease Resistance in Salmonid Fish: Effects of Chronic Elevation of Plasma Cortisol. Fish Physiol. Biochem. 1989;7:253–258. doi: 10.1007/BF00004714. PubMed DOI
Conde-Sieira M., Chivite M., Míguez J.M., Soengas J.L. Soengas Stress Effects on the Mechanisms Regulating Appetite in Teleost Fish. Front. Endocrinol. 2018;9:631. doi: 10.3389/fendo.2018.00631. PubMed DOI PMC
Merrifield D.L., Dimitroglou A., Foey A., Davies S.J., Baker R.T., Bøgwald J., Castex M., Ringø E. The Current Status and Future Focus of Probiotic and Prebiotic Applications for Salmonids. Aquaculture. 2010;302:1–18. doi: 10.1016/j.aquaculture.2010.02.007. DOI
Chizhayeva A., Amangeldi A., Oleinikova Y., Alybaeva A., Sadanov A. Lactic Acid Bacteria as Probiotics in Sustainable Development of Aquaculture. Aquat. Living Resour. 2022;35:10. doi: 10.1051/alr/2022011. DOI
Van Doan H., Soltani M., Ringø E. In Vitro Antagonistic Effect and in Vivo Protective Efficacy of Gram-Positive Probiotics versus Gram-Negative Bacterial Pathogens in Finfish and Shellfish. Aquaculture. 2021;540:736581. doi: 10.1016/j.aquaculture.2021.736581. DOI
Vijayabaskar P., Somasundaram S. Somasundaram Isolation of Bacteriocin Producing Lactic Acid Bacteria from Fish Gut and Probiotic Activity against Common Fresh Water Fish Pathogen Aeromonas Hydrophila. Biotechnology. 2008;7:124–128. doi: 10.3923/biotech.2008.124.128. DOI
Chabrillon M., Ouwehand A.C., Diaz-Rosales P., Arijo S., Martinez-Manzanares E., Balebona M.C. Adhesion of Lactic Acid Bacteria to Mucus of Farmed Gilthead Seabream, and Interactions with Fish Pathogenic Microorganisms. Bull. Eur. Assoc. Fish Pathol. 2006;26:202–210.
SNikoskelainen S., Ouwehand A., Bylund G., Salminen S., Lilius E.-M. Immune Enhancement in Rainbow Trout (Oncorhynchus mykiss) by Potential Probiotic Bacteria (Lactobacillus rhamnosus) Fish Shellfish. Immunol. 2003;15:443–452. doi: 10.1016/S1050-4648(03)00023-8. PubMed DOI
Kosiewicz M.M., Zirnheld A.L., Alard P. Gut Microbiota, Immunity, and Disease: A Complex Relationship. Front. Microbiol. 2011;2:180. doi: 10.3389/fmicb.2011.00180. PubMed DOI PMC
Tan J., McKenzie C., Potamitis M., Thorburn A.N., Mackay C.R., Macia L. The Role of Short-Chain Fatty Acids in Health and Disease. Adv. Immunol. 2014;121:91–119. doi: 10.1016/B978-0-12-800100-4.00003-9. PubMed DOI
Zhu N., Wang J., Yu L., Zhang Q., Chen K., Liu B. Modulation of Growth Performance and Intestinal Microbiota in Chickens Fed Plant Extracts or Virginiamycin. Front. Microbiol. 2019;10:1333. doi: 10.3389/fmicb.2019.01333. PubMed DOI PMC
Sagaram U.S., Gaikwad M.S., Nandru R., Dasgupta S. Dasgupta Microalgae as Feed Ingredients: Recent Developments on Their Role in Immunomodulation and Gut Microbiota of Aquaculture Species. FEMS Microbiol. Lett. 2021;368:71. doi: 10.1093/femsle/fnab071. PubMed DOI
Nayak S.K. Probiotics and Immunity: A Fish Perspective. Fish Shellfish. Immunol. 2010;29:2–14. doi: 10.1016/j.fsi.2010.02.017. PubMed DOI
EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Guidance on the Assessment of Bacterial Susceptibility to Antimicrobials of Human and Veterinary Importance. EFSA J. 2012;10:2740. doi: 10.2903/J.EFSA.2012.2740. DOI
Fečkaninová A., Koščová J., Mudroňová D., Schusterová P., Maruščáková I.C., Popelka P. Characterization of Two Novel Lactic Acid Bacteria Isolated from the Intestine of Rainbow Trout (Oncorhynchus mykiss, Walbaum) in Slovakia. Aquaculture. 2019;506:294–301. doi: 10.1016/j.aquaculture.2019.03.026. DOI
Maruščáková I.C., Schusterová P., Popelka P., Gancarčíková S., Csank T., Fečkaninová A., Ratvaj M., Mudroňová D. Effect of Autochthonous Lactobacilli on Immunologically Important Molecules of Rainbow Trout after Bacterial Infection Studied on Intestinal Primoculture. Fish Shellfish. Immunol. 2021;119:379–383. doi: 10.1016/j.fsi.2021.10.021. PubMed DOI
Nemcová R. Criteria for selection of lactobacilli for probiotic use. Vet. Med. 1997;42:19–27. PubMed
Fečkaninová A., Koščová J., Franc A., Mudroňová D., Popelka P. Surviving of Production Probiotic Strains in a Selected Application Form. Ceska Slov. Farm. 2022;71:27–33. doi: 10.5817/CSF2022-1-27. PubMed DOI
Zheng J., Wittouck S., Salvetti E., Franz C.M.A.P., Harris H.M.B., Mattarelli P., O’Toole P.W., Pot B., Vandamme P., Walter J., et al. A Taxonomic Note on the Genus Lactobacillus: Description of 23 Novel Genera, Emended Description of the Genus Lactobacillus Beijerinck 1901, and Union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020;70:2782–2858. doi: 10.1099/ijsem.0.004107. PubMed DOI
European Commission COMMISSION REGULATION (EC) No 152/2009 of 27 January 2009 Laying down the Methods of Sampling and Analysis for the Official Control of Feed. 2009. [(accessed on 1 June 2023)]. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32009R0152.
Kim D.-H., Austin B. Cytokine Expression in Leucocytes and Gut Cells of Rainbow Trout, Oncorhynchus Mykiss Walbaum, Induced by Probiotics. Vet. Immunol. Immunopathol. 2006;114:297–304. doi: 10.1016/j.vetimm.2006.08.015. PubMed DOI
Li S., Xie H., Yan Z., Li B., Wu P., Qian X., Zhang X., Wu J., Liu J., Zhao X. Development of a Live Vector Vaccine against Infectious Hematopoietic Necrosis Virus in Rainbow Trout. Fish Shellfish. Immunol. 2019;89:516–524. doi: 10.1016/j.fsi.2019.04.024. PubMed DOI
Yarahmadi P., Miandare H.K., Fayaz S., Caipang C.M.A. Increased Stocking Density Causes Changes in Expression of Selected Stress- and Immune-Related Genes, Humoral Innate Immune Parameters and Stress Responses of Rainbow Trout (Oncorhynchus mykiss) Fish Shellfish. Immunol. 2016;48:43–53. doi: 10.1016/j.fsi.2015.11.007. PubMed DOI
Jørgensen T.R., Raida M.K., Kania P.W., Buchmann K. Response of Rainbow Trout (Oncorhynchus mykiss) in Skin and Fin Tissue during Infection with a Variant of Gyrodactylus salaris (Monogenea: Gyrodactylidae) Folia Parasitol. 2013;56:251–258. doi: 10.14411/fp.2009.029. PubMed DOI
Chettri J.K., Kuhn J., Jaafar R.M., Kania P.W., Møller O.S., Buchmann K. Epidermal Response of Rainbow Trout to Ichthyobodo Necator: Immunohistochemical and Gene Expression Studies Indicate a Th1-/Th2-like Switch. J. Fish Dis. 2014;37:771–783. doi: 10.1111/jfd.12169. PubMed DOI
Fierro-Castro C., Barrioluengo L., López-Fierro P., Razquin B., Villena A. Fish Cell Cultures as in Vitro Models of Inflammatory Responses Elicited by Immunostimulants. Expression of Regulatory Genes of the Innate Immune Response. Fish Shellfish. Immunol. 2013;35:979–987. doi: 10.1016/j.fsi.2013.07.015. PubMed DOI
Madar M., Slizova M., Czerwinski J., Hrckova G., Mudronova D., Gancarcikova S., Popper M., Pistl J., Soltys J., Nemcova R. Histo-FISH Protocol to Detect Bacterial Compositions and Biofilms Formation in Vivo. Benef. Microbes. 2015;6:899–907. doi: 10.3920/BM2015.0016. PubMed DOI
Ringø E., Gatesoupe F.-J. Lactic Acid Bacteria in Fish: A Review. Aquaculture. 1998;160:177–203. doi: 10.1016/S0044-8486(97)00299-8. DOI
Balcã¡Zar J.L., de Blas I., Ruiz-Zarzuela I., Vendrell D., Gironã©S O., Muzquiz J.L. Enhancement of the Immune Response and Protection Induced by Probiotic Lactic Acid Bacteria against Furunculosis in Rainbow Trout (Oncorhynchus mykiss) FEMS Immunol. Med. Microbiol. 2007;51:185–193. doi: 10.1111/j.1574-695X.2007.00294.x. PubMed DOI
Vendrell D., Balcázar J.L., de Blas I., Ruiz-Zarzuela I., Gironés O., Múzquiz J.L. Protection of Rainbow Trout (Oncorhynchus mykiss) from Lactococcosis by Probiotic Bacteria. Comp. Immunol. Microbiol. Infect. Dis. 2008;31:337–345. doi: 10.1016/j.cimid.2007.04.002. PubMed DOI
Pérez-Sánchez T., Balcázar J.L., Merrifield D.L., Carnevali O., Gioacchini G., de Blas I., Ruiz-Zarzuela I. Expression of Immune-Related Genes in Rainbow Trout (Oncorhynchus mykiss) Induced by Probiotic Bacteria during Lactococcus garvieae Infection. Fish Shellfish. Immunol. 2011;31:196–201. doi: 10.1016/j.fsi.2011.05.005. PubMed DOI
Merrifield D., Dimitroglou A., Bradley G., Baker R., Davies S. Probiotic Applications for Rainbow Trout (Oncorhynchus mykiss Walbaum) I. Effects on Growth Performance, Feed Utilization, Intestinal Microbiota and Related Health Criteria. Aquac. Nutr. 2010;16:504–510. doi: 10.1111/j.1365-2095.2009.00689.x. DOI
Merrifield D., Bradley G., Harper G., Baker R., Munn C., Davies S. Assessment of the Effects of Vegetative and Lyophilized Pediococcus Acidilactici on Growth, Feed Utilization, Intestinal Colonization and Health Parameters of Rainbow Trout (Oncorhynchus mykiss Walbaum) Aquac. Nutr. 2011;17:73–79. doi: 10.1111/j.1365-2095.2009.00712.x. DOI
Gümüş E., Kubilay A., Guney Z., Guzel-Seydim T., Kok-Tas S., Ulukoy M.G. Effect of Dietary Kefir on the Growth Performance, Feed Utilization and Fatty Acid Profile of Juvenile Rainbow Trout, Oncorhynchus Mykiss. Aquac. Nutr. 2017;23:964–972. doi: 10.1111/anu.12464. DOI
Hines I.S., Santiago-Morales K.D., Ferguson C.S., Clarington J., Thompson M., Rauschenbach M., Levine U., Drahos D., Aylward F.O., Smith S.A., et al. Steelhead Trout (Oncorhynchus mykiss) Fed Probiotic during the Earliest Developmental Stages Have Enhanced Growth Rates and Intestinal Microbiome Bacterial Diversity. Front. Mar. Sci. 2022;9:2291. doi: 10.3389/fmars.2022.1021647. DOI
Nimalan N., Sørensen S.L., Fečkaninová A., Koščová J., Mudroňová D., Gancarčíková S., Vatsos I.N., Bisa S., Kiron V., Sørensen M. Mucosal Barrier Status in Atlantic Salmon Fed Marine or Plant-Based Diets Supplemented with Probiotics. Aquaculture. 2022;547:737516. doi: 10.1016/j.aquaculture.2021.737516. DOI
Mashoof S., Criscitiello M.F. Criscitiello Fish Immunoglobulins. Biology. 2016;5:45. doi: 10.3390/biology5040045. PubMed DOI PMC
Solem S.T., Stenvik J. Antibody Repertoire Development in Teleosts—A Review with Emphasis on Salmonids and Gadus morhua L. Dev. Comp. Immunol. 2006;30:57–76. doi: 10.1016/j.dci.2005.06.007. PubMed DOI
Costa G., Danz H., Kataria P., Bromage E. A Holistic View of the Dynamisms of Teleost IgM: A Case Study of Streptococcus Iniae Vaccinated Rainbow Trout (Oncorhynchus mykiss) Dev. Comp. Immunol. 2012;36:298–305. doi: 10.1016/j.dci.2011.04.011. PubMed DOI
Vazirzadeh A., Roosta H., Masoumi H., Farhadi A., Jeffs A. Long-Term Effects of Three Probiotics, Singular or Combined, on Serum Innate Immune Parameters and Expressions of Cytokine Genes in Rainbow Trout during Grow-Out. Fish Shellfish. Immunol. 2020;98:748–757. doi: 10.1016/j.fsi.2019.11.023. PubMed DOI
Balcázar J.L., de Blas I., Ruiz-Zarzuela I., Vendrell D., Calvo A.C., Márquez I., Gironés O., Muzquiz J.L. Changes in Intestinal Microbiota and Humoral Immune Response Following Probiotic Administration in Brown Trout (Salmo trutta) Br. J. Nutr. 2007;97:522–527. doi: 10.1017/S0007114507432986. PubMed DOI
IAas I.B., Austbø L., Falk K., Hordvik I., Koppang E.O. The Interbranchial Lymphoid Tissue Likely Contributes to Immune Tolerance and Defense in the Gills of Atlantic Salmon. Dev. Comp. Immunol. 2017;76:247–254. doi: 10.1016/j.dci.2017.06.013. PubMed DOI
Ashfaq H., Soliman H., Saleh M., El-Matbouli M. CD4: A Vital Player in the Teleost Fish Immune System. Vet. Res. 2019;50:1–11. doi: 10.1186/s13567-018-0620-0. PubMed DOI PMC
Picchietti S., Fausto A.M., Randelli E., Carnevali O., Taddei A.R., Buonocore F., Scapigliati G., Abelli L. Early Treatment with Lactobacillus Delbrueckii Strain Induces an Increase in Intestinal T-Cells and Granulocytes and Modulates Immune-Related Genes of Larval dicentrarchus Labrax (L.) Fish Shellfish. Immunol. 2009;26:368–376. doi: 10.1016/j.fsi.2008.10.008. PubMed DOI
Ashfaq H., Soliman H., Fajmann S., Sexl V., El-Matbouli M., Saleh M. Kinetics of CD4-1+ Lymphocytes in Brown Trout after Exposure to Viral Haemorrhagic septicaemia Virus. J. Fish Dis. 2021;44:1553–1562. doi: 10.1111/jfd.13476. PubMed DOI
Takizawa F., Dijkstra J.M., Kotterba P., Korytář T., Kock H., Köllner B., Jaureguiberry B., Nakanishi T., Fischer U. The Expression of CD8α Discriminates Distinct T Cell Subsets in Teleost Fish. Dev. Comp. Immunol. 2011;35:752–763. doi: 10.1016/j.dci.2011.02.008. PubMed DOI
Utke K., Bergmann S., Lorenzen N., Köllner B., Ototake M., Fischer U. Cell-Mediated Cytotoxicity in Rainbow Trout, Oncorhynchus mykiss, Infected with Viral Haemorrhagic septicaemia Virus. Fish Shellfish. Immunol. 2007;22:182–196. doi: 10.1016/j.fsi.2006.04.008. PubMed DOI
Toda H., Shibasaki Y., Koike T., Ohtani M., Takizawa F., Ototake M., Moritomo T., Nakanishi T. Alloantigen-Specific Killing Is Mediated by CD8-Positive T Cells in Fish. Dev. Comp. Immunol. 2009;33:646–652. doi: 10.1016/j.dci.2008.11.008. PubMed DOI
Granja A.G., Leal E., Pignatelli J., Castro R., Abós B., Kato G., Fischer U., Tafalla C. Identification of Teleost Skin CD8α+ Dendritic-like Cells, Representing a Potential Common Ancestor for Mammalian Cross-Presenting Dendritic Cells. J. Immunol. 2015;195:1825–1837. doi: 10.4049/jimmunol.1500322. PubMed DOI
Skaggs B.J., Singh R.P., Hahn B.H. Induction of Immune Tolerance by Activation of CD8+ T Suppressor/Regulatory Cells in Lupus-Prone Mice. Hum. Immunol. 2008;69:790–796. doi: 10.1016/j.humimm.2008.08.284. PubMed DOI PMC
Ogryzko N.V., Renshaw S.A., Wilson H.L. The IL-1 Family in Fish: Swimming through the Muddy Waters of Inflammasome Evolution. Dev. Comp. Immunol. 2014;46:53–62. doi: 10.1016/j.dci.2014.03.008. PubMed DOI
Wu Z.-Q., Jiang C., Ling F., Wang G.-X. Effects of Dietary Supplementation of Intestinal Autochthonous Bacteria on the Innate Immunity and Disease Resistance of Grass Carp (Ctenopharyngodon idellus) Aquaculture. 2015;438:105–114. doi: 10.1016/j.aquaculture.2014.12.041. DOI
He S., Zhang Y., Xu L., Yang Y., Marubashi T., Zhou Z., Yao B. Effects of Dietary Bacillus Subtilis C-3102 on the Production, Intestinal Cytokine Expression and Autochthonous Bacteria of Hybrid Tilapia Oreochromis Niloticus ♀ × Oreochromis Aureus ♂. Aquaculture. 2013;412–413:125–130. doi: 10.1016/j.aquaculture.2013.06.028. DOI
Li Y., Xiao T., Zou J. Fish TNF and TNF Receptors. Sci. China Life Sci. 2020;64:196–220. doi: 10.1007/s11427-020-1712-4. PubMed DOI
Wangkahart E., Secombes C.J., Wang T. Dissecting the Immune Pathways Stimulated Following Injection Vaccination of Rainbow Trout (Oncorhynchus mykiss) against Enteric Redmouth Disease (ERM) Fish Shellfish. Immunol. 2019;85:18–30. doi: 10.1016/j.fsi.2017.07.056. PubMed DOI
Muñoz-Atienza E., Araújo C., Magadán S., Hernández P.E., Herranz C., Santos Y., Cintas L.M. In Vitro and in Vivo Evaluation of Lactic Acid Bacteria of Aquatic Origin as Probiotics for Turbot (Scophthalmus maximus L.) Farming. Fish Shellfish. Immunol. 2014;41:570–580. doi: 10.1016/j.fsi.2014.10.007. PubMed DOI
Saxena V., Lienesch D.W., Zhou M., Bommireddy R., Azhar M., Doetschman T., Singh R.R. Dual Roles of Immunoregulatory Cytokine TGF-β in the Pathogenesis of Autoimmunity-Mediated Organ Damage. J. Immunol. 2008;180:1903–1912. doi: 10.4049/jimmunol.180.3.1903. PubMed DOI PMC
Yang M., Wang X., Chen D., Wang Y., Zhang A., Zhou H. Tgf-Β1 Exerts Opposing Effects on Grass Carp Leukocytes: Implication in Teleost Immunity, Receptor Signaling and Potential Self-Regulatory Mechanisms. PLoS ONE. 2012;7:e35011. doi: 10.1371/journal.pone.0035011. PubMed DOI PMC
Li X., Mu P., Teng Y., Wu Y., Chen X. Identification of a TGF-Β1 Homologue in the Large Yellow Croaker (Larimichthys crocea) Revealed Its Role in Regulation of Immune Response. Water Biol. Secur. 2022;1:100006. doi: 10.1016/j.watbs.2022.100006. DOI
Tan H.Y., Chen S.-W., Hu S.-Y. Improvements in the Growth Performance, Immunity, Disease Resistance, and Gut Microbiota by the Probiotic Rummeliibacillus Stabekisii in Nile Tilapia (Oreochromis niloticus) Fish Shellfish. Immunol. 2019;92:265–275. doi: 10.1016/j.fsi.2019.06.027. PubMed DOI
Lilleeng E., Penn M.H., Haugland O., Xu C., Bakke A.M., Krogdahl A., Landsverk T., Frøystad-Saugen M.K. Decreased Expression of TGF-β, GILT and T-Cell Markers in the Early Stages of Soybean Enteropathy in Atlantic Salmon (Salmo salar L.) Fish Shellfish Immunol. 2009;27:65–72. doi: 10.1016/j.fsi.2009.04.007. PubMed DOI
Di Giacinto C., Marinaro M., Sanchez M., Strober W., Boirivant M. Probiotics Ameliorate Recurrent Th1-Mediated Murine Colitis by Inducing IL-10 and IL-10-Dependent TGF-β-Bearing Regulatory Cells. J. Immunol. 2005;174:3237–3246. doi: 10.4049/jimmunol.174.6.3237. PubMed DOI
Medzhitov R., Janeway C.A., Jr. Decoding the Patterns of Self and Nonself by the Innate Immune System. Science. 2002;296:298–300. doi: 10.1126/science.1068883. PubMed DOI
Iliev D.B., Skjæveland I., Jørgensen J.B. CpG Oligonucleotides Bind TLR9 and RRM-Containing Proteins in Atlantic Salmon (Salmo salar) BMC Immunol. 2013;14:12. doi: 10.1186/1471-2172-14-12. PubMed DOI PMC
Mielcarska M.B., Bossowska-Nowicka M., Toka F.N. Cell Surface Expression of Endosomal Toll-Like Receptors—A Necessity or a Superfluous Duplication? Front. Immunol. 2021;11:3652. doi: 10.3389/fimmu.2020.620972. PubMed DOI PMC
Zhong Y., Huang J., Tang W., Chen B., Cai W. Effects of Probiotics, Probiotic DNA and the CpG Oligodeoxynucleotides on Ovalbumin-Sensitized Brown-Norway Rats via TLR9/NF-ΚB Pathway. FEMS Immunol. Med. Microbiol. 2012;66:71–82. doi: 10.1111/j.1574-695X.2012.00991.x. PubMed DOI
Gupta S., Fečkaninová A., Lokesh J., Koščová J., Sørensen M., Fernandes J., Kiron V. Erratum: Lactobacillus Dominate in the Intestine of Atlantic Salmon Fed Dietary Probiotics. Front. Microbiol. 2019;10:3247. doi: 10.3389/fmicb.2018.03247. PubMed DOI PMC
Rahimi S., Grimes J.L., Fletcher O., Oviedo E., Sheldon B.W. Effect of a Direct-Fed Microbial (Primalac) on Structure and Ultrastructure of Small Intestine in Turkey Poults. Poult. Sci. 2009;88:491–503. doi: 10.3382/ps.2008-00272. PubMed DOI
Mohammadian T., Monjezi N., Peyghan R., Mohammadian B. Effects of Dietary Probiotic Supplements on Growth, Digestive Enzymes Activity, Intestinal Histomorphology and Innate Immunity of Common Carp (Cyprinus carpio): A Field Study. Aquaculture. 2022;549:737787. doi: 10.1016/j.aquaculture.2021.737787. DOI
Sun Y., Duarte M.E., Kim S.W. Dietary Inclusion of Multispecies Probiotics to Reduce the Severity of Post-Weaning Diarrhea Caused by Escherichia Coli F18+ in Pigs. Anim. Nutr. 2021;7:326–333. doi: 10.1016/j.aninu.2020.08.012. PubMed DOI PMC