Effect of Varying Normal Stiffness on Soft Rock Joints under Cyclic Shear Loads
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37374456
PubMed Central
PMC10302608
DOI
10.3390/ma16124272
PII: ma16124272
Knihovny.cz E-zdroje
- Klíčová slova
- cyclic shear loads, normal stiffness, regular and irregular joints, rock joint roughness, soft rock joints,
- Publikační typ
- časopisecké články MeSH
The evaluation of changes in shear resistance on soft (or weathered) rock joints under cyclic shear loads with constant normal load (CNL) and constant normal stiffness (CNS) significantly contributes to increasing the safety and stability of rock slopes and underground structures. In this study, a series of cyclic shear tests were conducted on simulated soft rock joints with regular (15°-15°, 30°-30°) and irregular (15°-30°) asperities under different normal stiffnesses (kn). The results indicated that the first peak shear stress increases with the increase in kn up to the normal stiffness of the joints (knj). Beyond knj, no significant change was observed in the peak shear stress. The difference in peak shear stress between regular (30°-30°) and irregular joints (15°-30°) increases as kn increases. The minimum difference of peak shear stress between regular and irregular joints was observed (8.2%) under CNL and the maximum difference was found (64.3%) on knj under CNS. The difference in peak shear stress between the first and subsequent cycles significantly increases as both the joint roughness and kn increases. A new shear strength model is developed to predict peak shear stress of the joints for different kn and asperity angles under cyclic shear loads.
Department of Civil Engineering Delhi Technological University Delhi 110042 India
Department of Civil Engineering Indian Institute of Technology Delhi Delhi 110016 India
Zobrazit více v PubMed
Jiang X.-W., Wan L., Wang X.-S., Liang S.-H., Hu B.X. Estimation of fracture normal stiffness using a transmissivity-depth correlation. Int. J. Rock Mech. Min. Sci. 2009;46:51–58. doi: 10.1016/j.ijrmms.2008.03.007. DOI
Patton F.D. Ph.D. Thesis. University of Illinois; Champaign, IL, USA: 1966. Multiple Modes of Shear Failure in Rock and Related Materials.
Ladany B., Archambault G. Simulation of Shear Behavior of a Jointed Rock Mass; Proceedings of the 11th US Symposium on Rock Mechanics; Berkeley, CA, USA. 16–19 June 1969; New York, NY, USA: American Rock Mechanics Association (ARMA); 1970. pp. 105–125.
Jaeger J.C. Friction of Rocks and Stability of Rock Slopes. Geotechnique. 1971;21:97–134. doi: 10.1680/geot.1971.21.2.97. DOI
Barton N. Review of a new shear-strength criterion for rock joints. Eng. Geol. 1973;7:287–332. doi: 10.1016/0013-7952(73)90013-6. DOI
Barton N., Choubey V. The shear strength of rock joints in theory and practice. Rock Mech. Rock Eng. 1977;10:1–54. doi: 10.1007/BF01261801. DOI
Amadei B., Saeb S. Constitutive Models of Rock Joints. In: Barton N., Stephansson O., editors. Rock Joints: Proceedings of the International Symposium on Rock Joints, Loen, Norway, 4–6 June 1990. Balkema; Rotterdam, The Netherlands: Brookfield, VT, USA: 1990. pp. 581–594.
Kulatilake P., Shou G., Huang T., Morgan R. New peak shear strength criteria for anisotropic rock joints. Int. J. Rock Mech. Min. Sci. Géoméch. Abstr. 1995;32:673–697. doi: 10.1016/0148-9062(95)00022-9. DOI
Seidel J.P., Haberfield C.M. The application of energy principles to the determination of the sliding resistance of rock joints. Rock Mech. Rock Eng. 1995;28:211–226. doi: 10.1007/BF01020227. DOI
Grasselli G., Wirth J., Egger P. Quantitative three-dimensional description of a rough surface and parameter evolution with shearing. Int. J. Rock Mech. Min. Sci. 2002;39:789–800. doi: 10.1016/S1365-1609(02)00070-9. DOI
Asadollahi P., Tonon F. Constitutive model for rock fractures: Revisiting Barton’s empirical model. Eng. Geol. 2010;113:11–32. doi: 10.1016/j.enggeo.2010.01.007. DOI
Heuze F.E. Dilatant Effects of Rock Joints; Proceedings of the 4th ISRM Congress; Montreux, Switzerland. 2–8 September 1979; pp. 169–175.
Johnston I.W., Lam T.S.K. Shear Behavior of Regular Triangular Concrete/Rock Joints—Analysis. J. Geotech. Eng. 1989;115:711–727. doi: 10.1061/(ASCE)0733-9410(1989)115:5(711). DOI
Saeb S., Amadei B. Modelling rock joints under shear and normal loading. Int. J. Rock Mech. Min. Sci. Géoméch. Abstr. 1992;29:267–278. doi: 10.1016/0148-9062(92)93660-C. DOI
Skinas C.A., Bandis S.C., Demiris C.A. Experimental Investigations and Modelling of Rock Joint Behaviour under Constant Stiffness. In: Barton N., Stephansson O., editors. Proceedings of the International Symposium on Rock Joints; Loen, Norway. 4–6 June 1990; Rotterdam, The Netherlands: Brookfield, VT, USA: Balkema; 1990. pp. 301–308.
Indraratna B., Haque A., Aziz N. Laboratory Modelling of Shear Behaviour of Soft Joints under Constant Normal Stiffness Conditions. J. Geotech. Geol. Eng. 1998;16:17–44. doi: 10.1023/A:1008880112926. DOI
Haque A. Ph.D. Thesis. University of Wollongong; Wollongong, Australia: 1999. Shear Behaviour of Soft Rock Joints under Constant Normal Stiffness Condition.
Indraratna B., Haque A. Shear Behaviour of Rock Joints. Balkema; Rotterdam, The Netherlands: 2021.
Shrivastava A.K., Rao K.S. Physical Modeling of Shear Behavior of Infilled Rock Joints Under CNL and CNS Boundary Conditions. Rock Mech. Rock Eng. 2018;51:101–118. doi: 10.1007/s00603-017-1318-8. DOI
Hutson R., Dowding C. Joint asperity degradation during cyclic shear. Int. J. Rock Mech. Min. Sci. Géoméch. Abstr. 1990;27:109–119. doi: 10.1016/0148-9062(90)94859-R. DOI
Huang X., Haimson B., Plesha M., Qiu X. An investigation of the mechanics of rock joints—Part I. Laboratory investigation. Int. J. Rock Mech. Min. Sci. Géoméch. Abstr. 1993;30:257–269. doi: 10.1016/0148-9062(93)92729-A. DOI
Plesha M.E. Constitutive models for rock discontinuities with dilatancy and surface degradation. Int. J. Numer. Anal. Methods Géoméch. 1987;11:345–362. doi: 10.1002/nag.1610110404. DOI
Qiu X., Plesha M., Huang X., Haimson B. An investigation of the mechanics of rock joints—Part II. Analytical investigation. Int. J. Rock Mech. Min. Sci. Géoméch. Abstr. 1993;30:271–287. doi: 10.1016/0148-9062(93)92730-E. DOI
Jing L., Stephansson O., Nordlund E. Study of rock joints under cyclic loading conditions. Rock Mech. Rock Eng. 1993;26:215–232. doi: 10.1007/BF01040116. DOI
Lee H.S., Park Y.J., Cho T.F., You K.H. Influence of Asperity Degradation on the Mechanical Behavior of Rough Rock Joints under Cyclic Shear Loading. Int. J. Rock Mech. Min. Sci. 2001;38:967–980. doi: 10.1016/S1365-1609(01)00060-0. DOI
Jafari M., Hosseini K.A., Pellet F., Boulon M., Buzzi O. Evaluation of shear strength of rock joints subjected to cyclic loading. Soil Dyn. Earthq. Eng. 2003;23:619–630. doi: 10.1016/S0267-7261(03)00063-0. DOI
Thongprapha T., Liapkrathok P., Chanpen S., Fuenkajorn K. Frictional behavior of sandstone fractures under forward-backward pre-peak cyclic loading. J. Struct. Geol. 2020;138:104106. doi: 10.1016/j.jsg.2020.104106. DOI
Belem T., Souley M., Homand F. Modeling surface roughness degradation of rock joint wall during monotonic and cyclic shearing. Acta Geotech. 2007;2:227–248. doi: 10.1007/s11440-007-0039-7. DOI
Belem T., Souley M., Homand F. Method for Quantification of Wear of Sheared Joint Walls Based on Surface Morphology. Rock Mech. Rock Eng. 2009;42:883–910. doi: 10.1007/s00603-008-0023-z. DOI
Homand-Etienne F., Lefevre F., Belem T., Souley M. Rock Joints Behaviour under Cyclic Direct Shear Tests; Proceedings of the 37th US Symposium; Vail, CO, USA. 6–9 June 1999; pp. 399–406.
Homand F., Belem T., Souley M. Friction and degradation of rock joint surfaces under shear loads. Int. J. Numer. Anal. Methods Géoméch. 2001;25:973–999. doi: 10.1002/nag.163. DOI
Jiang Y., Xiao J., Tanabashi Y., Mizokami T. Development of an automated servo-controlled direct shear apparatus applying a constant normal stiffness condition. Int. J. Rock Mech. Min. Sci. 2004;41:275–286. doi: 10.1016/j.ijrmms.2003.08.004. DOI
Mirzaghorbanali A. Ph.D. Thesis. University of Wollongong; Wollongong, Australia: 2013. Shear Behaviour of Rock Joints under Cyclic Loading and Constant Normal Stiffness Condition.
Mirzaghorbanali A., Nemcik J., Aziz N. Effects of Shear Rate on Cyclic Loading Shear Behaviour of Rock Joints under Constant Normal Stiffness Conditions. Int. J. Rock Mech. Rock Eng. 2013;47:1931–1938. doi: 10.1007/s00603-013-0453-0. DOI
Han G., Jing H., Jiang Y., Liu R., Wu J. Effect of Cyclic Loading on the Shear Behaviours of Both Unfilled and Infilled Rough Rock Joints Under Constant Normal Stiffness Conditions. Rock Mech. Rock Eng. 2020;53:31–57. doi: 10.1007/s00603-019-01866-w. DOI
Richards L.R. Ph.D. Thesis. Imperial College of Science and Technology; London, UK: 1975. Shear Strength of Joints in Weathered Rocks.
Dearman W.R., Baynes F.J., Irfan T.Y. Engineering grading of weathered granite. Eng. Geol. 1978;12:345–374. doi: 10.1016/0013-7952(78)90018-2. DOI
Özvan A., Dinçer I., Acar A., Özvan B. The effects of discontinuity surface roughness on the shear strength of weathered granite joints. Bull. Eng. Geol. Environ. 2014;73:801–813. doi: 10.1007/s10064-013-0560-x. DOI
Ram B.K., Basu A. Shear Behavior of Unfilled-Planar Quartzitic Rock Joints with Reference to Weathering Grade of Joint Surfaces. Rock Mech. Rock Eng. 2019;52:4113–4121. doi: 10.1007/s00603-019-01815-7. DOI
Zhang Q., Wu C., Fei X., Jang B.A., Liu D. Time-Dependent Behavior of Rock Joints Considering Asperity Degradation. J. Struct. Geol. 2019;121:43–50. doi: 10.1016/j.jsg.2019.01.004. DOI
Niktabar S.M.M., Rao K.S., Shrivastava A.K. Automatic Static and Cyclic Shear Testing Machine under Constant Normal Stiffness Boundary Conditions. Geotech. Test. J. 2018;41:508–525. doi: 10.1520/GTJ20170083. DOI
Niktabar S.M., Rao K.S., Seshagiri R., Shrivastava A.K. Effect of rock joint roughness on its cyclic shear behavior. J. Rock Mech. Geotech. Eng. 2017;9:1071–1084. doi: 10.1016/j.jrmge.2017.09.001. DOI