Correlative Imaging of Individual CsPbBr3 Nanocrystals: Role of Isolated Grains in Photoluminescence of Perovskite Polycrystalline Thin Films

. 2023 Jun 29 ; 127 (25) : 12404-12413. [epub] 20230620

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37405362

We report on the optical properties of a CsPbBr3 polycrystalline thin film on a single grain level. A sample composed of isolated nanocrystals (NCs) mimicking the properties of the polycrystalline thin film grains that can be individually probed by photoluminescence spectroscopy was prepared. These NCs were analyzed using correlative microscopy allowing the examination of structural, chemical, and optical properties from identical sites. Our results show that the stoichiometry of the CsPbBr3 NCs is uniform and independent of the NCs' morphology. The photoluminescence (PL) peak emission wavelength is slightly dependent on the dimensions of NCs, with a blue shift up to 9 nm for the smallest analyzed NCs. The magnitude of the blueshift is smaller than the emission line width, thus detectable only by high-resolution PL mapping. By comparing the emission energies obtained from the experiment and a rigorous effective mass model, we can fully attribute the observed variations to the size-dependent quantum confinement effect.

Zobrazit více v PubMed

Morozov Y. V.; Zhang S.; Brennan M. C.; Janko B.; Kuno M. Photoluminescence Up-Conversion in CsPbBr3 Nanocrystals. ACS Energy Letters 2017, 2, 2514–2515. 10.1021/acsenergylett.7b00902. DOI

Kovalenko M. V.; Protesescu L.; Bodnarchuk M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 2017, 358, 745–750. 10.1126/science.aam7093. PubMed DOI

Liu F.; Zhang Y.; Ding C.; Kobayashi S.; Izuishi T.; Nakazawa N.; Toyoda T.; Ohta T.; Hayase S.; Minemoto T.; et al. Highly Luminescent Phase-Stable CsPbI 3 Perovskite Quantum Dots Achieving Near 100% Absolute Photoluminescence Quantum Yield. ACS Nano 2017, 11, 10373–10383. 10.1021/acsnano.7b05442. PubMed DOI

Tong Y.; Bladt E.; Aygüler M. F.; Manzi A.; Milowska K. Z.; Hintermayr V. A.; Docampo P.; Bals S.; Urban A. S.; Polavarapu L.; et al. Highly Luminescent Cesium Lead Halide Perovskite Nanocrystals with Tunable Composition and Thickness by Ultrasonication. Angew. Chem., Int. Ed. 2016, 55, 13887–13892. 10.1002/anie.201605909. PubMed DOI

Van Le Q.; Jang H. W.; Kim S. Y. Recent Advances toward High-Efficiency Halide Perovskite Light-Emitting Diodes. Small Methods 2018, 2, 1700419.10.1002/smtd.201700419. DOI

Rainò G.; Yazdani N.; Boehme S. C.; Kober-Czerny M.; Zhu C.; Krieg F.; Rossell M. D.; Erni R.; Wood V.; Infante I.; et al. Ultra-narrow room-temperature emission from single CsPbBr3 perovskite quantum dots. Nat. Commun. 2022, 13, 2587.10.1038/s41467-022-30016-0. PubMed DOI PMC

Pan J.; Sarmah S. P.; Murali B.; Dursun I.; Peng W.; Parida M. R.; Liu J.; Sinatra L.; Alyami N.; Zhao C.; et al. Air-Stable Surface-Passivated Perovskite Quantum Dots for Ultra-Robust, Single- and Two-Photon-Induced Amplified Spontaneous Emission. J. Phys. Chem. Lett. 2015, 6, 5027–5033. 10.1021/acs.jpclett.5b02460. PubMed DOI

Akkerman Q. A.; Rainò G.; Kovalenko M. V.; Manna L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 2018, 17, 394–405. 10.1038/s41563-018-0018-4. PubMed DOI

Wang Y.; Li X.; Zhao X.; Xiao L.; Zeng H.; Sun H. Nonlinear Absorption and Low-Threshold Multiphoton Pumped Stimulated Emission from All-Inorganic Perovskite Nanocrystals. Nano Lett. 2016, 16, 448–453. 10.1021/acs.nanolett.5b04110. PubMed DOI

Cheng L.-P.; Huang J.-S.; Shen Y.; Li G.-P.; Liu X.-K.; Li W.; Wang Y.-H.; Li Y.-Q.; Jiang Y.; Gao F.; et al. Efficient CsPbBr3 Perovskite Light-Emitting Diodes Enabled by Synergetic Morphology Control. Advanced Optical Materials 2019, 7, 1801534.10.1002/adom.201801534. DOI

Liu M.; Wan Q.; Wang H.; Carulli F.; Sun X.; Zheng W.; Kong L.; Zhang Q.; Zhang C.; Zhang Q.; et al. Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes. Nat. Photonics 2021, 15, 379–385. 10.1038/s41566-021-00766-2. DOI

Zhu C.; Marczak M.; Feld L.; Boehme S. C.; Bernasconi C.; Moskalenko A.; Cherniukh I.; Dirin D.; Bodnarchuk M. I.; Kovalenko M. V.; et al. Room-Temperature, Highly Pure Single-Photon Sources from All-Inorganic Lead Halide Perovskite Quantum Dots. Nano Lett. 2022, 22, 3751–3760. 10.1021/acs.nanolett.2c00756. PubMed DOI PMC

Jena A. K.; Kulkarni A.; Miyasaka T. Halide Perovskite Photovoltaics. Chem. Rev. 2019, 119, 3036–3103. 10.1021/acs.chemrev.8b00539. PubMed DOI

Tong G.; Ono L. K.; Qi Y. Recent Progress of All-Bromide Inorganic Perovskite Solar Cells. Energy Technology 2020, 8, 1900961.10.1002/ente.201900961. DOI

Duan J.; Wang M.; Wang Y.; Zhang J.; Guo Q.; Zhang Q.; Duan Y.; Tang Q. Effect of Side-Group-Regulated Dipolar Passivating Molecules on CsPbBr3 Perovskite Solar Cells. ACS Energy Letters 2021, 6, 2336–2342. 10.1021/acsenergylett.1c01060. DOI

He Y.; Petryk M.; Liu Z.; Chica D. G.; Hadar I.; Leak C.; Ke W.; Spanopoulos I.; Lin W.; Chung D. Y.; et al. CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy γ-rays. Nat. Photonics 2021, 15, 36–42. 10.1038/s41566-020-00727-1. DOI

Xu Y.-F.; Yang M.-Z.; Chen B.-X.; Wang X.-D.; Chen H.-Y.; Kuang D.-B.; Su C.-Y. A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO 2 Reduction. J. Am. Chem. Soc. 2017, 139, 5660–5663. 10.1021/jacs.7b00489. PubMed DOI

Ko J.; Ma K.; Joung J. F.; Park S.; Bang J. Ligand-Assisted Direct Photolithography of Perovskite Nanocrystals Encapsulated with Multifunctional Polymer Ligands for Stable, Full-Colored, High-Resolution Displays. Nano Lett. 2021, 21, 2288–2295. 10.1021/acs.nanolett.1c00134. PubMed DOI

Qiu W.; Xiao Z.; Roh K.; Noel N. K.; Shapiro A.; Heremans P.; Rand B. P. Mixed Lead–Tin Halide Perovskites for Efficient and Wavelength-Tunable Near-Infrared Light-Emitting Diodes. Adv. Mater. 2019, 31, 1806105.10.1002/adma.201806105. PubMed DOI

John R. A.; Demirağ Y.; Shynkarenko Y.; Berezovska Y.; Ohannessian N.; Payvand M.; Zeng P.; Bodnarchuk M. I.; Krumeich F.; Kara G.; et al. Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing. Nat. Commun. 2022, 13, 2074.10.1038/s41467-022-29727-1. PubMed DOI PMC

Ma W.; Jiang T.; Yang Z.; Zhang H.; Su Y.; Chen Z.; Chen X.; Ma Y.; Zhu W.; Yu X.; et al. Highly Resolved and Robust Dynamic X-Ray Imaging Using Perovskite Glass-Ceramic Scintillator with Reduced Light Scattering. Advanced Science 2021, 8, 2003728.10.1002/advs.202003728. PubMed DOI PMC

Xu Q.; Wang J.; Shao W.; Ouyang X.; Wang X.; Zhang X.; Guo Y.; Ouyang X. A solution-processed zero-dimensional all-inorganic perovskite scintillator for high resolution gamma-ray spectroscopy detection. Nanoscale 2020, 12, 9727–9732. 10.1039/D0NR00772B. PubMed DOI

Heo J. H.; Shin D. H.; Park J. K.; Kim D. H.; Lee S. J.; Im S. H. High-Performance Next-Generation Perovskite Nanocrystal Scintillator for Nondestructive X-Ray Imaging. Adv. Mater. 2018, 30, 2003728.10.1002/adma.201801743. PubMed DOI

Fan Y.; Tonkaev P.; Wang Y.; Song Q.; Han J.; Makarov S. V.; Kivshar Y.; Xiao S. Enhanced Multiphoton Processes in Perovskite Metasurfaces. Nano Lett. 2021, 21, 7191–7197. 10.1021/acs.nanolett.1c02074. PubMed DOI

Becker M. A.; Vaxenburg R.; Nedelcu G.; Sercel P. C.; Shabaev A.; Mehl M. J.; Michopoulos J. G.; Lambrakos S. G.; Bernstein N.; Lyons J. L.; et al. Bright triplet excitons in caesium lead halide perovskites. Nature 2018, 553, 189–193. 10.1038/nature25147. PubMed DOI

Tamarat P.; Prin E.; Berezovska Y.; Moskalenko A.; Nguyen T. P. T.; Xia C.; Hou L.; Trebbia J.-B.; Zacharias M.; Pedesseau L.; et al. Universal scaling laws for charge-carrier interactions with quantum confinement in lead-halide perovskites. Nat. Commun. 2023, 14, 229.10.1038/s41467-023-35842-4. PubMed DOI PMC

Zhang F.; Zhong H.; Chen C.; Wu X.-G.; Hu X.; Huang H.; Han J.; Zou B.; Dong Y. Brightly Luminescent and Color-Tunable Colloidal CH 3 NH 3 PbX 3 (X = Br, I, Cl) Quantum Dots. ACS Nano 2015, 9, 4533–4542. 10.1021/acsnano.5b01154. PubMed DOI

Xue J.; Wang R.; Yang Y. The surface of halide perovskites from nano to bulk. Nature Reviews Materials 2020, 5, 809–827. 10.1038/s41578-020-0221-1. DOI

Luo X.; Lai R.; Li Y.; Han Y.; Liang G.; Liu X.; Ding T.; Wang J.; Wu K. Triplet Energy Transfer from CsPbBr3 Nanocrystals Enabled by Quantum Confinement. J. Am. Chem. Soc. 2019, 141, 4186–4190. 10.1021/jacs.8b13180. PubMed DOI

Abdi-Jalebi M.; Andaji-Garmaroudi Z.; Cacovich S.; Stavrakas C.; Philippe B.; Richter J. M.; Alsari M.; Booker E. P.; Hutter E. M.; Pearson A. J.; et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 2018, 555, 497–501. 10.1038/nature25989. PubMed DOI

Wei H.; Huang J. Halide lead perovskites for ionizing radiation detection. Nat. Commun. 2019, 10, 1066.10.1038/s41467-019-08981-w. PubMed DOI PMC

Sichert J. A.; Tong Y.; Mutz N.; Vollmer M.; Fischer S.; Milowska K. Z.; Cortadella R. G.; Nickel B.; Cardenas-Daw C.; Stolarczyk J. K.; et al. Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets. Nano Lett. 2015, 15, 6521–6527. 10.1021/acs.nanolett.5b02985. PubMed DOI

Li H.; Qian Y.; Xing X.; Zhu J.; Huang X.; Jing Q.; Zhang W.; Zhang C.; Lu Z. Enhancing Luminescence and Photostability of CsPbBr3 Nanocrystals via Surface Passivation with Silver Complex. J. Phys. Chem. C 2018, 122, 12994–13000. 10.1021/acs.jpcc.8b04569. DOI

Lin H.; Wei Q.; Ng K. W.; Dong J.; Li J.; Liu W.; Yan S.; Chen S.; Xing G.; Tang X.; et al. Stable and Efficient Blue-Emitting CsPbBr3 Nanoplatelets with Potassium Bromide Surface Passivation. Small 2021, 17, 2101359.10.1002/smll.202101359. PubMed DOI

Cheng O. H.-C.; Qiao T.; Sheldon M.; Son D. H. Size- and temperature-dependent photoluminescence spectra of strongly confined CsPbBr3 quantum dots. Nanoscale 2020, 12, 13113–13118. 10.1039/D0NR02711A. PubMed DOI

Imran M.; Di Stasio F.; Dang Z.; Canale C.; Khan A. H.; Shamsi J.; Brescia R.; Prato M.; Manna L. Colloidal Synthesis of Strongly Fluorescent CsPbBr3 Nanowires with Width Tunable down to the Quantum Confinement Regime. Chem. Mater. 2016, 28, 6450–6454. 10.1021/acs.chemmater.6b03081. PubMed DOI PMC

Protesescu L.; Yakunin S.; Bodnarchuk M. I.; Krieg F.; Caputo R.; Hendon C. H.; Yang R. X.; Walsh A.; Kovalenko M. V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I). Nano Lett. 2015, 15, 3692–3696. 10.1021/nl5048779. PubMed DOI PMC

Shamsi J.; Rainò G.; Kovalenko M. V.; Stranks S. D. To nano or not to nano for bright halide perovskite emitters. Nat. Nanotechnol. 2021, 16, 1164–1168. 10.1038/s41565-021-01005-z. PubMed DOI

Steele J. A.; Solano E.; Jin H.; Prakasam V.; Braeckevelt T.; Yuan H.; Lin Z.; Kloe R.; Wang Q.; Rogge S. M. J.; et al. Texture Formation in Polycrystalline Thin Films of All-Inorganic Lead Halide Perovskite. Adv. Mater. 2021, 33, 2007224.10.1002/adma.202007224. PubMed DOI

Jiang Q.; Zhao Y.; Zhang X.; Yang X.; Chen Y.; Chu Z.; Ye Q.; Li X.; Yin Z.; You J. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466. 10.1038/s41566-019-0398-2. DOI

Yoshikawa K.; Kawasaki H.; Yoshida W.; Irie T.; Konishi K.; Nakano K.; Uto T.; Adachi D.; Kanematsu M.; Uzu H.; et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy 2017, 2, 17032.10.1038/nenergy.2017.32. DOI

Kirchartz T.; Márquez J. A.; Stolterfoht M.; Unold T. Photoluminescence-Based Characterization of Halide Perovskites for Photovoltaics. Adv. Energy Mater. 2020, 10, 1904134.10.1002/aenm.201904134. DOI

Di Stasio F.; Christodoulou S.; Huo N.; Konstantatos G. Near-Unity Photoluminescence Quantum Yield in CsPbBr3 Nanocrystal Solid-State Films via Postsynthesis Treatment with Lead Bromide. Chem. Mater. 2017, 29, 7663–7667. 10.1021/acs.chemmater.7b02834. DOI

Zhou Y.; Yu Y.; Zhang Y.; Liu X.; Yang H.; Liang X.; Xia W.; Xiang W. Highly Photoluminescent CsPbBr3 /CsPb2Br5 NCs@TEOS Nanocomposite in Light-Emitting Diodes. Inorg. Chem. 2021, 60, 3814–3822. 10.1021/acs.inorgchem.0c03573. PubMed DOI

Dey A.; Rathod P.; Kabra D. Role of Localized States in Photoluminescence Dynamics of High Optical Gain CsPbBr3 Nanocrystals. Advanced Optical Materials 2018, 6, 1800109.10.1002/adom.201800109. DOI

Zhang D.; Eaton S. W.; Yu Y.; Dou L.; Yang P. Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires. J. Am. Chem. Soc. 2015, 137, 9230–9233. 10.1021/jacs.5b05404. PubMed DOI

Anni M.; Creti A.; De Giorgi M. L.; Lomascolo M. Local Morphology Effects on the Photoluminescence Properties of Thin CsPbBr3 Nanocrystal Films. Nanomaterials 2021, 11, 1470.10.3390/nano11061470. PubMed DOI PMC

Butkus J.; Vashishtha P.; Chen K.; Gallaher J. K.; Prasad S. K. K.; Metin D. Z.; Laufersky G.; Gaston N.; Halpert J. E.; Hodgkiss J. M. The Evolution of Quantum Confinement in CsPbBr3 Perovskite Nanocrystals. Chem. Mater. 2017, 29, 3644–3652. 10.1021/acs.chemmater.7b00478. DOI

Luo X.; Lai R.; Li Y.; Han Y.; Liang G.; Liu X.; Ding T.; Wang J.; Wu K. Triplet Energy Transfer from CsPbBr3 Nanocrystals Enabled by Quantum Confinement. J. Am. Chem. Soc. 2019, 141, 4186–4190. 10.1021/jacs.8b13180. PubMed DOI

Cheng O. H.-C.; Qiao T.; Sheldon M.; Son D. H. Size- and temperature-dependent photoluminescence spectra of strongly confined CsPbBr3 quantum dots. Nanoscale 2020, 12, 13113–13118. 10.1039/D0NR02711A. PubMed DOI

Morozov Y. V.; Zhang S.; Brennan M. C.; Janko B.; Kuno M. Photoluminescence Up-Conversion in CsPbBr3 Nanocrystals. ACS Energy Letters 2017, 2, 2514–2515. 10.1021/acsenergylett.7b00902. DOI

Kresse G.; Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. 10.1103/PhysRevB.47.558. PubMed DOI

Kresse G.; Furthmüller J.; Hafner J. Theory of the crystal structures of selenium and tellurium. Phys. Rev. B 1994, 50, 13181–13185. 10.1103/PhysRevB.50.13181. PubMed DOI

Kresse G.; Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. 10.1016/0927-0256(96)00008-0. PubMed DOI

Kresse G.; Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. 10.1103/PhysRevB.54.11169. PubMed DOI

Kresse G.; Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. 10.1103/PhysRevB.59.1758. DOI

Becke A. D. A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377. 10.1063/1.464304. DOI

Pack J. D.; Monkhorst H. J. Special points for Brillouin-zone integrations”—a reply. Phys. Rev. B 1977, 16, 1748–1749. 10.1103/PhysRevB.16.1748. DOI

Perdew J. P.; Ruzsinszky A.; Csonka G. I.; Vydrov O. A.; Scuseria G. E.; Constantin L. A.; Zhou X.; Burke K. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Lett. 2008, 100, 136406.10.1103/PhysRevLett.100.136406. PubMed DOI

Krukau A. V.; Vydrov O. A.; Izmaylov A. F.; Scuseria G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006, 125, 224106.10.1063/1.2404663. PubMed DOI

Wang V.; Xu N.; Liu J.-C.; Tang G.; Geng W.-T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.10.1016/j.cpc.2021.108033. DOI

Mehl M. J.; Hicks D.; Toher C.; Levy O.; Hanson R. M.; Hart G.; Curtarolo S. The AFLOW Library of Crystallographic Prototypes. Comput. Mater. Sci. 2017, 136, S1–S828. 10.1016/j.commatsci.2017.01.017. DOI

Nečas D.; Klapetek P. Gwyddion: an open-source software for SPM data analysis. Central European Journal of Physics 2012, 10, 181–188. 10.2478/s11534-011-0096-2. DOI

Kereselidze T.; Tchelidze T.; Nadareishvili T.; Kezerashvili R. Y. Energy spectra of a particle confined in a finite ellipsoidal shaped potential well. Physica E: Low-dimensional Systems and Nanostructures 2016, 81, 196–204. 10.1016/j.physe.2016.03.013. DOI

Huo Y. H.; Křápek V.; Rastelli A.; Schmidt O. G. Volume dependence of excitonic fine structure splitting in geometrically similar quantum dots. Phys. Rev. B 2014, 90, 041304.10.1103/PhysRevB.90.041304. DOI

Jones T. W.; Osherov A.; Alsari M.; Sponseller M.; Duck B. C.; Jung Y.-K.; Settens C.; Niroui F.; Brenes R.; Stan C. V.; et al. Lattice strain causes non-radiative losses in halide perovskites. Energy Environ. Sci. 2019, 12, 596–606. 10.1039/C8EE02751J. DOI

Wang J.; Zhang J.; Zhou Y.; Liu H.; Xue Q.; Li X.; Chueh C.-C.; Yip H.-L.; Zhu Z.; Jen A. K. Y. Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base. Nat. Commun. 2020, 11, 177.10.1038/s41467-019-13909-5. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...