Hyperoxemia post thoracic surgery - Does it matter?

. 2023 Jun ; 9 (6) : e17606. [epub] 20230625

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37416669
Odkazy

PubMed 37416669
PubMed Central PMC10320252
DOI 10.1016/j.heliyon.2023.e17606
PII: S2405-8440(23)04814-4
Knihovny.cz E-zdroje

INTRODUCTION: Post-operative oxygen therapy is used to prevent hypoxemia and surgical site infection. However, with improvements of anesthesia techniques, post-operative hypoxemia incidence is declining and the benefits of oxygen on surgical site infection have been questioned. Moreover, hyperoxemia might have adverse effects on the pulmonary and cardiovascular systems. We hypothesized hyperoxemia post thoracic surgery is associated with post-operative pulmonary and cardiovascular complications. METHODS: Consecutive lung resection patients were included in this post-hoc analysis. Post-operative pulmonary and cardiovascular complications were prospectively assessed during the first 30 post-operative days, or hospital stay. Arterial blood gases were analyzed at 1, 6 and 12 h after surgery. Hyperoxemia was defined as arterial partial pressure of oxygen (PaO2)>100 mmHg. Patients with hyperoxemia duration in at least two adjacent time points were considered as hyperoxemic. Student t-test, Mann-Whitney U test and two-tailed Fisher exact test were used for group comparison. P values < 0.05 were considered statistically significant. RESULTS: Three hundred sixty-three consecutive patients were included in this post-hoc analysis. Two hundred five patients (57%), were considered hyperoxemic and included in the hyperoxemia group. Patients in the hyperoxemia group had significantly higher PaO2 at 1, 6 and 12 h after surgery (p < 0.05). Otherwise, there was no significant difference in age, sex, comorbidities, pulmonary function tests parameters, lung surgery procedure, incidence of post-operative pulmonary and cardiovascular complications, intensive care unit and hospital length of stay and 30-day mortality. CONCLUSION: Hyperoxemia after lung resection surgery is common and not associated with post-operative complications or 30-day mortality.

Zobrazit více v PubMed

Suzuki S. Oxygen administration for postoperative surgical patients: a narrative review. Journal of Intensive Care. 2020;8:79. doi: 10.1186/s40560-020-00498-5. PubMed DOI PMC

Global guidelines for the prevention of surgical site infection, second ed., (n.d.). https://www.who.int/publications-detail-redirect/global-guidelines-for-the-prevention-of-surgical-site-infection-2nd-ed (accessed September 25, 2022).

Labaste F., Silva S., Serin-Moulin L., Lefèvre E., Georges B., Conil J.-M., Minville V. Predictors of desaturation during patient transport to the postoperative anesthesia care unit: an observational study. J. Clin. Anesth. 2016;35:210–214. doi: 10.1016/j.jclinane.2016.07.018. PubMed DOI

Hedenstierna G., Meyhoff C.S. Oxygen toxicity in major emergency surgery-anything new? Intensive Care Med. 2019;45:1802–1805. doi: 10.1007/s00134-019-05787-8. PubMed DOI PMC

Crapo J.D., Hayatdavoudi G., Knapp M.J., Fracica P.J., Wolfe W.G., Piantadosi C.A. Progressive alveolar septal injury in primates exposed to 60% oxygen for 14 days. Am. J. Physiol. 1994;267:L797–L806. doi: 10.1152/ajplung.1994.267.6.L797. PubMed DOI

Abdo W.F., Heunks L.M.A. Oxygen-induced hypercapnia in COPD: myths and facts. Crit. Care. 2012;16:323. doi: 10.1186/cc11475. PubMed DOI PMC

Edmark L., Auner U., Enlund M., Ostberg E., Hedenstierna G. Oxygen concentration and characteristics of progressive atelectasis formation during anaesthesia. Acta Anaesthesiol. Scand. 2011;55:75–81. doi: 10.1111/j.1399-6576.2010.02334.x. PubMed DOI

Martin D.S., Grocott M.P.W. Oxygen therapy and anaesthesia: too much of a good thing? Anaesthesia. 2015;70:522–527. doi: 10.1111/anae.13081. PubMed DOI

Smit B., Smulders Y.M., van der Wouden J.C., Oudemans-van Straaten H.M., Spoelstra-de Man A.M.E. Hemodynamic effects of acute hyperoxia: systematic review and meta-analysis. Crit. Care. 2018;22:45. doi: 10.1186/s13054-018-1968-2. PubMed DOI PMC

Asfar P., Singer M., Radermacher P. Understanding the benefits and harms of oxygen therapy. Intensive Care Med. 2015;41:1118–1121. doi: 10.1007/s00134-015-3670-z. PubMed DOI

Singer M., Young P.J., Laffey J.G., Asfar P., Taccone F.S., Skrifvars M.B., Meyhoff C.S., Radermacher P. Dangers of hyperoxia. Crit. Care. 2021;25:440. doi: 10.1186/s13054-021-03815-y. PubMed DOI PMC

Chigurupati K., Raman S.P., Pappu U.K., Madathipat U. Effectiveness of ventilation of nondependent lung for a brief period in improving arterial oxygenation during one-lung ventilation: a prospective study. Ann. Card Anaesth. 2017;20:72–75. doi: 10.4103/0971-9784.197840. PubMed DOI PMC

Parke R.L., Eastwood G.M., McGuinness S.P. George institute for global Health, Australian and New Zealand intensive care society clinical trials group, oxygen therapy in non-intubated adult intensive care patients: a point prevalence study. Crit Care Resusc. 2013;15:287–293. PubMed

Madotto F., Rezoagli E., Pham T., Schmidt M., McNicholas B., Protti A., Panwar R., Bellani G., Fan E., van Haren F., Brochard L., Laffey J.G., Pesenti A., Laffey J.G., Brochard L., Esteban A., Gattinoni L., van Haren F., Larsson A., McAuley D.F., Ranieri M., Rubenfeld G., Thompson B.T., Wrigge H., Slutsky A.S., Rios F., Sottiaux T., Depuydt P., Lora F.S., Azevedo L.C., Fan E., Bugedo G., Qiu H., Gonzalez M., Silesky J., Cerny V., Nielsen J., Jibaja M., Pham T., Matamis D., Ranero J.L., Amin P., Hashemian S.M., Clarkson K., Bellani G., Kurahashi K., Villagomez A., Zeggwagh A.A., Heunks L.M., Laake J.H., Palo J.E., do Vale Fernandes A., Sandesc D., Arabi Y., Bumbasierevic V., Nin N., Lorente J.A., Piquilloud L., Abroug F., McAuley D.F., McNamee L., Hurtado J., Bajwa E., Démpaire G., Theresa U.M., Sula H., Nunci L., Cani A., Maria V., Zazu A., Dellera C., Insaurralde C.S., Alejandro R.V., Daldin J., Vinzio M., Fernandez R.O., Cardonnet L.P., Bettini L.R., Bisso M.C., Osman E.M., Setten M.G., Lovazzano P., Alvarez J., Villar V., Pozo N.C., Grubissich N., Plotnikow G.A., Vasquez D.N., Ilutovich S., Tiribelli N., Chena A., Pellegrini C.A., Saenz M.G., Estenssoro E., Brizuela M., Gianinetto H., Gomez P.E., Cerrato V.I., Bezzi M.G., Borello S.A., Loiacono F.A., Fernandez A.M., Knowles S., Reynolds C., Inskip D.M., Miller J.J., Kong J., Whitehead C., Bihari S., Seven A., Krstevski A., Rodgers H.J., Millar R.T., Mckenna T.E., Bailey I.M., Hanlon G.C., Aneman A., Lynch J.M., Azad R., Neal J., Woods P.W., Roberts B.L., Kol M.R., Wong H.S., Riss K.C., Staudinger T., Wittebole X., Berghe C., Bulpa P.A., Dive A.M., Verstraete R., Lebbinck H., Depuydt P., Vermassen J., Meersseman P., Ceunen H., Rosa J.I., Beraldo D.O., Piras C., Rampinelli A.M., Nassar A.P., Mataloun S., Moock M., Thompson M.M., Gonçalves C.H., Antônio A.C.P., Ascoli A., Biondi R.S., Fontenele D.C., Nobrega D., Sales V.M., Shindhe S., Pg Hj Ismail D.M.A.B., Laffey J., Beloncle F., Davies K.G., Cirone R., Manoharan V., Ismail M., Goligher E.C., Jassal M., Nishikawa E., Javeed A., Curley G., Rittayamai N., Parotto M., Ferguson N.D., Mehta S., Knoll J., Pronovost A., Canestrini S., Bruhn A.R., Garcia P.H., Aliaga F.A., Farías P.A., Yumha J.S., Ortiz C.A., Salas J.E., Saez A.A., Vega L.D., Labarca E.F., Martinez F.T., Carreño N.G., Lora P., Liu H., Liu L., Tang R., Luo X., An Y., Zhao H., Gao Y., Zhai Z., Ye Z.L., Wang W., Li W., Li Q., Zheng R., Yu W., Shen J., Li X., Yu T., Lu W., Wu Y.Q., Huang X.B., He Z., Lu Y., Han H., Zhang F., Sun R., Wang H.X., Qin S.H., Zhu B.H., Zhao J., Liu J., Li B., Liu J.L., Zhou F.C., Li Q.J., Zhang X.Y., Li-Xin Z., Xin-Hua Q., Jiang L., Gao Y.N., Zhao X.Y., Li Y.Y., Li X.L., Wang C., Yao Q., Yu R., Chen K., Shao H., Qin B., Huang Q.Q., Zhu W.H., Hang A.Y., Hua M.X., Li Y., Xu Y., Di Y.D., Ling L.L., Qin T.H., Wang S.H., Qin J., Han Y., Zhou S., Vargas M.P., Silesky Jimenez J.I., González Rojas M.A., Solis-Quesada J.E., Ramirez-Alfaro C.M., Máca J., Sklienka P., Gjedsted J., Christiansen A., Villamagua B.G., Llano M., Burtin P., Buzancais G., Beuret P., Pelletier N., Mortaza S., Mercat A., Chelly J., Jochmans S., Terzi N., Daubin C., Carteaux G., de Prost N., Chiche J.-D., Daviaud F., Pham T., Fartoukh M., Barberet G., Biehler J., Dellamonica J., Doyen D., Arnal J.-M., Briquet A., Hraiech S., Papazian L., Follin A., Roux D., Messika J., Kalaitzis E., Dangers L., Combes A., Au S.-M., Béduneau G., Carpentier D., Zogheib E.H., Dupont H., Ricome S., Santoli F.L., Besset S.L., Michel P., Gelée B., Danin P.-E., Goubaux B., Crova P.J. For the LUNG SAFE Investigators and the ESICM Trials Group, Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome: insights from the LUNG SAFE study. Crit. Care. 2020;24:125. doi: 10.1186/s13054-020-2826-6. PubMed DOI PMC

Röttgering J.G., de Man A.M.E., Schuurs T.C., Wils E.-J., Daniels J.M., van den Aardweg J.G., Girbes A.R.J., Smulders Y.M. Determining a target SpO2 to maintain PaO2 within a physiological range. PLoS One. 2021;16 doi: 10.1371/journal.pone.0250740. PubMed DOI PMC

Miller M.R., Crapo R., Hankinson J., Brusasco V., Burgos F., Casaburi R., Coates A., Enright P., van der Grinten C.P.M., Gustafsson P., Jensen R., Johnson D.C., MacIntyre N., McKay R., Navajas D., Pedersen O.F., Pellegrino R., Viegi G., Wanger J. General considerations for lung function testing. Eur. Respir. J. 2005;26:153–161. doi: 10.1183/09031936.05.00034505. PubMed DOI

Brat K., Homolka P., Merta Z., Chobola M., Heroutova M., Bratova M., Mitas L., Chovanec Z., Horvath T., Benej M., Ivicic J., Svoboda M., Sramek V., Olson L.J., Cundrle I. Prediction of postoperative complications: ventilatory efficiency and rest end-tidal carbon dioxide. Ann. Thorac. Surg. 2023;115:1305–1311. doi: 10.1016/j.athoracsur.2021.11.073. PubMed DOI

Torchio R., Guglielmo M., Giardino R., Ardissone F., Ciacco C., Gulotta C., Veljkovic A., Bugiani M. Exercise ventilatory inefficiency and mortality in patients with chronic obstructive pulmonary disease undergoing surgery for non-small-cell lung cancer. Eur. J. Cardio. Thorac. Surg. 2010;38:14–19. doi: 10.1016/j.ejcts.2010.01.032. PubMed DOI

Brunelli A., Belardinelli R., Pompili C., Xiumé F., Refai M., Salati M., Sabbatini A. Minute ventilation-to-carbon dioxide output (VE/VCO2) slope is the strongest predictor of respiratory complications and death after pulmonary resection. Ann. Thorac. Surg. 2012;93:1802–1806. doi: 10.1016/j.athoracsur.2012.03.022. PubMed DOI

Stéphan F., Boucheseiche S., Hollande J., Flahault A., Cheffi A., Bazelly B., Bonnet F. Pulmonary complications following lung resection: a comprehensive analysis of incidence and possible risk factors. Chest. 2000;118:1263–1270. PubMed

Licker M.J., Widikker I., Robert J., Frey J.-G., Spiliopoulos A., Ellenberger C., Schweizer A., Tschopp J.-M. Operative mortality and respiratory complications after lung resection for cancer: impact of chronic obstructive pulmonary disease and time trends. Ann. Thorac. Surg. 2006;81:1830–1837. doi: 10.1016/j.athoracsur.2005.11.048. PubMed DOI

Mazur A., Brat K., Homolka P., Merta Z., Svoboda M., Bratova M., Sramek V., Olson L.J., Cundrle I. Ventilatory efficiency is superior to peak oxygen uptake for prediction of lung resection cardiovascular complications. PLoS One. 2022;17 doi: 10.1371/journal.pone.0272984. PubMed DOI PMC

Bennett-Guerrero E., Welsby I., Dunn T.J., Young L.R., Wahl T.A., Diers T.L., Phillips-Bute B.G., Newman M.F., Mythen M.G. The use of a postoperative morbidity survey to evaluate patients with prolonged hospitalization after routine, moderate-risk, elective surgery. Anesth. Analg. 1999;89:514–519. doi: 10.1213/00000539-199908000-00050. PubMed DOI

Lohser J., Slinger P. Lung injury after one-lung ventilation: a review of the pathophysiologic mechanisms affecting the ventilated and the collapsed lung. Anesth. Analg. 2015;121:302–318. doi: 10.1213/ANE.0000000000000808. PubMed DOI

Agostini P., Cieslik H., Rathinam S., Bishay E., Kalkat M.S., Rajesh P.B., Steyn R.S., Singh S., Naidu B. Postoperative pulmonary complications following thoracic surgery: are there any modifiable risk factors? Thorax. 2010;65:815–818. doi: 10.1136/thx.2009.123083. PubMed DOI

Karalapillai D., Weinberg L., Peyton P.J., Ellard L., Hu R., Pearce B., Tan C., Story D., O'Donnell M., Hamilton P., Oughton C., Galtieri J., Wilson A., Eastwood G., Bellomo R., Jones D. Frequency of hyperoxaemia during and after major surgery. Anaesth. Intensive Care. 2020;48:213–220. doi: 10.1177/0310057X20905320. PubMed DOI

Ehrenfeld J.M., Funk L.M., Schalkwyk J.V., Merry A.F., Sandberg W.S., Gawande A. The incidence of hypoxemia during surgery: evidence from two institutions. Can. J. Anaesth. 2010;57:888–897. doi: 10.1007/s12630-010-9366-5. PubMed DOI PMC

Staehr-Rye A.K., Meyhoff C.S., Scheffenbichler F.T., Vidal Melo M.F., Gätke M.R., Walsh J.L., Ladha K.S., Grabitz S.D., Nikolov M.I., Kurth T., Rasmussen L.S., Eikermann M. High intraoperative inspiratory oxygen fraction and risk of major respiratory complications. Br. J. Anaesth. 2017;119:140–149. doi: 10.1093/bja/aex128. PubMed DOI

Ferguson M.K., Saha-Chaudhuri P., Mitchell J.D., Varela G., Brunelli A. Prediction of major cardiovascular events after lung resection using a modified scoring system. Ann. Thorac. Surg. 2014;97:1135–1140. doi: 10.1016/j.athoracsur.2013.12.032. PubMed DOI

Meyhoff C.S., Wetterslev J., Jorgensen L.N., Henneberg S.W., Høgdall C., Lundvall L., Svendsen P.-E., Mollerup H., Lunn T.H., Simonsen I., Martinsen K.R., Pulawska T., Bundgaard L., Bugge L., Hansen E.G., Riber C., Gocht-Jensen P., Walker L.R., Bendtsen A., Johansson G., Skovgaard N., Heltø K., Poukinski A., Korshin A., Walli A., Bulut M., Carlsson P.S., Rodt S.A., Lundbech L.B., Rask H., Buch N., Perdawid S.K., Reza J., Jensen K.V., Carlsen C.G., Jensen F.S., Rasmussen L.S. For the PROXI trial group, effect of high perioperative oxygen fraction on surgical site infection and pulmonary complications after abdominal surgery: the PROXI randomized clinical trial. JAMA. 2009;302:1543–1550. doi: 10.1001/jama.2009.1452. PubMed DOI

de Jonge S., Egger M., Latif A., Loke Y.K., Berenholtz S., Boermeester M., Allegranzi B., Solomkin J. Effectiveness of 80% vs 30-35% fraction of inspired oxygen in patients undergoing surgery: an updated systematic review and meta-analysis. Br. J. Anaesth. 2019;122:325–334. doi: 10.1016/j.bja.2018.11.024. PubMed DOI

Bickel A., Gurevits M., Vamos R., Ivry S., Eitan A. Perioperative hyperoxygenation and wound site infection following surgery for acute appendicitis: a randomized, prospective, controlled trial. Arch. Surg. 2011;146:464–470. doi: 10.1001/archsurg.2011.65. PubMed DOI

Kurz A., Kopyeva T., Suliman I., Podolyak A., You J., Lewis B., Vlah C., Khatib R., Keebler A., Reigert R., Seuffert M., Muzie L., Drahuschak S., Gorgun E., Stocchi L., Turan A., Sessler D.I. Supplemental oxygen and surgical-site infections: an alternating intervention controlled trial. Br. J. Anaesth. 2018;120:117–126. doi: 10.1016/j.bja.2017.11.003. PubMed DOI

Gattinoni L., Vassalli F., Romitti F. Benefits and risks of the P/F approach. Intensive Care Med. 2018;44:2245–2247. doi: 10.1007/s00134-018-5413-4. PubMed DOI

Meyhoff C.S., Jorgensen L.N., Wetterslev J., Christensen K.B., Rasmussen L.S. PROXI Trial Group, Increased long-term mortality after a high perioperative inspiratory oxygen fraction during abdominal surgery: follow-up of a randomized clinical trial. Anesth. Analg. 2012;115:849–854. doi: 10.1213/ANE.0b013e3182652a51. PubMed DOI

Austin M.A., Wills K.E., Blizzard L., Walters E.H., Wood-Baker R. Effect of high flow oxygen on mortality in chronic obstructive pulmonary disease patients in prehospital setting: randomised controlled trial. BMJ. 2010;341:c5462. doi: 10.1136/bmj.c5462. PubMed DOI PMC

Ferrando C., Aldecoa C., Unzueta C., Belda F.J., Librero J., Tusman G., Suárez-Sipmann F., Peiró S., Pozo N., Brunelli A., Garutti I., Gallego C., Rodríguez A., García J.I., Díaz-Cambronero O., Balust J., Redondo F.J., de la Matta M., Gallego-Ligorit L., Hernández J., Martínez P., Pérez A., Leal S., Alday E., Monedero P., González R., Mazzirani G., Aguilar G., López-Baamonde M., Felipe M., Mugarra A., Torrente J., Valencia L., Varón V., Sánchez S., Rodríguez B., Martín A., India I., Azparren G., Molina R., Villar J., Soro M. iPROVE-O2 Network, Effects of oxygen on post-surgical infections during an individualised perioperative open-lung ventilatory strategy: a randomised controlled trial. Br. J. Anaesth. 2020;124:110–120. doi: 10.1016/j.bja.2019.10.009. PubMed DOI

Mujagic E., Marti W.R., Coslovsky M., Soysal S.D., Mechera R., von Strauss M., Zeindler J., Saxer F., Mueller A., Fux C.A., Kindler C., Gurke L., Weber W.P. Associations of hospital length of stay with surgical site infections. World J. Surg. 2018;42:3888–3896. doi: 10.1007/s00268-018-4733-4. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...