Hyperoxemia post thoracic surgery - Does it matter?
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37416669
PubMed Central
PMC10320252
DOI
10.1016/j.heliyon.2023.e17606
PII: S2405-8440(23)04814-4
Knihovny.cz E-zdroje
- Klíčová slova
- Hyperoxemia, Lung resection surgery, Post-operative complications,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Post-operative oxygen therapy is used to prevent hypoxemia and surgical site infection. However, with improvements of anesthesia techniques, post-operative hypoxemia incidence is declining and the benefits of oxygen on surgical site infection have been questioned. Moreover, hyperoxemia might have adverse effects on the pulmonary and cardiovascular systems. We hypothesized hyperoxemia post thoracic surgery is associated with post-operative pulmonary and cardiovascular complications. METHODS: Consecutive lung resection patients were included in this post-hoc analysis. Post-operative pulmonary and cardiovascular complications were prospectively assessed during the first 30 post-operative days, or hospital stay. Arterial blood gases were analyzed at 1, 6 and 12 h after surgery. Hyperoxemia was defined as arterial partial pressure of oxygen (PaO2)>100 mmHg. Patients with hyperoxemia duration in at least two adjacent time points were considered as hyperoxemic. Student t-test, Mann-Whitney U test and two-tailed Fisher exact test were used for group comparison. P values < 0.05 were considered statistically significant. RESULTS: Three hundred sixty-three consecutive patients were included in this post-hoc analysis. Two hundred five patients (57%), were considered hyperoxemic and included in the hyperoxemia group. Patients in the hyperoxemia group had significantly higher PaO2 at 1, 6 and 12 h after surgery (p < 0.05). Otherwise, there was no significant difference in age, sex, comorbidities, pulmonary function tests parameters, lung surgery procedure, incidence of post-operative pulmonary and cardiovascular complications, intensive care unit and hospital length of stay and 30-day mortality. CONCLUSION: Hyperoxemia after lung resection surgery is common and not associated with post-operative complications or 30-day mortality.
1st Department of Surgery St Anne's University Hospital Brno Czech Republic
Department of Cardiovascular Diseases Mayo Clinic Rochester MN USA
Department of Respiratory Diseases University Hospital Brno Czech Republic
Department of Surgery University Hospital Brno Czech Republic
Faculty of Medicine Masaryk University Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Brno Czech Republic
Zobrazit více v PubMed
Suzuki S. Oxygen administration for postoperative surgical patients: a narrative review. Journal of Intensive Care. 2020;8:79. doi: 10.1186/s40560-020-00498-5. PubMed DOI PMC
Global guidelines for the prevention of surgical site infection, second ed., (n.d.). https://www.who.int/publications-detail-redirect/global-guidelines-for-the-prevention-of-surgical-site-infection-2nd-ed (accessed September 25, 2022).
Labaste F., Silva S., Serin-Moulin L., Lefèvre E., Georges B., Conil J.-M., Minville V. Predictors of desaturation during patient transport to the postoperative anesthesia care unit: an observational study. J. Clin. Anesth. 2016;35:210–214. doi: 10.1016/j.jclinane.2016.07.018. PubMed DOI
Hedenstierna G., Meyhoff C.S. Oxygen toxicity in major emergency surgery-anything new? Intensive Care Med. 2019;45:1802–1805. doi: 10.1007/s00134-019-05787-8. PubMed DOI PMC
Crapo J.D., Hayatdavoudi G., Knapp M.J., Fracica P.J., Wolfe W.G., Piantadosi C.A. Progressive alveolar septal injury in primates exposed to 60% oxygen for 14 days. Am. J. Physiol. 1994;267:L797–L806. doi: 10.1152/ajplung.1994.267.6.L797. PubMed DOI
Abdo W.F., Heunks L.M.A. Oxygen-induced hypercapnia in COPD: myths and facts. Crit. Care. 2012;16:323. doi: 10.1186/cc11475. PubMed DOI PMC
Edmark L., Auner U., Enlund M., Ostberg E., Hedenstierna G. Oxygen concentration and characteristics of progressive atelectasis formation during anaesthesia. Acta Anaesthesiol. Scand. 2011;55:75–81. doi: 10.1111/j.1399-6576.2010.02334.x. PubMed DOI
Martin D.S., Grocott M.P.W. Oxygen therapy and anaesthesia: too much of a good thing? Anaesthesia. 2015;70:522–527. doi: 10.1111/anae.13081. PubMed DOI
Smit B., Smulders Y.M., van der Wouden J.C., Oudemans-van Straaten H.M., Spoelstra-de Man A.M.E. Hemodynamic effects of acute hyperoxia: systematic review and meta-analysis. Crit. Care. 2018;22:45. doi: 10.1186/s13054-018-1968-2. PubMed DOI PMC
Asfar P., Singer M., Radermacher P. Understanding the benefits and harms of oxygen therapy. Intensive Care Med. 2015;41:1118–1121. doi: 10.1007/s00134-015-3670-z. PubMed DOI
Singer M., Young P.J., Laffey J.G., Asfar P., Taccone F.S., Skrifvars M.B., Meyhoff C.S., Radermacher P. Dangers of hyperoxia. Crit. Care. 2021;25:440. doi: 10.1186/s13054-021-03815-y. PubMed DOI PMC
Chigurupati K., Raman S.P., Pappu U.K., Madathipat U. Effectiveness of ventilation of nondependent lung for a brief period in improving arterial oxygenation during one-lung ventilation: a prospective study. Ann. Card Anaesth. 2017;20:72–75. doi: 10.4103/0971-9784.197840. PubMed DOI PMC
Parke R.L., Eastwood G.M., McGuinness S.P. George institute for global Health, Australian and New Zealand intensive care society clinical trials group, oxygen therapy in non-intubated adult intensive care patients: a point prevalence study. Crit Care Resusc. 2013;15:287–293. PubMed
Madotto F., Rezoagli E., Pham T., Schmidt M., McNicholas B., Protti A., Panwar R., Bellani G., Fan E., van Haren F., Brochard L., Laffey J.G., Pesenti A., Laffey J.G., Brochard L., Esteban A., Gattinoni L., van Haren F., Larsson A., McAuley D.F., Ranieri M., Rubenfeld G., Thompson B.T., Wrigge H., Slutsky A.S., Rios F., Sottiaux T., Depuydt P., Lora F.S., Azevedo L.C., Fan E., Bugedo G., Qiu H., Gonzalez M., Silesky J., Cerny V., Nielsen J., Jibaja M., Pham T., Matamis D., Ranero J.L., Amin P., Hashemian S.M., Clarkson K., Bellani G., Kurahashi K., Villagomez A., Zeggwagh A.A., Heunks L.M., Laake J.H., Palo J.E., do Vale Fernandes A., Sandesc D., Arabi Y., Bumbasierevic V., Nin N., Lorente J.A., Piquilloud L., Abroug F., McAuley D.F., McNamee L., Hurtado J., Bajwa E., Démpaire G., Theresa U.M., Sula H., Nunci L., Cani A., Maria V., Zazu A., Dellera C., Insaurralde C.S., Alejandro R.V., Daldin J., Vinzio M., Fernandez R.O., Cardonnet L.P., Bettini L.R., Bisso M.C., Osman E.M., Setten M.G., Lovazzano P., Alvarez J., Villar V., Pozo N.C., Grubissich N., Plotnikow G.A., Vasquez D.N., Ilutovich S., Tiribelli N., Chena A., Pellegrini C.A., Saenz M.G., Estenssoro E., Brizuela M., Gianinetto H., Gomez P.E., Cerrato V.I., Bezzi M.G., Borello S.A., Loiacono F.A., Fernandez A.M., Knowles S., Reynolds C., Inskip D.M., Miller J.J., Kong J., Whitehead C., Bihari S., Seven A., Krstevski A., Rodgers H.J., Millar R.T., Mckenna T.E., Bailey I.M., Hanlon G.C., Aneman A., Lynch J.M., Azad R., Neal J., Woods P.W., Roberts B.L., Kol M.R., Wong H.S., Riss K.C., Staudinger T., Wittebole X., Berghe C., Bulpa P.A., Dive A.M., Verstraete R., Lebbinck H., Depuydt P., Vermassen J., Meersseman P., Ceunen H., Rosa J.I., Beraldo D.O., Piras C., Rampinelli A.M., Nassar A.P., Mataloun S., Moock M., Thompson M.M., Gonçalves C.H., Antônio A.C.P., Ascoli A., Biondi R.S., Fontenele D.C., Nobrega D., Sales V.M., Shindhe S., Pg Hj Ismail D.M.A.B., Laffey J., Beloncle F., Davies K.G., Cirone R., Manoharan V., Ismail M., Goligher E.C., Jassal M., Nishikawa E., Javeed A., Curley G., Rittayamai N., Parotto M., Ferguson N.D., Mehta S., Knoll J., Pronovost A., Canestrini S., Bruhn A.R., Garcia P.H., Aliaga F.A., Farías P.A., Yumha J.S., Ortiz C.A., Salas J.E., Saez A.A., Vega L.D., Labarca E.F., Martinez F.T., Carreño N.G., Lora P., Liu H., Liu L., Tang R., Luo X., An Y., Zhao H., Gao Y., Zhai Z., Ye Z.L., Wang W., Li W., Li Q., Zheng R., Yu W., Shen J., Li X., Yu T., Lu W., Wu Y.Q., Huang X.B., He Z., Lu Y., Han H., Zhang F., Sun R., Wang H.X., Qin S.H., Zhu B.H., Zhao J., Liu J., Li B., Liu J.L., Zhou F.C., Li Q.J., Zhang X.Y., Li-Xin Z., Xin-Hua Q., Jiang L., Gao Y.N., Zhao X.Y., Li Y.Y., Li X.L., Wang C., Yao Q., Yu R., Chen K., Shao H., Qin B., Huang Q.Q., Zhu W.H., Hang A.Y., Hua M.X., Li Y., Xu Y., Di Y.D., Ling L.L., Qin T.H., Wang S.H., Qin J., Han Y., Zhou S., Vargas M.P., Silesky Jimenez J.I., González Rojas M.A., Solis-Quesada J.E., Ramirez-Alfaro C.M., Máca J., Sklienka P., Gjedsted J., Christiansen A., Villamagua B.G., Llano M., Burtin P., Buzancais G., Beuret P., Pelletier N., Mortaza S., Mercat A., Chelly J., Jochmans S., Terzi N., Daubin C., Carteaux G., de Prost N., Chiche J.-D., Daviaud F., Pham T., Fartoukh M., Barberet G., Biehler J., Dellamonica J., Doyen D., Arnal J.-M., Briquet A., Hraiech S., Papazian L., Follin A., Roux D., Messika J., Kalaitzis E., Dangers L., Combes A., Au S.-M., Béduneau G., Carpentier D., Zogheib E.H., Dupont H., Ricome S., Santoli F.L., Besset S.L., Michel P., Gelée B., Danin P.-E., Goubaux B., Crova P.J. For the LUNG SAFE Investigators and the ESICM Trials Group, Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome: insights from the LUNG SAFE study. Crit. Care. 2020;24:125. doi: 10.1186/s13054-020-2826-6. PubMed DOI PMC
Röttgering J.G., de Man A.M.E., Schuurs T.C., Wils E.-J., Daniels J.M., van den Aardweg J.G., Girbes A.R.J., Smulders Y.M. Determining a target SpO2 to maintain PaO2 within a physiological range. PLoS One. 2021;16 doi: 10.1371/journal.pone.0250740. PubMed DOI PMC
Miller M.R., Crapo R., Hankinson J., Brusasco V., Burgos F., Casaburi R., Coates A., Enright P., van der Grinten C.P.M., Gustafsson P., Jensen R., Johnson D.C., MacIntyre N., McKay R., Navajas D., Pedersen O.F., Pellegrino R., Viegi G., Wanger J. General considerations for lung function testing. Eur. Respir. J. 2005;26:153–161. doi: 10.1183/09031936.05.00034505. PubMed DOI
Brat K., Homolka P., Merta Z., Chobola M., Heroutova M., Bratova M., Mitas L., Chovanec Z., Horvath T., Benej M., Ivicic J., Svoboda M., Sramek V., Olson L.J., Cundrle I. Prediction of postoperative complications: ventilatory efficiency and rest end-tidal carbon dioxide. Ann. Thorac. Surg. 2023;115:1305–1311. doi: 10.1016/j.athoracsur.2021.11.073. PubMed DOI
Torchio R., Guglielmo M., Giardino R., Ardissone F., Ciacco C., Gulotta C., Veljkovic A., Bugiani M. Exercise ventilatory inefficiency and mortality in patients with chronic obstructive pulmonary disease undergoing surgery for non-small-cell lung cancer. Eur. J. Cardio. Thorac. Surg. 2010;38:14–19. doi: 10.1016/j.ejcts.2010.01.032. PubMed DOI
Brunelli A., Belardinelli R., Pompili C., Xiumé F., Refai M., Salati M., Sabbatini A. Minute ventilation-to-carbon dioxide output (VE/VCO2) slope is the strongest predictor of respiratory complications and death after pulmonary resection. Ann. Thorac. Surg. 2012;93:1802–1806. doi: 10.1016/j.athoracsur.2012.03.022. PubMed DOI
Stéphan F., Boucheseiche S., Hollande J., Flahault A., Cheffi A., Bazelly B., Bonnet F. Pulmonary complications following lung resection: a comprehensive analysis of incidence and possible risk factors. Chest. 2000;118:1263–1270. PubMed
Licker M.J., Widikker I., Robert J., Frey J.-G., Spiliopoulos A., Ellenberger C., Schweizer A., Tschopp J.-M. Operative mortality and respiratory complications after lung resection for cancer: impact of chronic obstructive pulmonary disease and time trends. Ann. Thorac. Surg. 2006;81:1830–1837. doi: 10.1016/j.athoracsur.2005.11.048. PubMed DOI
Mazur A., Brat K., Homolka P., Merta Z., Svoboda M., Bratova M., Sramek V., Olson L.J., Cundrle I. Ventilatory efficiency is superior to peak oxygen uptake for prediction of lung resection cardiovascular complications. PLoS One. 2022;17 doi: 10.1371/journal.pone.0272984. PubMed DOI PMC
Bennett-Guerrero E., Welsby I., Dunn T.J., Young L.R., Wahl T.A., Diers T.L., Phillips-Bute B.G., Newman M.F., Mythen M.G. The use of a postoperative morbidity survey to evaluate patients with prolonged hospitalization after routine, moderate-risk, elective surgery. Anesth. Analg. 1999;89:514–519. doi: 10.1213/00000539-199908000-00050. PubMed DOI
Lohser J., Slinger P. Lung injury after one-lung ventilation: a review of the pathophysiologic mechanisms affecting the ventilated and the collapsed lung. Anesth. Analg. 2015;121:302–318. doi: 10.1213/ANE.0000000000000808. PubMed DOI
Agostini P., Cieslik H., Rathinam S., Bishay E., Kalkat M.S., Rajesh P.B., Steyn R.S., Singh S., Naidu B. Postoperative pulmonary complications following thoracic surgery: are there any modifiable risk factors? Thorax. 2010;65:815–818. doi: 10.1136/thx.2009.123083. PubMed DOI
Karalapillai D., Weinberg L., Peyton P.J., Ellard L., Hu R., Pearce B., Tan C., Story D., O'Donnell M., Hamilton P., Oughton C., Galtieri J., Wilson A., Eastwood G., Bellomo R., Jones D. Frequency of hyperoxaemia during and after major surgery. Anaesth. Intensive Care. 2020;48:213–220. doi: 10.1177/0310057X20905320. PubMed DOI
Ehrenfeld J.M., Funk L.M., Schalkwyk J.V., Merry A.F., Sandberg W.S., Gawande A. The incidence of hypoxemia during surgery: evidence from two institutions. Can. J. Anaesth. 2010;57:888–897. doi: 10.1007/s12630-010-9366-5. PubMed DOI PMC
Staehr-Rye A.K., Meyhoff C.S., Scheffenbichler F.T., Vidal Melo M.F., Gätke M.R., Walsh J.L., Ladha K.S., Grabitz S.D., Nikolov M.I., Kurth T., Rasmussen L.S., Eikermann M. High intraoperative inspiratory oxygen fraction and risk of major respiratory complications. Br. J. Anaesth. 2017;119:140–149. doi: 10.1093/bja/aex128. PubMed DOI
Ferguson M.K., Saha-Chaudhuri P., Mitchell J.D., Varela G., Brunelli A. Prediction of major cardiovascular events after lung resection using a modified scoring system. Ann. Thorac. Surg. 2014;97:1135–1140. doi: 10.1016/j.athoracsur.2013.12.032. PubMed DOI
Meyhoff C.S., Wetterslev J., Jorgensen L.N., Henneberg S.W., Høgdall C., Lundvall L., Svendsen P.-E., Mollerup H., Lunn T.H., Simonsen I., Martinsen K.R., Pulawska T., Bundgaard L., Bugge L., Hansen E.G., Riber C., Gocht-Jensen P., Walker L.R., Bendtsen A., Johansson G., Skovgaard N., Heltø K., Poukinski A., Korshin A., Walli A., Bulut M., Carlsson P.S., Rodt S.A., Lundbech L.B., Rask H., Buch N., Perdawid S.K., Reza J., Jensen K.V., Carlsen C.G., Jensen F.S., Rasmussen L.S. For the PROXI trial group, effect of high perioperative oxygen fraction on surgical site infection and pulmonary complications after abdominal surgery: the PROXI randomized clinical trial. JAMA. 2009;302:1543–1550. doi: 10.1001/jama.2009.1452. PubMed DOI
de Jonge S., Egger M., Latif A., Loke Y.K., Berenholtz S., Boermeester M., Allegranzi B., Solomkin J. Effectiveness of 80% vs 30-35% fraction of inspired oxygen in patients undergoing surgery: an updated systematic review and meta-analysis. Br. J. Anaesth. 2019;122:325–334. doi: 10.1016/j.bja.2018.11.024. PubMed DOI
Bickel A., Gurevits M., Vamos R., Ivry S., Eitan A. Perioperative hyperoxygenation and wound site infection following surgery for acute appendicitis: a randomized, prospective, controlled trial. Arch. Surg. 2011;146:464–470. doi: 10.1001/archsurg.2011.65. PubMed DOI
Kurz A., Kopyeva T., Suliman I., Podolyak A., You J., Lewis B., Vlah C., Khatib R., Keebler A., Reigert R., Seuffert M., Muzie L., Drahuschak S., Gorgun E., Stocchi L., Turan A., Sessler D.I. Supplemental oxygen and surgical-site infections: an alternating intervention controlled trial. Br. J. Anaesth. 2018;120:117–126. doi: 10.1016/j.bja.2017.11.003. PubMed DOI
Gattinoni L., Vassalli F., Romitti F. Benefits and risks of the P/F approach. Intensive Care Med. 2018;44:2245–2247. doi: 10.1007/s00134-018-5413-4. PubMed DOI
Meyhoff C.S., Jorgensen L.N., Wetterslev J., Christensen K.B., Rasmussen L.S. PROXI Trial Group, Increased long-term mortality after a high perioperative inspiratory oxygen fraction during abdominal surgery: follow-up of a randomized clinical trial. Anesth. Analg. 2012;115:849–854. doi: 10.1213/ANE.0b013e3182652a51. PubMed DOI
Austin M.A., Wills K.E., Blizzard L., Walters E.H., Wood-Baker R. Effect of high flow oxygen on mortality in chronic obstructive pulmonary disease patients in prehospital setting: randomised controlled trial. BMJ. 2010;341:c5462. doi: 10.1136/bmj.c5462. PubMed DOI PMC
Ferrando C., Aldecoa C., Unzueta C., Belda F.J., Librero J., Tusman G., Suárez-Sipmann F., Peiró S., Pozo N., Brunelli A., Garutti I., Gallego C., Rodríguez A., García J.I., Díaz-Cambronero O., Balust J., Redondo F.J., de la Matta M., Gallego-Ligorit L., Hernández J., Martínez P., Pérez A., Leal S., Alday E., Monedero P., González R., Mazzirani G., Aguilar G., López-Baamonde M., Felipe M., Mugarra A., Torrente J., Valencia L., Varón V., Sánchez S., Rodríguez B., Martín A., India I., Azparren G., Molina R., Villar J., Soro M. iPROVE-O2 Network, Effects of oxygen on post-surgical infections during an individualised perioperative open-lung ventilatory strategy: a randomised controlled trial. Br. J. Anaesth. 2020;124:110–120. doi: 10.1016/j.bja.2019.10.009. PubMed DOI
Mujagic E., Marti W.R., Coslovsky M., Soysal S.D., Mechera R., von Strauss M., Zeindler J., Saxer F., Mueller A., Fux C.A., Kindler C., Gurke L., Weber W.P. Associations of hospital length of stay with surgical site infections. World J. Surg. 2018;42:3888–3896. doi: 10.1007/s00268-018-4733-4. PubMed DOI