A fuzzy logic-based secure hierarchical routing scheme using firefly algorithm in Internet of Things for healthcare
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
37422490
PubMed Central
PMC10329716
DOI
10.1038/s41598-023-38203-9
PII: 10.1038/s41598-023-38203-9
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- fuzzy logika * MeSH
- internet věcí * MeSH
- poskytování zdravotní péče MeSH
- zdravotnická zařízení MeSH
- Publikační typ
- časopisecké články MeSH
The Internet of Things (IoT) is a universal network to supervise the physical world through sensors installed on different devices. The network can improve many areas, including healthcare because IoT technology has the potential to reduce pressure caused by aging and chronic diseases on healthcare systems. For this reason, researchers attempt to solve the challenges of this technology in healthcare. In this paper, a fuzzy logic-based secure hierarchical routing scheme using the firefly algorithm (FSRF) is presented for IoT-based healthcare systems. FSRF comprises three main frameworks: fuzzy trust framework, firefly algorithm-based clustering framework, and inter-cluster routing framework. A fuzzy logic-based trust framework is responsible for evaluating the trust of IoT devices on the network. This framework identifies and prevents routing attacks like black hole, flooding, wormhole, sinkhole, and selective forwarding. Moreover, FSRF supports a clustering framework based on the firefly algorithm. It presents a fitness function that evaluates the chance of IoT devices to be cluster head nodes. The design of this function is based on trust level, residual energy, hop count, communication radius, and centrality. Also, FSRF involves an on-demand routing framework to decide on reliable and energy-efficient paths that can send the data to the destination faster. Finally, FSRF is compared to the energy-efficient multi-level secure routing protocol (EEMSR) and the enhanced balanced energy-efficient network-integrated super heterogeneous (E-BEENISH) routing method based on network lifetime, energy stored in IoT devices, and packet delivery rate (PDR). These results prove that FSRF improves network longevity by 10.34% and 56.35% and the energy stored in the nodes by 10.79% and 28.51% compared to EEMSR and E-BEENISH, respectively. However, FSRF is weaker than EEMSR in terms of security. Furthermore, PDR in this method has dropped slightly (almost 1.4%) compared to that in EEMSR.
Department of Computer Engineering Dezful Branch Islamic Azad University Dezful Iran
Department of Information Technology University of Human Development Sulaymaniyah Iraq
Future Technology Research Center National Yunlin University of Science and Technology Yunlin Taiwan
Institute of Research and Development Duy Tan University Da Nang Vietnam
School of Computing Gachon University 1342 Seongnamdaero Seongnam 13120 South Korea
School of Medicine and Pharmacy Duy Tan University Da Nang Vietnam
Zobrazit více v PubMed
Karlsson, J. Dooley, L. S. & Pulkkis G. Secure routing for MANET connected Internet of Things systems. In 2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud), 114–119. 10.1016/j.jnca.2016.03.006 (IEEE, 2018).
Yarinezhad R, Azizi S. An energy-efficient routing protocol for the Internet of Things networks based on geographical location and link quality. Comput. Netw. 2021;5(193):108116. doi: 10.1016/j.comnet.2021.108116. DOI
Boudagdigue C, Benslimane A, Kobbane A, Liu J. Trust management in industrial Internet of Things. IEEE Trans. Inf. Forensics Security. 2020;25(15):3667–82. doi: 10.1109/TIFS.2020.2997179. DOI
Gali S, Nidumolu V. An intelligent trust sensing scheme with metaheuristic based secure routing protocol for Internet of Things. Cluster Comput. 2022;25(3):1779–89. doi: 10.1007/s10586-021-03473-3. DOI
Aruna, M. Ananda Kumar, S. Arthi, B. & Ghosh, U. Smart security for industrial and healthcare IoT applications. In Intelligent Internet of Things for Healthcare and Industry, 353–371 10.1007/978-3-030-81473-1_17 (Springer, 2022).
Pal S, Jadidi Z. Analysis of security issues and countermeasures for the industrial internet of things. Appl. Sci. 2021;11(20):9393. doi: 10.3390/app11209393. DOI
Bhuiyan MN, Rahman MM, Billah MM, Saha D. Internet of things (IoT): A review of its enabling technologies in healthcare applications, standards protocols, security, and market opportunities. IEEE Internet of Things J. 2021;8(13):10474–10498. doi: 10.1109/JIOT.2021.3062630. DOI
Muzammal SM, Murugesan RK, Jhanjhi NZ, Hossain MS, Yassine A. Trust and mobility-based protocol for secure routing in Internet of Things. Sensors. 2022;22(16):6215. doi: 10.3390/s22166215. PubMed DOI PMC
He D, Ye R, Chan S, Guizani M, Xu Y. Privacy in the internet of things for smart healthcare. IEEE Commun. Mag. 2018;56(4):38–44. doi: 10.1109/MCOM.2018.1700809. DOI
Yousefpoor MS, Yousefpoor E, Barati H, Barati A, Movaghar A, Hosseinzadeh M. Secure data aggregation methods and countermeasures against various attacks in wireless sensor networks: A comprehensive review. J. Netw. Comput. Appl. 2021;190:103118. doi: 10.1016/j.jnca.2021.103118. DOI
Gali, S. & Venkatram, N. Energy-Efficient cluster-based trust-aware routing for Internet of Things. In Expert Clouds and Applications, 493–509. 10.1007/978-981-16-2126-0_40 (Springer, 2022).
Farooq U, Tariq N, Asim M, Baker T, Al-Shamma’a A. Machine learning and the Internet of Things security: Solutions and open challenges. J. Parallel Distrib. Comput. 2022;162:89–104. doi: 10.1016/j.jpdc.2022.01.015. DOI
Behura, A. & Priyadarshini, S. B. B. Application of the Internet of Things (IoT) for biomedical peregrination and smart healthcare. In The Role of the Internet of Things (Iot) in Biomedical Engineering 31–68. 10.1201/9781003180470-2 (Apple Academic Press, 2022).
Jeong H, Lee SW, Hussain Malik M, Yousefpoor E, Yousefpoor MS, Ahmed OH, Hosseinzadeh M, Mosavi A. SecAODV: A secure healthcare routing scheme based on hybrid cryptography in wireless body sensor networks. Front. Med. 2022 doi: 10.3389/fmed.2022.829055. PubMed DOI PMC
Bedi, P. Goyal, S. B. Kumar, J. & Patnaik, P. Machine Learning Aspects for Trustworthy Internet of Healthcare Things. Internet of Healthcare Things: Machine Learning for Security and Privacy, 65–94. 10.1002/9781119792468.ch4 (2022).
Kanchana V, Nath S, Singh MK. A study of internet of things oriented smart medical systems. Mater. Today Proc. 2022;51:961–964. doi: 10.1016/j.matpr.2021.06.363. DOI
Alshamrani M. IoT and artificial intelligence implementations for remote healthcare monitoring systems: A survey. J. King Saud Univ.-Comput. Inf. Sci. 2022;34(8):4687–4701. doi: 10.1016/j.jksuci.2021.06.005. DOI
Hosseinzadeh M, Tanveer J, Rahmani AM, Yousefpoor E, Yousefpoor MS, Khan F, Haider A. A cluster-tree-based secure routing protocol using dragonfly algorithm (DA) in the Internet of Things (IoT) for smart agriculture. Mathematics. 2023;11(1):80. doi: 10.3390/math11010080. DOI
Yarinezhad R, Sabaei M. An optimal cluster-based routing algorithm for lifetime maximization of Internet of Things. J. Parallel Distrib. Comput. 2021;156:7–24. doi: 10.1016/j.jpdc.2021.05.005. DOI
Omolara AE, Alabdulatif A, Abiodun OI, Alawida M, Alabdulatif A, Arshad H. The internet of things security: A survey encompassing unexplored areas and new insights. Comput. Security. 2022;112:102494. doi: 10.1016/j.cose.2021.102494. DOI
Adil M, Attique M, Jadoon MM, Ali J, Farouk A, Song H. HOPCTP: A robust channel categorization data preservation scheme for industrial healthcare internet of things. IEEE Trans. Ind. Inform. 2022;18(10):7151–7161. doi: 10.1109/TII.2022.3148287. DOI
Muzammal SM, Murugesan RK, Jhanjhi NZ. A comprehensive review on secure routing in internet of things: Mitigation methods and trust-based approaches. IEEE Internet Things J. 2020;8(6):4186–4210. doi: 10.1109/JIOT.2020.3031162. DOI
Hatzivasilis G, Papaefstathiou I, Manifavas C. SCOTRES: Secure routing for IoT and CPS. IEEE Internet Things J. 2017;4(6):2129–2141. doi: 10.1109/JIOT.2017.2752801. DOI
Mosenia A, Jha NK. A comprehensive study of security of internet-of-things. IEEE Trans. Emerg. Top. Comput. 2016;5(4):586–602. doi: 10.1109/TETC.2016.2606384. DOI
Cao J, Wang X, Huang M, Yi B, He Q. A security-driven network architecture for routing in industrial Internet of Things. Trans. Emerg. Telecommun. Technol. 2021;32(4):e4216. doi: 10.1002/ett.4216. DOI
Nayagi DS, Sivasankari GG, Ravi V, Venugopal KR, Sennan S. REERS: Reliable and energy-efficient route selection algorithm for heterogeneous Internet of things applications. Int. J. Commun. Syst. 2021;34(13):e4900. doi: 10.1002/dac.4900. DOI
Abbas S, Javaid N, Almogren A, Gulfam SM, Ahmed A, Radwan A. Securing genetic algorithm enabled SDN routing for blockchain based Internet of Things. IEEE Access. 2021;9:139739–139754. doi: 10.1109/ACCESS.2021.3118948. DOI
Jazebi SJ, Ghaffari A. RISA: Routing scheme for Internet of Things using shuffled frog leaping optimization algorithm. J. Ambient Intell. Human. Comput. 2020;11(10):4273–4283. doi: 10.1007/s12652-020-01708-6. DOI
Seyfollahi A, Ghaffari A. Reliable data dissemination for the Internet of Things using Harris hawks optimization. Peer-to-Peer Netw. Appl. 2020;13(6):1886–1902. doi: 10.1007/s12083-020-00933-2. DOI
Zhang Y, Ren Q, Song K, Liu Y, Zhang T, Qian Y. An energy efficient multi-level secure routing protocol in IoT networks. IEEE Internet Things J. 2021 doi: 10.1109/JIOT.2021.3121529. PubMed DOI
Zhang Y, Zhang X, Ning S, Gao J, Liu Y. Energy-efficient multilevel heterogeneous routing protocol for wireless sensor networks. IEEE Access. 2019;7:55873–55884. doi: 10.1109/ACCESS.2019.2900742. DOI
Yang XS. Nature-inspired optimization algorithms: Challenges and open problems. J. Comput. Sci. 2020;46:101104. doi: 10.1016/j.jocs.2020.101104. DOI
Yang XS, Deb S, Fong S, He X, Zhao YX. From swarm intelligence to metaheuristics: Nature-inspired optimization algorithms. Computer. 2016;49(9):52–59. doi: 10.1109/MC.2016.292. DOI
Yousefpoor E, Barati H, Barati A. A hierarchical secure data aggregation method using the dragonfly algorithm in wireless sensor networks. Peer-to-Peer Netw. Appl. 2021;14(4):1917–1942. doi: 10.1007/s12083-021-01116-3. DOI
Yang XS. Firefly algorithm. Nature-inspired Metaheuristic Algorithms. 2008;20:79–90.
Zadeh LA. Soft computing and fuzzy logic. IEEE Softw. 1994;11(6):48–56. doi: 10.1109/52.329401. DOI
Zadeh LA. Fuzzy logic=computing with words. IEEE Trans. Fuzzy Syst. 1996;4(2):103–111. doi: 10.1109/91.493904. DOI
Kulkarni RV, Förster A, Venayagamoorthy GK. Computational intelligence in wireless sensor networks: A survey. IEEE Commun. Surv. Tutor. 2010;13(1):68–96. doi: 10.1109/SURV.2011.040310.00002. DOI
Heinzelman, W. R. Chandrakasan, A. & Balakrishnan, H. Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, 10. 10.1109/HICSS.2000.926982 (IEEE, 2000)