Deformity or variation? Phenotypic diversity in the zebrafish vertebral column
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
    PubMed
          
           37424444
           
          
          
    PubMed Central
          
           PMC10641053
           
          
          
    DOI
          
           10.1111/joa.13926
           
          
          
  
    Knihovny.cz E-resources
    
  
              
      
- Keywords
- developmental modules, evolution and development, skeleton, vertebrae, zebrafish,
- MeSH
- Zebrafish * MeSH
- Phenotype MeSH
- Spine * diagnostic imaging MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Vertebral bodies are composed of two types of metameric elements, centra and arches, each of which is considered as a developmental module. Most parts of the teleost vertebral column have a one-to-one relationship between centra and arches, although, in all teleosts, this one-to-one relationship is lost in the caudal fin endoskeleton. Deviation from the one-to-one relationship occurs in most vertebrates, related to changes in the number of vertebral centra or to a change in the number of arches. In zebrafish, deviations also occur predominantly in the caudal region of the vertebral column. In-depth phenotypic analysis of wild-type zebrafish was performed using whole-mount stained samples, histological analyses and synchrotron radiation X-ray tomographic microscopy 3D reconstructions. Three deviant centra phenotypes were observed: (i) fusion of two vertebral centra, (ii) wedge-shaped hemivertebrae and (iii) centra with reduced length. Neural and haemal arches and their spines displayed bilateral and unilateral variations that resemble vertebral column phenotypes of stem-ward actinopterygians or other gnathostomes as well as pathological conditions in extant species. Whether it is possible to distinguish variations from pathological alterations and whether alterations resemble ancestral conditions is discussed in the context of centra and arch variations in other vertebrate groups and basal actinopterygian species.
Department of Biology Dalhousie University Halifax Nova Scotia Canada
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Research Group Evolutionary Developmental Biology Biology Department Ghent University Ghent Belgium
See more in PubMed
Ackerly, K.L. & Ward, A.B. (2016) How temperature‐induced variation in musculoskeletal anatomy affects escape performance and survival of zebrafish ( PubMed
Arratia, G. (1983) The caudal skeleton of ostariophysan fishes (Teleostei): intraspecific variation in Trichomycteridae (Siluriformes). Journal of Morphology, 177, 213–229. PubMed
Arratia, G. , Schultze, H.P. & Casciotta, J. (2001) Vertebral column and associated elements in dipnoans and comparison with other fishes: development and homology. Journal of Morphology, 250, 101–172. PubMed
Baur, G. (1891) On intercalation of vertebrae. Journal of Morphology, 4, 329–336.
Bensimon‐Brito, A. , Cancela, M.L. , Huysseune, A. & Witten, P.E. (2012) Vestiges, rudiments and fusion events: the zebrafish caudal fin endoskeleton in an evo‐devo perspective. Evolution & Development, 14, 116–127. PubMed
Bensimon‐Brito, A. , Cardeira, J. , Cancela, M.L. , Huysseune, A. & Witten, P.E. (2012) Distinct patterns of notochord mineralization in zebra‐fish coincide with the localization of Osteocalcin isoform 1 during early vertebral centra formation. BMC Developmental Biology, 12, 28. PubMed PMC
Bird, N.C. & Mabee, P.M. (2003) Developmental morphology of the axial skeleton of the zebrafish, PubMed
Boglione, C. , Gagliardi, F. , Scardi, M. & Cataudella, S. (2001) Skeletal descriptors and quality assessment in larvae and post‐larvae of wild‐caught and hatchery‐reared gilthead sea bream (
Boglione, C. , Gisbert, E. , Gavaia, P. , Witten, P.E. , Moren, M. , Fontagné, S. et al. (2013) Skeletal anomalies in reared European fish larvae and juveniles. Part 2: main typologies, occurrences and causative factors. Reviews in Aquaculture, 5, S121–S167.
Breuker, C.J. , Patterson, J.S. & Klingenberg, C.P. (2006) A single basis for developmental buffering of PubMed DOI PMC
Bruggeman, B.J. , Maier, J.A. , Mohiuddin, Y.S. , Powers, R. , Lo, Y. , Guimarães‐Camboa, N. et al. (2012) Avian intervertebral disc arises from rostral sclerotome and lacks a nucleus pulposus: implications for evolution of the vertebrate disc. Developmental Dynamics, 241, 675–683. PubMed PMC
Carroll, R.L. (1968) The postcranial skeleton of the Permian microsaur
Cotti, S. , Huysseune, A. , Koppe, W. , Rücklin, M. , Marone, F. , Wölfel, E.M. et al. (2020) More bone with less minerals? The effects of dietary phosphorus on the post‐cranial skeleton in zebrafish. International Journal of Molecular Science, 21, 5429. Available from: 10.3390/ijms21155429 PubMed DOI PMC
Cotti, S. , Huysseune, A. , Larionova, D. , Koppe, W. , Forlino, A. & Witten, P.E. (2022) Compression fractures and partial phenotype rescue with a low phosphorus diet in the PubMed DOI PMC
Cullinane, D.M. (2000) Axial versus appendicular: constraint versus selection. American Zoologist, 40, 136–145.
Danto, M. , Witzmann, F. , Pierce, S.E. & Fröbisch, N.B. (2017) Intercentrum versus pleurocentrum growth in early tetrapods: a paleohistological approach. Journal of Morphology, 278, 1262–1283. PubMed
Darwin, C. (1872) The origin of species. Reprint of the sixth edition from 1872. New York, USA: The Harvard Classics, P. F. Collier & Son 1909.
Dauer, M.V. , Currie, P.D. & Berger, J. (2018) Skeletal malformations of Meox1‐deficient zebrafish resemble human Klippel–Feil syndrome. Journal of Anatomy, 233, 687–695. PubMed PMC
de Azevedo, A.M. , Losada, A.P. , Barreiro, A. , Vázquez, S. & Quiroga, M.I. (2019) Skeletal anomalies in Senegalese sole ( PubMed
de Azevedo, T.P. , Witten, P.E. , Huysseune, A. , Bensimon‐Brito, A. , Winkler, C. , To, T.T. et al. (2012) Interrelationship and modularity of notochord and somites: a comparative view on zebrafish and chicken vertebral body development. Journal of Applied Ichthyology, 28, 316–319.
De Clercq, A. , Perrott, M.R. , Davie, P.S. , Preece, M.A. , Huysseune, A. & Witten, P.E. (2018) The external phenotype‐skeleton link in post‐hatch farmed Chinook salmon ( PubMed
De Clercq, A. , Perrott, M.R. , Davie, P.S. , Preece, M.A. , Wybourne, B. , Ruff, N. et al. (2017) Vertebral column regionalisation in Chinook salmon, PubMed PMC
Debat, V. , Debelle, A. & Dworkin, I. (2009) Plasticity, canalization, and developmental stability of the PubMed
DeLaurier, A. , Huycke, T.R. , Nichols, J.T. , Swartz, M.E. , Larsen, A. , Walker, C. et al. (2014) Role of PubMed PMC
Detwiler, S.R. & Holtzer, H. (1956) The developmental dependence of the vertebral column upon the spinal cord in the urodeles. Journal of Experimental Zoology, 132, 299–310.
Di Biagio, C. , Dellacqua, Z. , Martini, A. , Huysseune, A. , Witten, P.E. & Boglione, C. (2022) A baseline for skeletal investigations in medaka ( PubMed PMC
Drábiková, L. , Fjelldal, P.G. , De Clercq, A. , Naveed, Y. , Morken, T. , McGurk, C. et al. (2022) What will happen to my smolt at harvest? Individually tagged Atlantic salmon help to understand possible progression and regression of vertebral deformities. Aquaculture, 559, 738430.
Elmasri, H. , Winkler, C. , Liedtke, D. , Sasado, T. , Morinaga, C. , Suwa, H. et al. (2004) Mutations affecting somite formation in the medaka ( PubMed
Ettinger, S.J. & Feldman, E.C. (2005) Textbook of veterinary internal medicine. London: Saunders.
Ferreri, F. , Nicolais, C. , Boglione, C. & Bertolini, B. (2000) Skeletal characterization of wild and reared zebrafish: anomalies and meristic characters. Journal of Fish Biology, 56, 1115–1128.
Fjelldal, P.G. , Hansen, T. & Albrektsen, S. (2012) Inadequate phosphorus nutrition in juvenile Atlantic salmon has a negative effect on long‐term bone health. Aquaculture, 334, 117–123.
Fjelldal, P.G. , Hansen, T.J. & Berg, A.E. (2007) A radiological study on the development of vertebral deformities in cultured Atlantic salmon (
Fleming, A. , Keynes, R. & Tannahill, D. (2004) A central role for the notochord in vertebral patterning. Development, 131, 873–888. PubMed
Fleming, A. , Kishida, M.G. , Kimmel, C.B. & Keynes, R.J. (2015) Building the backbone: the development and evolution of vertebral patterning. Development, 142, 1733–1744. PubMed
Ford, E. (1933) The “number of vertebrae” in the herring and its variation. ICES Journal of Marine Science, 8, 211–222.
Ford, E. (1937) Vertebral variation in teleostean fishes. Journal of the Marine Biological Association of the United Kingdom, 22, 1–60. PubMed
Ford, E. (1941) Vertebral variation in teleostean fishes. II. The herring ( PubMed
Fowler, J.A. (1970) Control of vertebral numbers in teleosts—an embryological problem. The Quarterly Review of Biology, 45, 148–167.
François, Y. (1958) Quelques points de la structure et du développement de la vertèbre de
François, Y. (1966) Structure et développement de la vertèbre de
Gadow, H. & Abbott, E.C. (1895) On the evolution of the vertebral column of fishes. Philosophical Transactions of the Royal Society London B, 186, 163–221.
Gistelinck, C. , Kwon, R.Y. , Malfait, F. , Symoens, S. , Harris, M.P. , Henke, K. et al. (2018) Zebrafish type I collagen mutants faithfully recapitulate human type I collagenopathies. Proceedings of the National Academy of Sciences, 115, E8037–E8046. PubMed PMC
Grande, L. & Bemis, W.E. (1998) A comprehensive phylogenetic study of amiid fishes (Amiidae) based on comparative skeletal anatomy. An empirical search for interconnected patterns of natural history. Journal of Vertebrate Paleontology, 18(sup1), 1–696.
Grassé, P.P. (1958) L'oreille et ses annexes. Traité de Zoologie, 13, 1063–1098.
Gray, R.S. , Wilm, T.P. , Smith, J. , Bagnat, M. , Dale, R.M. , Topczewski, J. et al. (2014) Loss of PubMed PMC
Grini, A. , Hansen, T. , Berg, A. , Wargelius, A. & Fjelldal, P.G. (2011) The effect of water temperature on vertebral deformities and vaccine‐induced abdominal lesions in Atlantic salmon, PubMed
Grotmol, S. , Kryvi, H. , Nordvik, K. & Totland, G.K. (2003) Notochord segmentation may lay down the pathway for the development of the vertebral bodies in the Atlantic salmon. Anatomy and Embryology, 207, 263–272. PubMed
Grotmol, S. , Kryvi, H. , Nordvik, K. & Totland, G.K. (2005) A segmental pattern of alkaline phosphatase (ALP) activity within the notochord coincides with the initial formation of the vertebral bodies. Journal of Anatomy, 206, 427–436. PubMed PMC
Grünbaum, T. & Cloutier, R. (2010) Ontogeny, variation, and homology in PubMed
Haga, Y. , Dominique, V.J.D. & Du, S.J. (2009) Analyzing notochord segmentation and intervertebral disc formation using the twhh: gfp transgenic zebrafish model. Transgenic Research, 18, 669–683. PubMed
Hall, B.K. (1977) Chondrogenesis of the somitic mesoderm. Advances in Anatomy, Embryology and Cell Biology, 53, 1–50. PubMed
Hall, B.K. (1984) Developmental mechanisms underlying the formation of atavisms. Biological Reviews, 59, 89–122. PubMed
Hall, B.K. (2003) Descent with modifications: the unity underlying homology and homoplasy as seen through an analysis of development and evolution. Biological Reviews of the Cambridge Philosophical Society, 78, 409–433. PubMed
Hall, B.K. (2010) Atavisms. Current Biology, 20, R871. Available from: 10.1016/j.cub.2010.07.002 PubMed DOI
Hall, B.K. (2015) Bones and cartilage. Developmental and evolutionary skeletal biology, 2nd edition. London, UK: Academic Press.
Hallgrímsson, B. , Willmore, K. & Hall, B.K. (2002) Canalization, developmental stability, and morphological integration in primate limbs. American Journal of Physical Anthropology, 119(S35), 131–158. PubMed PMC
Hammer, Ø. , Harper, D.A.T. & Ryan, P.D. (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9.
Hautier, L. , Weisbecker, V. , Sanchez‐Villagra, M.R. , Goswami, A. & Asher, R.J. (2010) Skeletal development in sloths and the evolution of mammalian vertebral patterning. Proceedings of the National Academy of Sciences of the United States of America, 107, 18903–18908. PubMed PMC
Hennekam, R.C. , Biesecker, L.G. , Allanson, J.E. , Hall, J.G. , Opitz, J.M. , Temple, I.K. et al. (2013) Elements of morphology: general terms for congenital anomalies. American Journal of Medical Genetics Part A, 161, 2726–2733. PubMed
Henry, C.A. , McNulty, I.M. , Durst, W.A. , Munchel, S.E. & Amacher, S.L. (2005) Interactions between muscle fibers and segment boundaries in zebrafish. Developmental Biology, 287, 346–360. PubMed
Hertwig, O. (1915) Lehrbuch der Entwicklungsgeschichte des Menschen und der Wirbeltiere, 10th edition. Jena: Verlag von Gustav Fischer.
Huxley, T.H. (1859) Original communications: observations on the development of some parts of the skeleton of fishes. Journal of Cell Science, 1, 33–46.
Jeffery, N.D. , Smith, P.M. & Talbot, C.E. (2007) Imaging findings and surgical treatment of hemivertebrae in three dogs. Journal of the American Veterinary Medical Association, 230, 532–536. PubMed
Johal, J. , Loukas, M. , Fisahn, C. , Chapman, J.R. , Oskouian, R.J. & Tubbs, R.S. (2016) Hemivertebrae: a comprehensive review of embryology, imaging, classification, and management. Child's Nervous System, 32, 2105–2109. PubMed
Jurand, A. (1974) Some aspects of the development of the notochord in mouse embryos. Journal of Embryology and Experimental Morphology, 32, 1–33. PubMed
Kague, E. , Turci, F. , Newman, E. , Yang, Y. , Brown, K.R. , Aglan, M.S. et al. (2021) 3D assessment of intervertebral disc degeneration in zebrafish identifies changes in bone density that prime disc disease. Bone Research, 9, 39. Available from: 10.1038/s4l4l3-021-00156-y PubMed DOI PMC
Kandler, R. (1932) Unsicherheiten bei der Bestimmung der Wirbelzahl infolge Verwachsungserscheinungen. Journal du Conseil pour l ‘exploration de la Mer, 7, 373–385.
Kaplan, K.M. , Spivak, J.M. & Bendo, J.A. (2005) Embryology of the spine and associated congenital abnormalities. The Spine Journal, 5, 564–576. PubMed
Khanday, S. (2019) Anatomical variations in the human body: exploring the boundaries of normality. Thesis submitted for the Degree of Doctor of Philosophy (PhD) Faculty of Health, Social Care and Education. London, UK: Kingston University.
Kölliker, A. (1859) On the structure of the chorda dorsalis of the plagiostomus and some other fishes, and on the relation of its proper sheath to the development of the vertebrae. Proceedings of the Royal Society of London, 10, 214–222.
Kranenbarg, S. , Waarsing, J.H. , Muller, M. , Weinans, H. & van Leeuwen, J.L. (2005) Lordotic vertebrae in sea bass ( PubMed
Kumar, R. , Guinto, F.C., Jr. , Madewell, J.E. , Swischuk, L.E. & David, R. (1988) The vertebral body: radiographic configurations in various congenital and acquired disorders. Radiographics, 8, 455–485. PubMed
Kvellestad, A. , Høie, S. , Thorud, K. , Tørud, B. & Lyngøy, A. (2000) Platyspondyly and shortness of vertebral column in farmed Atlantic salmon PubMed
Laerm, J. (1976) The development, function, and design of amphicoelous vertebrae in teleost fishes. Zoological Journal of the Linnean Society London, 58, 237–254.
Laerm, J. (1979) On the origin of the chondrostean vertebral centrum. Canadian Journal of Zoology, 57, 475–485.
Laerm, J. (1982) The origin and homology of the neopterygian vertebral centrum. Journal of Paleontology, 56, 191–202.
Lauder, G.V. (1980) On the relationship of the myotome to the axial skeleton in vertebrate evolution. Paleobiology, 6, 51–56.
Lleras‐Forero, L. , Narayanan, R. , Huitema, L.F.A. , VanBergen, M. , Apschner, A. , Peterson‐Maduro, J. et al. (2018) Segmentation of the zebrafish axial skeleton relies on notochord sheath cells and not on the segmentation clock. eLife, 7, e33843. Available from: 10.7554/eLife.33843 PubMed DOI PMC
Martini, A. , Huysseune, A. , Witten, P.E. & Boglione, C. (2021) Plasticity of the skeleton and skeletal deformations in zebrafish ( PubMed
McMaster, M.J. (1998) Congenital scoliosis caused by a unilateral failure of vertebral segmentation with contralateral hemivertebrae. Spine, 23, 998–1005. PubMed
Nijhout, H.F. & Davidowitz, G. (2003) Developmental perspectives on phenotypic variation, canalization, and fluctuating asymmetry. In: Polak, M. (Ed.) Developmental Instability: Causes and Consequences. Oxford University Press, pp. 3–13.
Norden, C.R. (1961) Comparative osteology of representative salmonid fishes, with particular reference to the grayling and its phylogeny. Journal of the Fisheries Research Board of Canada, 18, 679–791.
Paganin, D. , Mayo, S.C. , Gureyev, T.E. , Miller, P.R. & Wilkins, S.W. (2002) Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. Journal of Microscopy, 206, 33–40. PubMed
Peskin, B. , Henke, K. , Cumplido, N. , Treaster, S. , Harris, M.P. , Bagnat, M. et al. (2020) Notochordal signals establish phylogenetic identity of the teleost spine. Current Biology, 30, 2805–2814. PubMed PMC
Piiper, J. (1928) VI. On the evolution of the vertebral column in birds, illustrated by its development in
Pogoda, H.M. , Riedl‐Quinkertz, I. & Hammerschmidt, M. (2023) Direct BMP signaling to chordoblasts is required for the initiation of segmented notochord sheath mineralization in zebrafish vertebral column development. Frontiers in Endocrinology, 14, 834. PubMed PMC
Pogoda, H.M. , Riedl‐Quinkertz, I. , Lohr, H. , Waxman, J.S. , Dale, R.M. , Topczewski, J. et al. (2018) Direct activation of chordoblasts by retinoic acid is required for segmented centra mineralization during zebrafish spine development. Development, 145, dev1594l8. Available from: 10.1242/dev.159418 PubMed DOI PMC
Pourquié, O. (2011) Vertebrate segmentation: from cyclic gene networks to scoliosis. Cell, 145, 650–663. PubMed PMC
Printzi, A. , Fragkoulis, S. , Dimitriadi, A. , Keklikoglou, K. , Arvanitidis, C. , Witten, P.E. et al. (2021) Exercise‐induced lordosis in zebrafish PubMed
Printzi, A. , Mazurais, D. , Witten, P.E. , Madec, L. , Zambonino‐Infante, J.‐L. & Koumoundouros, G. (2022) Juvenile zebrafish ( PubMed DOI PMC
Remane, A. (1952) Die Grundlagen des natürlichen Systems, der verglei‐chenden Anatomie und der Phylogenetik. Leipzig: Akademische Verlagsgesellschaft und Portig, K.‐G.
Sallan, L.C. (2012) Tetrapod‐like axial regionalization in an early ray‐finned fish. Proceedings of the Royal Society B, 279, 3264–3271. PubMed PMC
Sambraus, F. , Glover, K.A. , Hansen, T. , Fraser, T.W.K. , Solberg, M.F. & Fjelldal, P.G. (2014) Vertebra deformities in wild Atlantic salmon caught in the Figgjo River, southwest Norway. Journal of Applied Ichthyology, 30, 777–782.
Schaeffer, B. (1967) Osteichthyan vertebrae. Zoological Journal of the Linnean Society London, 47, 185–195.
Schauinsland, H. (1906) Die Entwickelung der Wirbelsäule nebst Rippen und Brustbein. In: Hertwig, O. (Ed.) Handbuch der vergleichenden und experimentellen Entwickelungslehre der Wirbeltiere. Gustav Fischer: Jena, pp. 339–572.
Schlosser, G. & Wagner, G.P. (2004) Introduction: the modularity concept in developmental and evolutionary biology. In: Schlosser, G. & Wagner, G.P. (Eds.) Modularity in development and evolution. Chicago: University of Chicago Press, pp. 1–11.
Schultze, H.P. & Arratia, G. (2013) The caudal skeleton of basal teleosts, its conventions, and some of its major evolutionary novelties in a temporal dimension. Mesozoic Fishes, 5, 187–246.
Šecérov, S. (1911) Über die Entstehung der Diplospondylie der Selachier.
Sfakianakis, D.G. , Georgakopoulou, E. , Papadakis, I.E. , Divanach, P. , Kentouri, M. & Koumoundouros, G. (2006) Environmental determinants of haemal lordosis in European sea bass,
Sfakianakis, D.G. , Leris, I. , Laggis, A. & Kentouri, M. (2011) The effect of rearing temperature on body shape and meristic characters in zebrafish (
Shawen, S.B. , Belmont, P.J. , Kulko, T.R. , Owens, B.D. , Taylor, K.F. , Kruse, R. et al. (2002) Hemimetameric segmental shift: a case series and review. Spine, 27, E539–E544. PubMed
Shubin, N.H. , Wake, D.B. & Crawford, A.J. (1995) Morphological variation in the limbs of PubMed
Skórzewska, A. , Grzymislawska, M. , Bruska, M. , Lupicka, J. & Wozniak, W. (2013) Ossification of the vertebral column in human foetuses: histological and computed tomography studies. Folia Morphologica, 72, 230–238. PubMed
Stampanoni, M. , Groso, A. , Isenegger, A. , Mikuljan, G. , Chen, Q. , Bertrand, A. et al. (2006) Trends in synchrotron‐based tomographic imaging: the SLS experience. In: Developments in X‐ray tomography, Vol. 6318. Bellingham: International Society for Optics and Photonics, pp. 1–14.
Starck, D. (1979) Vergleichende Anatomie der Wirbeltiere auf evolutionsbiologischer Grundlage. Bd. 2. Das Skeletsystem. Allgemeines, Skeletsubstanzen, Skelet der Wirbeltiere einschließlich Lokomotionstypen. Berlin: Springer Verlag. ISBN 3642671608.
Stern, C.D. (1990) Two distinct mechanisms of segmentation? Seminars in Developmental Biology, 1, 109–116.
Strudel, G. (1953) Conséquences de l'excision de tronçons du tube nerveux sur l'organogenèse de l’ embryon de poulet et sur la différenciation de ses organes: contribution à la genèse de l'orthosympathique. Annales des sciences naturelles. Zoologie et biologie animale, 15, 251–329.
Szczygielski, T. , Dróżdż, D. , Surmik, D. , Kapuścińska, A. & Rothschild, B.M. (2019) New tomographic contribution to characterizing mesosaurid congenital scoliosis. PLoS ONE, 14, e0212416. PubMed PMC
Taylor, W.R. & van Dyke, G.C. (1985) Revised procedures for staining and clearing small fishes and other vertebrates for bone and cartilage study. Cybium, 9, 107–119.
Tubbs, R.S. , Shoja, M.M. & Loukas, M. (2016) Bergman's comprehensive encyclopedia of human anatomic variation. Hoboken, New Jersey: John Wiley & Sons, Inc. ISBN 9781118430354.
van Eeden, F.J.M. , Granato, M. , Schach, U. , Brand, M. , Furutani‐Seiki, M. , Haffter, P. et al. (1996) Mutations affecting somite formation and patterning in the zebrafish, PubMed
Verraes, W. (1981) Theoretical discussion on some functional‐morphological terms and some general reflexions on explanations in biology. Acta Biotheoretica, 30, 255–273.
von Zittel, K.A. , Broili, F. , Koken, E.F.R.K. & Schlosser, M. (1911) Grundzüge der Paläontologie:(Paläozoologie). II Abteilung Vertebrata. Munich: R. Oldenbourg.
Wake, D.B. (1970) Aspects of vertebral evolution in the modern Amphibia. Forma et functio, 3, 33–60.
Ward, A.B. & Brainerd, E.L. (2007) Evolution of axial patterning in elongate fishes. Biological Journal of the Linnean Society, 90(1), 97–116.
Ward, L. , Pang, A.S.W. , Evans, S.E. & Stern, C.D. (2018) The role of the notochord in amniote vertebral column segmentation. Developmental Biology, 439, 3–18. PubMed PMC
Wargelius, A. , Fjelldal, P.G. & Hansen, T. (2005) Heat shock during early somitogenesis induces caudal vertebral column defects in Atlantic salmon ( PubMed
Werneburg, R. , Steyer, J.S. , Sommer, G. , Gand, G. , Schneider, J.W. & Vianey‐Liaud, M. (2007) The earliest tupilakosaurid amphibian with diplospondylous vertebrae from the late Permian of southern France. Journal of Vertebrate Paleontology, 27, 26–30.
West‐Eberhard, M. (2003) Developmental plasticity and evolution. New York: Oxford University Press.
Wiley, E.O. , Fuiten, A.M. , Doosey, M.H. , Lohman, B.K. , Merkes, C. & Azuma, M. (2015) The caudal skeleton of the zebrafish, PubMed PMC
Williams, E.E. (1959) Gadow's arcualia and the development of tetrapod vertebrae. The Quarterly Review of Biology, 34, 1–32. PubMed
Witten, P.E. , Fjelldal, P.G. , Huysseune, A. , McGurk, C. , Obach, A. & Owen, M.A.G. (2019) Bone without minerals and its secondary mineralization in Atlantic salmon ( PubMed
Witten, P.E. , Gil‐Martens, L. , Hall, B.K. , Huysseune, A. & Obach, A. (2005) Compressed vertebrae in Atlantic salmon PubMed
Witten, P.E. , Gil‐Martens, L. , Huysseune, A. , Takle, H. & Hjelde, K. (2009) Towards a classification and an understanding of developmental relationships of vertebral body malformations in Atlantic salmon (
Witten, P.E. & Hall, B.K. (2021) The ancient, segmented, active and permanent notochord. In: Pradel, A. , Denton, J.S.S. & Janvier, P. (Eds.) Ancient fishes and their living relatives: a tribute to John G Maisey. München, Germany: Verlag Dr. Friedrich Pfeil, pp. 210–219. ISBN 978‐3‐89937‐269‐4.
Witten, P.E. & Hall, B.K. (2022) The notochord. Development, evolution and contributions to the vertebral column, 1st edition. Boca Raton: CRC Press, Taylor & Francis Group. ISBN 9781498787918.
Witten, P.E. , Harris, M.P. , Huysseune, A. & Winkler, C. (2017) Small teleost fish provide new insights into human skeletal diseases. Methods in Cell Biology, 138, 321–346. PubMed
Witten, P.E. & Huysseune, A. (2009) A comparative view on mechanisms and functions of skeletal remodelling in teleost fish, with special emphasis on osteoclasts and their function. Biological Reviews, 84, 315–346. PubMed
Witten, P.E. , Obach, A. , Huysseune, A. & Baeverfjord, G. (2006) Vertebrae fusion in Atlantic salmon (
Witzmann, F. (2007) The evolution of the scalation pattern in temnospondyl amphibians. Zoological Journal of the Linnean Society, 150, 815–834.
Witzmann, F. , Asbach, P. , Remes, K. , Hampe, O. , Hilger, A. & Paulke, A. (2008) Vertebral pathology in an ornithopod dinosaur: a hemivertebra in PubMed
Wopat, S. , Bagwell, J. , Sumigray, K.D. , Dickson, A.L. , Huitema, L.F.A. , Poss, K.D. et al. (2018) Spine patterning is guided by segmentation of the notochord sheath. Cell Reports, 22, 2026–2038. PubMed PMC
Ytteborg, E. , Torgersen, J. , Baeverfjord, G. & Takle, H. (2010) Morphological and molecular characterization of developing vertebral fusions using a teleost model. BMC Physiology, 10, 1–15. PubMed PMC
Yu, T. , Graf, M. , Renn, J. , Schartl, M. , Larionova, D. , Huysseune, A. et al. (2017) A vertebrate specific and essential role for sp7/osterix in osteogenesis revealed by gene knock—out in the teleost medaka. Development, 144, 265–271. PubMed
