Area-Selective Atomic Layer Deposition of ZnO on Si\SiO2 Modified with Tris(dimethylamino)methylsilane

. 2023 Jun 29 ; 16 (13) : . [epub] 20230629

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37445002

Grantová podpora
N/A Restek Corp.

Delayed atomic layer deposition (ALD) of ZnO, i.e., area selective (AS)-ALD, was successfully achieved on silicon wafers (Si\SiO2) terminated with tris(dimethylamino)methylsilane (TDMAMS). This resist molecule was deposited in a home-built, near-atmospheric pressure, flow-through, gas-phase reactor. TDMAMS had previously been shown to react with Si\SiO2 in a single cycle/reaction and to drastically reduce the number of silanols that remain at the surface. ZnO was deposited in a commercial ALD system using dimethylzinc (DMZ) as the zinc precursor and H2O as the coreactant. Deposition of TDMAMS was confirmed by spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS), and wetting. ALD of ZnO, including its selectivity on TDMAMS-terminated Si\SiO2 (Si\SiO2\TDMAMS), was confirmed by in situ multi-wavelength ellipsometry, ex situ SE, XPS, and/or high-sensitivity/low-energy ion scattering (HS-LEIS). The thermal stability of the TDMAMS resist layer, which is an important parameter for AS-ALD, was investigated by heating Si\SiO2\TDMAMS in air and nitrogen at 330 °C. ALD of ZnO takes place more readily on Si\SiO2\TDMAMS heated in the air than in N2, suggesting greater damage to the surface heated in the air. To better understand the in situ ALD of ZnO on Si\SiO2\TDMAMS and modified (thermally stressed) forms of it, the ellipsometry results were plotted as the normalized growth per cycle. Even one short pulse of TDMAMS effectively passivates Si\SiO2. TDMAMS can be a useful, small-molecule inhibitor of ALD of ZnO on Si\SiO2 surfaces.

Zobrazit více v PubMed

Puurunen R.L. A Short History of Atomic Layer Deposition: Tuomo Suntola’s Atomic Layer Epitaxy. Chem. Vap. Depos. 2014;20:332–344. doi: 10.1002/cvde.201402012. DOI

Kääriäinen T., Cameron D., Kääriäinen M.-L., Sherman A. Atomic Layer Deposition: Principles, Characteristics, and Nanotechnology Applications. John Wiley & Sons; Hoboken, NJ, USA: 2013.

Mackus A.J.M., Merkx M.J.M., Kessels W.M.M. From the Bottom-Up: Toward Area-Selective Atomic Layer Deposition with High Selectivity. Chem. Mater. 2019;31:2–12. doi: 10.1021/acs.chemmater.8b03454. PubMed DOI PMC

Parsons G.N., Clark R.D. Area-Selective Deposition: Fundamentals, Applications, and Future Outlook. Chem. Mater. 2020;32:4920–4953. doi: 10.1021/acs.chemmater.0c00722. DOI

Mameli A., Karasulu B., Verheijen M.A., Mackus A.J.M., Kessels W.M.M., Roozeboom F. (Invited) Area-Selective Atomic Layer Deposition: Role of Surface Chemistry. ECS Trans. 2017;80:39. doi: 10.1149/08003.0039ecst. DOI

Chen R., Bent S.F. Chemistry for Positive Pattern Transfer Using Area-Selective Atomic Layer Deposition. Adv. Mater. 2006;18:1086–1090. doi: 10.1002/adma.200502470. DOI

Mackus A.J.M. 2018 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA) IEEE; New York, NY, USA: 2018. Approaches and Opportunities for Area-Selective Atomic Layer Deposition; pp. 1–2. DOI

Mameli A., Karasulu B., Verheijen M.A., Barcones B., Macco B., Mackus A.J.M., Kessels W.M.M.E., Roozeboom F. Area-Selective Atomic Layer Deposition of ZnO by Area Activation Using Electron Beam-Induced Deposition. Chem. Mater. 2019;31:1250–1257. doi: 10.1021/acs.chemmater.8b03165. DOI

Weber M.J., Mackus A.J.M., Verheijen M.A., van der Marel C., Kessels W.M.M. Supported Core/Shell Bimetallic Nanoparticles Synthesis by Atomic Layer Deposition. Chem. Mater. 2012;24:2973–2977. doi: 10.1021/cm301206e. DOI

Mackus A.J.M., Mulders J.J.L., Van De Sanden M.C.M., Kessels W.M.M. Local Deposition of High-Purity Pt Nanostructures by Combining Electron Beam Induced Deposition and Atomic Layer Deposition. American Institute of Physics; College Park, MD, USA: 2010.

Chang C.-W., Hsu H.-H., Hsu C.-S., Chen J.-T. Achieving Area-Selective Atomic Layer Deposition with Fluorinated Self-Assembled Monolayers. J. Mater. Chem. C. 2021;9:14589–14595. doi: 10.1039/D1TC04015D. DOI

Xu W., Haeve M.G.N., Lemaire P.C., Sharma K., Hausmann D.M., Agarwal S. Functionalization of the SiO2 Surface with Aminosilanes to Enable Area-Selective Atomic Layer Deposition of Al2O3. Langmuir. 2022;38:652–660. doi: 10.1021/acs.langmuir.1c02216. PubMed DOI

Moeini B., Joshua W.P., Avval T.G., Jacobsen C., Brongersma H.H., Prusa S., Bábík P., Vaníčková E., Argyle M.D., Strohmeier B.R., et al. Controlling the Surface Silanol Density in Capillary Columns and Planar Silicon via the Self-Limiting Gas-Phase Deposition of Tris(dimethylamino)Methylsilane, and Quantification of Surface Silanols after Silanization by Low Energy Ion Scattering. 2023 Submitted . PubMed

Patel D.I., Major G.H., Jacobsen C., Shah D., Strohmeier B.R., Shollenberger D., Bell D.S., Argyle M.D., Linford M.R. Flow-Through Atmospheric Pressure-Atomic Layer Deposition Reactor for Thin-Film Deposition in Capillary Columns. Anal. Chem. 2022;94:7483–7491. doi: 10.1021/acs.analchem.1c05029. PubMed DOI

Tonezzer M., Dang T.T.L., Bazzanella N., Nguyen V.H., Iannotta S. Comparative Gas-Sensing Performance of 1D and 2D ZnO Nanostructures. Sens. Actuators B Chem. 2015;220:1152–1160. doi: 10.1016/j.snb.2015.06.103. DOI

Ding M., Guo Z., Zhou L., Fang X., Zhang L., Zeng L., Xie L., Zhao H. One-Dimensional Zinc Oxide Nanomaterials for Application in High-Performance Advanced Optoelectronic Devices. Crystals. 2018;8:223. doi: 10.3390/cryst8050223. DOI

Sushma C., Girish Kumar S. Advancements in the Zinc Oxide Nanomaterials for Efficient Photocatalysis. Chem. Pap. 2017;71:2023–2042. doi: 10.1007/s11696-017-0217-5. DOI

Ellmer K., Klein A., Rech B. Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells. Springer; Berlin/Heidelberg, Germany: 2007.

Hirao T., Furuta M., Furuta H., Matsuda T., Hiramatsu T., Hokari H., Yoshida M., Ishii H., Kakegawa M. Novel Top-gate Zinc Oxide Thin-film Transistors (ZnO TFTs) for AMLCDs. J. Soc. Inf. Disp. 2007;15:17–22. doi: 10.1889/1.2451545. DOI

Guziewicz E., Krajewski T.A., Przezdziecka E., Korona K.P., Czechowski N., Klopotowski L., Terziyska P. Zinc Oxide Grown by Atomic Layer Deposition: From Heavily n-Type to p-Type Material. Phys. Status Solidi. 2020;257:1900472. doi: 10.1002/pssb.201900472. DOI

Chen M.-C., Chang T.-C., Tsai C.-T., Huang S.-Y., Chen S.-C., Hu C.-W., Sze S.M., Tsai M.-J. Influence of Electrode Material on the Resistive Memory Switching Property of Indium Gallium Zinc Oxide Thin Films. Appl. Phys. Lett. 2010;96:262110. doi: 10.1063/1.3456379. DOI

Parsons G.N. Functional Model for Analysis of ALD Nucleation and Quantification of Area-Selective Deposition. J. Vac. Sci. Technol. A. 2019;37:20911. doi: 10.1116/1.5054285. DOI

Gladfelter W.L. Selective Metalization by Chemical Vapor Deposition. Chem. Mater. 1993;5:1372–1388. doi: 10.1021/cm00034a004. DOI

Longo R.C., McDonnell S., Dick D., Wallace R.M., Chabal Y.J., Owen J.H.G., Ballard J.B., Randall J.N., Cho K. Selectivity of Metal Oxide Atomic Layer Deposition on Hydrogen Terminated and Oxidized Si(001)-(2 × 1) Surface. J. Vac. Sci. Technol. B. 2014;32:03D112. doi: 10.1116/1.4864619. DOI

Hilfiker J.N. Woodhead Publishing Series in Electronic and Optical Materials. Woodhead Publishing; Cambridge, UK: 2011. 5-In Situ Spectroscopic Ellipsometry (SE) for Characterization of Thin Film Growth; pp. 99–151. DOI

Maynard H.L., Layadi N., Lee J.T.C. Plasma Etching of Submicron Devices: In Situ Monitoring and Control by Multi-Wavelength Ellipsometry. Thin Solid Film. 1998;313–314:398–405. doi: 10.1016/S0040-6090(97)00854-7. DOI

Fang L., Li H., Ma X., Song Q., Chen R. Optical Properties of Ultrathin ZnO Films Fabricated by Atomic Layer Deposition. Appl. Surf. Sci. 2020;527:146818. doi: 10.1016/j.apsusc.2020.146818. DOI

Tompkins H.G. A User’s Guide to Ellipsometry. Courier Corporation; North Chelmsford, MA, USA: 2006.

Jensen D.S., Kanyal S.S., Madaan N., Vail M.A., Dadson A.E., Engelhard M.H., Linford M.R. Silicon (100)/SiO2 by XPS. Surf. Sci. Spectra. 2013;20:36–42. doi: 10.1116/11.20121101. DOI

Biesinger M.C., Lau L.W.M., Gerson A.R., Smart R.S.C. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010;257:887–898. doi: 10.1016/j.apsusc.2010.07.086. DOI

Wagner C.D. Chemical Shifts of Auger Lines, and the Auger Parameter. Faraday Discuss. Chem. Soc. 1975;60:291–300. doi: 10.1039/dc9756000291. DOI

Wagner C.D., Joshi A. The Auger Parameter, Its Utility and Advantages: A Review. J. Electron Spectros. Relat. Phenom. 1988;47:283–313. doi: 10.1016/0368-2048(88)85018-7. DOI

Gaarenstroom S.W., Winograd N. Initial and Final State Effects in the ESCA Spectra of Cadmium and Silver Oxides. J. Chem. Phys. 2008;67:3500–3506. doi: 10.1063/1.435347. DOI

Ortega S., Halicek M., Fabelo H., Callico G.M., Fei B. Hyperspectral and Multispectral Imaging in Digital and Computational Pathology: A Systematic Review [Invited] Biomed. Opt. Express. 2020;11:3195–3233. doi: 10.1364/BOE.386338. PubMed DOI PMC

Fairley N., Fernandez V., Richard-Plouet M., Guillot-Deudon C., Walton J., Smith E., Flahaut D., Greiner M., Biesinger M., Tougaard S., et al. Systematic and Collaborative Approach to Problem Solving Using X-Ray Photoelectron Spectroscopy. Appl. Surf. Sci. Adv. 2021;5:100112. doi: 10.1016/j.apsadv.2021.100112. DOI

Hesse R., Streubel P., Szargan R. Product or Sum: Comparative Tests of Voigt, and Product or Sum of Gaussian and Lorentzian Functions in the Fitting of Synthetic Voigt-Based X-Ray Photoelectron Spectra. Surf. Interface Anal. 2007;39:381–391. doi: 10.1002/sia.2527. DOI

Dake L.S., Baer D.R., Zachara J.M. Auger Parameter Measurements of Zinc Compounds Relevant to Zinc Transport in the Environment. Surf. Interface Anal. 1989;14:71–75. doi: 10.1002/sia.740140115. DOI

Collins T.J. ImageJ for Microscopy. Biotechniques. 2007;43:S25–S30. doi: 10.2144/000112517. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...