Area-Selective Atomic Layer Deposition of ZnO on Si\SiO2 Modified with Tris(dimethylamino)methylsilane
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
N/A
Restek Corp.
PubMed
37445002
PubMed Central
PMC10342755
DOI
10.3390/ma16134688
PII: ma16134688
Knihovny.cz E-zdroje
- Klíčová slova
- ZnO, area selective, atomic layer deposition, inhibitor, silane, silicon,
- Publikační typ
- časopisecké články MeSH
Delayed atomic layer deposition (ALD) of ZnO, i.e., area selective (AS)-ALD, was successfully achieved on silicon wafers (Si\SiO2) terminated with tris(dimethylamino)methylsilane (TDMAMS). This resist molecule was deposited in a home-built, near-atmospheric pressure, flow-through, gas-phase reactor. TDMAMS had previously been shown to react with Si\SiO2 in a single cycle/reaction and to drastically reduce the number of silanols that remain at the surface. ZnO was deposited in a commercial ALD system using dimethylzinc (DMZ) as the zinc precursor and H2O as the coreactant. Deposition of TDMAMS was confirmed by spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS), and wetting. ALD of ZnO, including its selectivity on TDMAMS-terminated Si\SiO2 (Si\SiO2\TDMAMS), was confirmed by in situ multi-wavelength ellipsometry, ex situ SE, XPS, and/or high-sensitivity/low-energy ion scattering (HS-LEIS). The thermal stability of the TDMAMS resist layer, which is an important parameter for AS-ALD, was investigated by heating Si\SiO2\TDMAMS in air and nitrogen at 330 °C. ALD of ZnO takes place more readily on Si\SiO2\TDMAMS heated in the air than in N2, suggesting greater damage to the surface heated in the air. To better understand the in situ ALD of ZnO on Si\SiO2\TDMAMS and modified (thermally stressed) forms of it, the ellipsometry results were plotted as the normalized growth per cycle. Even one short pulse of TDMAMS effectively passivates Si\SiO2. TDMAMS can be a useful, small-molecule inhibitor of ALD of ZnO on Si\SiO2 surfaces.
CEITEC BUT Brno University of Technology Purkyňova 123 612 00 Brno Czech Republic
Department of Applied Physics Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
Department of Chemistry and Biochemistry Brigham Young University Provo UT 84602 USA
Department of Chemistry University of Colorado 215 UCB Boulder CO 80309 USA
Department of Statistics Brigham Young University Provo UT 84602 USA
Materials Group NA Avery Dennison Corporation 8080 Norton Parkway Mentor OH 44060 USA
Restek Corporation 110 Benner Circle Bellefonte PA 16823 USA
Zobrazit více v PubMed
Puurunen R.L. A Short History of Atomic Layer Deposition: Tuomo Suntola’s Atomic Layer Epitaxy. Chem. Vap. Depos. 2014;20:332–344. doi: 10.1002/cvde.201402012. DOI
Kääriäinen T., Cameron D., Kääriäinen M.-L., Sherman A. Atomic Layer Deposition: Principles, Characteristics, and Nanotechnology Applications. John Wiley & Sons; Hoboken, NJ, USA: 2013.
Mackus A.J.M., Merkx M.J.M., Kessels W.M.M. From the Bottom-Up: Toward Area-Selective Atomic Layer Deposition with High Selectivity. Chem. Mater. 2019;31:2–12. doi: 10.1021/acs.chemmater.8b03454. PubMed DOI PMC
Parsons G.N., Clark R.D. Area-Selective Deposition: Fundamentals, Applications, and Future Outlook. Chem. Mater. 2020;32:4920–4953. doi: 10.1021/acs.chemmater.0c00722. DOI
Mameli A., Karasulu B., Verheijen M.A., Mackus A.J.M., Kessels W.M.M., Roozeboom F. (Invited) Area-Selective Atomic Layer Deposition: Role of Surface Chemistry. ECS Trans. 2017;80:39. doi: 10.1149/08003.0039ecst. DOI
Chen R., Bent S.F. Chemistry for Positive Pattern Transfer Using Area-Selective Atomic Layer Deposition. Adv. Mater. 2006;18:1086–1090. doi: 10.1002/adma.200502470. DOI
Mackus A.J.M. 2018 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA) IEEE; New York, NY, USA: 2018. Approaches and Opportunities for Area-Selective Atomic Layer Deposition; pp. 1–2. DOI
Mameli A., Karasulu B., Verheijen M.A., Barcones B., Macco B., Mackus A.J.M., Kessels W.M.M.E., Roozeboom F. Area-Selective Atomic Layer Deposition of ZnO by Area Activation Using Electron Beam-Induced Deposition. Chem. Mater. 2019;31:1250–1257. doi: 10.1021/acs.chemmater.8b03165. DOI
Weber M.J., Mackus A.J.M., Verheijen M.A., van der Marel C., Kessels W.M.M. Supported Core/Shell Bimetallic Nanoparticles Synthesis by Atomic Layer Deposition. Chem. Mater. 2012;24:2973–2977. doi: 10.1021/cm301206e. DOI
Mackus A.J.M., Mulders J.J.L., Van De Sanden M.C.M., Kessels W.M.M. Local Deposition of High-Purity Pt Nanostructures by Combining Electron Beam Induced Deposition and Atomic Layer Deposition. American Institute of Physics; College Park, MD, USA: 2010.
Chang C.-W., Hsu H.-H., Hsu C.-S., Chen J.-T. Achieving Area-Selective Atomic Layer Deposition with Fluorinated Self-Assembled Monolayers. J. Mater. Chem. C. 2021;9:14589–14595. doi: 10.1039/D1TC04015D. DOI
Xu W., Haeve M.G.N., Lemaire P.C., Sharma K., Hausmann D.M., Agarwal S. Functionalization of the SiO2 Surface with Aminosilanes to Enable Area-Selective Atomic Layer Deposition of Al2O3. Langmuir. 2022;38:652–660. doi: 10.1021/acs.langmuir.1c02216. PubMed DOI
Moeini B., Joshua W.P., Avval T.G., Jacobsen C., Brongersma H.H., Prusa S., Bábík P., Vaníčková E., Argyle M.D., Strohmeier B.R., et al. Controlling the Surface Silanol Density in Capillary Columns and Planar Silicon via the Self-Limiting Gas-Phase Deposition of Tris(dimethylamino)Methylsilane, and Quantification of Surface Silanols after Silanization by Low Energy Ion Scattering. 2023 Submitted . PubMed
Patel D.I., Major G.H., Jacobsen C., Shah D., Strohmeier B.R., Shollenberger D., Bell D.S., Argyle M.D., Linford M.R. Flow-Through Atmospheric Pressure-Atomic Layer Deposition Reactor for Thin-Film Deposition in Capillary Columns. Anal. Chem. 2022;94:7483–7491. doi: 10.1021/acs.analchem.1c05029. PubMed DOI
Tonezzer M., Dang T.T.L., Bazzanella N., Nguyen V.H., Iannotta S. Comparative Gas-Sensing Performance of 1D and 2D ZnO Nanostructures. Sens. Actuators B Chem. 2015;220:1152–1160. doi: 10.1016/j.snb.2015.06.103. DOI
Ding M., Guo Z., Zhou L., Fang X., Zhang L., Zeng L., Xie L., Zhao H. One-Dimensional Zinc Oxide Nanomaterials for Application in High-Performance Advanced Optoelectronic Devices. Crystals. 2018;8:223. doi: 10.3390/cryst8050223. DOI
Sushma C., Girish Kumar S. Advancements in the Zinc Oxide Nanomaterials for Efficient Photocatalysis. Chem. Pap. 2017;71:2023–2042. doi: 10.1007/s11696-017-0217-5. DOI
Ellmer K., Klein A., Rech B. Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells. Springer; Berlin/Heidelberg, Germany: 2007.
Hirao T., Furuta M., Furuta H., Matsuda T., Hiramatsu T., Hokari H., Yoshida M., Ishii H., Kakegawa M. Novel Top-gate Zinc Oxide Thin-film Transistors (ZnO TFTs) for AMLCDs. J. Soc. Inf. Disp. 2007;15:17–22. doi: 10.1889/1.2451545. DOI
Guziewicz E., Krajewski T.A., Przezdziecka E., Korona K.P., Czechowski N., Klopotowski L., Terziyska P. Zinc Oxide Grown by Atomic Layer Deposition: From Heavily n-Type to p-Type Material. Phys. Status Solidi. 2020;257:1900472. doi: 10.1002/pssb.201900472. DOI
Chen M.-C., Chang T.-C., Tsai C.-T., Huang S.-Y., Chen S.-C., Hu C.-W., Sze S.M., Tsai M.-J. Influence of Electrode Material on the Resistive Memory Switching Property of Indium Gallium Zinc Oxide Thin Films. Appl. Phys. Lett. 2010;96:262110. doi: 10.1063/1.3456379. DOI
Parsons G.N. Functional Model for Analysis of ALD Nucleation and Quantification of Area-Selective Deposition. J. Vac. Sci. Technol. A. 2019;37:20911. doi: 10.1116/1.5054285. DOI
Gladfelter W.L. Selective Metalization by Chemical Vapor Deposition. Chem. Mater. 1993;5:1372–1388. doi: 10.1021/cm00034a004. DOI
Longo R.C., McDonnell S., Dick D., Wallace R.M., Chabal Y.J., Owen J.H.G., Ballard J.B., Randall J.N., Cho K. Selectivity of Metal Oxide Atomic Layer Deposition on Hydrogen Terminated and Oxidized Si(001)-(2 × 1) Surface. J. Vac. Sci. Technol. B. 2014;32:03D112. doi: 10.1116/1.4864619. DOI
Hilfiker J.N. Woodhead Publishing Series in Electronic and Optical Materials. Woodhead Publishing; Cambridge, UK: 2011. 5-In Situ Spectroscopic Ellipsometry (SE) for Characterization of Thin Film Growth; pp. 99–151. DOI
Maynard H.L., Layadi N., Lee J.T.C. Plasma Etching of Submicron Devices: In Situ Monitoring and Control by Multi-Wavelength Ellipsometry. Thin Solid Film. 1998;313–314:398–405. doi: 10.1016/S0040-6090(97)00854-7. DOI
Fang L., Li H., Ma X., Song Q., Chen R. Optical Properties of Ultrathin ZnO Films Fabricated by Atomic Layer Deposition. Appl. Surf. Sci. 2020;527:146818. doi: 10.1016/j.apsusc.2020.146818. DOI
Tompkins H.G. A User’s Guide to Ellipsometry. Courier Corporation; North Chelmsford, MA, USA: 2006.
Jensen D.S., Kanyal S.S., Madaan N., Vail M.A., Dadson A.E., Engelhard M.H., Linford M.R. Silicon (100)/SiO2 by XPS. Surf. Sci. Spectra. 2013;20:36–42. doi: 10.1116/11.20121101. DOI
Biesinger M.C., Lau L.W.M., Gerson A.R., Smart R.S.C. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010;257:887–898. doi: 10.1016/j.apsusc.2010.07.086. DOI
Wagner C.D. Chemical Shifts of Auger Lines, and the Auger Parameter. Faraday Discuss. Chem. Soc. 1975;60:291–300. doi: 10.1039/dc9756000291. DOI
Wagner C.D., Joshi A. The Auger Parameter, Its Utility and Advantages: A Review. J. Electron Spectros. Relat. Phenom. 1988;47:283–313. doi: 10.1016/0368-2048(88)85018-7. DOI
Gaarenstroom S.W., Winograd N. Initial and Final State Effects in the ESCA Spectra of Cadmium and Silver Oxides. J. Chem. Phys. 2008;67:3500–3506. doi: 10.1063/1.435347. DOI
Ortega S., Halicek M., Fabelo H., Callico G.M., Fei B. Hyperspectral and Multispectral Imaging in Digital and Computational Pathology: A Systematic Review [Invited] Biomed. Opt. Express. 2020;11:3195–3233. doi: 10.1364/BOE.386338. PubMed DOI PMC
Fairley N., Fernandez V., Richard-Plouet M., Guillot-Deudon C., Walton J., Smith E., Flahaut D., Greiner M., Biesinger M., Tougaard S., et al. Systematic and Collaborative Approach to Problem Solving Using X-Ray Photoelectron Spectroscopy. Appl. Surf. Sci. Adv. 2021;5:100112. doi: 10.1016/j.apsadv.2021.100112. DOI
Hesse R., Streubel P., Szargan R. Product or Sum: Comparative Tests of Voigt, and Product or Sum of Gaussian and Lorentzian Functions in the Fitting of Synthetic Voigt-Based X-Ray Photoelectron Spectra. Surf. Interface Anal. 2007;39:381–391. doi: 10.1002/sia.2527. DOI
Dake L.S., Baer D.R., Zachara J.M. Auger Parameter Measurements of Zinc Compounds Relevant to Zinc Transport in the Environment. Surf. Interface Anal. 1989;14:71–75. doi: 10.1002/sia.740140115. DOI
Collins T.J. ImageJ for Microscopy. Biotechniques. 2007;43:S25–S30. doi: 10.2144/000112517. PubMed DOI