Design, Synthesis, and Biological Evaluation of 2-Hydroxy-4-phenylthiophene-3-carbonitrile as PD-L1 Antagonist and Its Comparison to Available Small Molecular PD-L1 Inhibitors
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
37450644
PubMed Central
PMC10388299
DOI
10.1021/acs.jmedchem.3c00254
Knihovny.cz E-resources
- MeSH
- B7-H1 Antigen * MeSH
- Immune Checkpoint Inhibitors * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- B7-H1 Antigen * MeSH
- Immune Checkpoint Inhibitors * MeSH
In search of a potent small molecular PD-L1 inhibitor, we designed and synthesized a compound based on a 2-hydroxy-4-phenylthiophene-3-carbonitrile moiety. Ligand's performance was tested in vitro and compared side-by-side with a known PD-L1 antagonist with a proven bioactivity BMS1166. Subsequently, we modified both compounds to allow 18F labeling that could be used for PET imaging. Radiolabeling, which is used in drug development and diagnosis, was applied to investigate the properties of those ligands and test them against tissue sections with diverse expression levels of PD-L1. We confirmed biological activity toward hPD-L1 for this inhibitor, comparable with BMS1166, while holding enhanced pharmacological properties.
Department of Chemistry University of Crete Voutes 70013 Heraklion Greece
Department of Drug Design University of Groningen A Deusinglaan 1 9713 AV Groningen The Netherlands
See more in PubMed
Pardoll D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. 10.1038/nrc3239. PubMed DOI PMC
Michot J. M.; Bigenwald C.; Champiat S.; Collins M.; Carbonnel F.; Postel-Vinay S.; Berdelou A.; Varga A.; Bahleda R.; Hollebecque A.; Massard C.; Fuerea A.; Ribrag V.; Gazzah A.; Armand J. P.; Amellal N.; Angevin E.; Noel N.; Boutros C.; Mateus C.; Lambotte O. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur. J. Cancer 2016, 54, 139–148. 10.1016/j.ejca.2015.11.016. PubMed DOI
European Medicines Agency . EMEA/H/C/003985—EPAR Product Information 2022. https://www.ema.europa.eu/en/documents/product-information/opdivo-epar-product-information_en.pdf (accessed Sept 01, 2022).
Opdivo (nivolumab) price, Farmacotherapeutisch Kompas. https://www.farmacotherapeutischkompas.nl/bladeren/preparaatteksten/n/nivolumab#kosten (accessed Sept 01, 2022).
Queva C.; Morrow M.; Hammond S.; Alimzhanov M.; Babcock J.; Foltz I.; Kang J. S.; Sekirov L.; Boyle M.; Chodorge M.. Targeted binding agents against b7-h1. WO 2011066389 A1, 2011.
Nastri H. G.; Iffland C.; Leger O.; An Q.; Cartwright M.; Mckenna S. D.; Sood V. D.; Hao G.. Anti-pd-l1 antibodies and uses thereof. WO 2013079174 A1, 2013.
Irving B.; Chiu H.; Maecker H.; Mariathasan S.; Lehar S. M.; Wu Y.; Cheung J.. Anti-PD-L1 antibodies, compositions and articles of manufacture. U.S. Patent 8,217,149 B2, 2012.
Zak K. M.; Grudnik P.; Guzik K.; Zieba B. J.; Musielak B.; Dömling A.; Dubin G.; Holak T. A. Structural basis for small molecule targeting of the programmed death ligand 1 (PD-L1). Oncotarget 2016, 7, 30323–30335. 10.18632/oncotarget.8730. PubMed DOI PMC
Zhang F.; Wei H.; Wang X.; Bai Y.; Wang P.; Wu J.; Jiang X.; Wang Y.; Cai H.; Xu T.; Zhou A. Structural basis of a novel PD-L1 nanobody for immune checkpoint blockade. Cell Discovery 2017, 3, 17004.10.1038/celldisc.2017.4. PubMed DOI PMC
Magiera-Mularz K.; Skalniak L.; Zak K. M.; Musielak B.; Rudzinska-Szostak E.; Berlicki Ł.; Kocik J.; Grudnik P.; Sala D.; Zarganes-Tzitzikas T.; Shaabani S.; Dömling A.; Dubin G.; Holak T. A. Bioactive Macrocyclic Inhibitors of the PD-1/PD-L1 Immune Checkpoint. Angew. Chem., Int. Ed. 2017, 56, 13732–13735. 10.1002/anie.201707707. PubMed DOI PMC
Chupak L. S.; Ding M.; Martin S. W.; Zheng X.; Hewawasam P.; Connolly T. P.; Xu N.; Yeung K.-S.; Zhu J.; Langley D. R.; Scola P. M.. Compounds useful as immunomodulators. WO 2015034820 A1, 2015.
Wang Y.; Gu T.; Tian X.; Li W.; Zhao R.; Yang W.; Gao Q.; Li T.; Shim J. H.; Zhang C.; Liu K.; Lee M. H. A small molecule antagonist of PD-1/PD-L1 interactions acts as an immune checkpoint inhibitor for NSCLC and melanoma immunotherapy. Front. Immunol. 2021, 12, 654463.10.3389/fimmu.2021.654463. PubMed DOI PMC
Maxinovel Pty. Ltd. . MAX-10181 Given Orally to Patients With Advanced Solid Tumor (NCT 04122339). https://clinicaltrials.gov/ct2/show/NCT04122339 (accessed Sept 01, 2022).
Gilead Sciences . Study to Evaluate Safety, Tolerability, Pharmacokinetics, and Efficacy of GS-4224 in Participants With Advanced Solid Tumors (NCT04049617). https://www.clinicaltrials.gov/ct2/show/NCT04049617 (accessed Sept 01, 2022).
Konstantinidou M.; Zarganes-Tzitzikas T.; Magiera-Mularz K.; Holak T. A.; Dömling A. Immune Checkpoint PD-1/PD-L1: Is There Life Beyond Antibodies. Angew. Chemie Int. Ed. 2018, 57, 4840–4848. 10.1002/anie.201710407. PubMed DOI PMC
Butera R.; Ważyńska M.; Magiera-Mularz K.; Plewka J.; Musielak B.; Surmiak E.; Sala D.; Kitel R.; de Bruyn M.; Nijman H. W.; Elsinga P. H.; Holak T. A.; Dömling A. Design, Synthesis, and Biological Evaluation of Imidazopyridines as PD-1/PD-L1 Antagonists. ACS Med. Chem. Lett. 2021, 12, 768–773. 10.1021/acsmedchemlett.1c00033. PubMed DOI PMC
Shaabani S.; Huizinga H. P. S.; Butera R.; Kouchi A.; Guzik K.; Magiera-Mularz K.; Holak T. A.; Dömling A. A patent review on PD-1/PD-L1 antagonists: small molecules, peptides, and macrocycles (2015-2018). Expert Opin. Ther. Pat. 2018, 28, 665–678. 10.1080/13543776.2018.1512706. PubMed DOI PMC
Guzik K.; Tomala M.; Muszak D.; Konieczny M.; Hec A.; Błaszkiewicz U.; Pustuła M.; Butera R.; Dömling A.; Holak T. A. Development of the Inhibitors that Target the PD-1/PD-L1 Interaction-A Brief Look at Progress on Small Molecules, Peptides and Macrocycles. Molecules 2019, 24, 2071.10.3390/molecules24112071. PubMed DOI PMC
Muszak D.; Surmiak E.; Plewka J.; Magiera-Mularz K.; Kocik-Krol J.; Musielak B.; Sala D.; Kitel R.; Stec M.; Weglarczyk K.; Siedlar M.; Dömling A.; Skalniak L.; Holak T. A. Terphenyl-Based Small-Molecule Inhibitors of Programmed Cell Death-1/Programmed Death-Ligand 1 Protein-Protein Interaction. J. Med. Chem. 2021, 64, 11614–11636. 10.1021/acs.jmedchem.1c00957. PubMed DOI PMC
McRee D. E.Computational Techniques, Practical Protein Crystallography, 2nd ed.; Academic Press, 1999; p 91.
Gewald K.; Jablokoff H.; Hentschel M. Synthese und Reaktionen von 2-Hydroxy-3-cyan-thiophenen. J. Prakt. Chem. 1975, 317, 861–866. 10.1002/prac.19753170521. DOI
Huang Y.; Dömling A. The Gewald multicomponent reaction. Mol. Diversity 2011, 15, 3–33. 10.1007/s11030-010-9229-6. PubMed DOI
Wang K.; Kim D.; Dömling A. Cyanoacetamide MCR (III): three-component Gewald reactions revisited. J. Comb. Chem. 2010, 12, 111–118. 10.1021/cc9001586. PubMed DOI PMC
Huang Y.; Dömling A. 1,4-Thienodiazepine-2,5-diones via MCR (II): scaffold hopping by Gewald and Ugi-deprotection-cyclization strategy. Chem. Biol. Drug Des. 2010, 76, 130–141. 10.1111/j.1747-0285.2010.00990.x. PubMed DOI PMC
Huang Y.; Wolf S.; Bista M.; Meireles L.; Camacho C.; Holak T. A.; Dömling A. 1,4-Thienodiazepine-2,5-diones via MCR (I): synthesis, virtual space and p53-Mdm2 activity. Chem. Biol. Drug Des. 2010, 76, 116–129. 10.1111/j.1747-0285.2010.00989.x. PubMed DOI PMC
Skalniak L.; Zak K. M.; Guzik K.; Magiera K.; Musielak B.; Pachota M.; Szelazek B.; Kocik J.; Grudnik P.; Tomala M.; Krzanik S.; Pyrc K.; Dömling A.; Dubin G.; Holak T. A. Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells. Oncotarget 2017, 8, 72167–72181. 10.18632/oncotarget.20050. PubMed DOI PMC
Surmiak E.; Magiera-Mularz K.; Musielak B.; Muszak D.; Kocik-Krol J.; Kitel R.; Plewka J.; Holak T. A.; Skalniak L. PD-L1 Inhibitors: Different Classes, Activities, and Mechanisms of Action. Int. J. Mol. Sci. 2021, 22, 11797.10.3390/ijms222111797. PubMed DOI PMC
Mossine A. V.; Brooks A. F.; Makaravage K. J.; Miller J. M.; Ichiishi N.; Sanford M. S.; Scott P. J. Synthesis of [18F]Arenes via the Copper-Mediated [18F]Fluorination of Boronic Acids. Org. Lett. 2015, 17, 5780–5783. 10.1021/acs.orglett.5b02875. PubMed DOI PMC
Cheng T.; Zhao Y.; Li X.; Lin F.; Xu Y.; Zhang X.; Li Y.; Wang R.; Lai L. Computation of Octanol-Water Partition Coefficients by Guiding an Additive Model with Knowledge. J. Chem. Inf. Model. 2007, 47, 2140–2148. 10.1021/ci700257y. PubMed DOI
Brown J. A.; Dorfman D. M.; Ma F. R.; Sullivan E. L.; Munoz O.; Wood C. R.; Greenfield E. A.; Freeman G. J. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J. Immunol. 2003, 170, 1257–1266. 10.4049/jimmunol.170.3.1257. PubMed DOI
Ma J.; Li J.; Qian M.; Han W.; Tian M.; Li Z.; Wang Z.; He S.; Wu K. PD-L1 expression and the prognostic significance in gastric cancer: a retrospective comparison of three PD-L1 antibody clones (SP142, 28–8 and E1L3N). Diagn. Pathol. 2018, 13, 91.10.1186/s13000-018-0766-0. PubMed DOI PMC
Zhao Y. J.; Sun W. P.; Peng J. H.; Deng Y. X.; Fang Y. J.; Huang J.; Zhang H. Z.; Wan D. S.; Lin J. Z.; Pan Z. Z. Programmed death-ligand 1 expression correlates with diminished CD8+ T cell infiltration and predicts poor prognosis in anal squamous cell carcinoma patients. Cancer Manage. Res. 2017, 10, 1–11. 10.2147/CMAR.S153965. PubMed DOI PMC
Sasikumar P. G.; Sudarshan N. S.; Adurthi S.; Ramachandra R. K.; Samiulla D. S.; Lakshminarasimhan A.; Ramanathan A.; Chandrasekhar T.; Dhudashiya A. A.; Talapati S. R.; Gowda N.; Palakolanu S.; Mani J.; Srinivasrao B.; Joseph D.; Kumar N.; Nair R.; Atreya H. S.; Gowda N.; Ramachandra M. PD-1 derived CA-170 is an oral immune checkpoint inhibitor that exhibits preclinical anti-tumor efficacy. Commun. Biol. 2021, 4, 699.10.1038/s42003-021-02191-1. PubMed DOI PMC
Musielak B.; Kocik J.; Skalniak L.; Magiera-Mularz K.; Sala D.; Czub M.; Stec M.; Siedlar M.; Holak T. A.; Plewka J. CA-170 - A Potent Small-Molecule PD-L1 Inhibitor or Not?. Molecules 2019, 24, 2804.10.3390/molecules24152804. PubMed DOI PMC
Blevins D. J.; Hanley R.; Bolduc T.; Powell D. A.; Gignac M.; Walker K.; Carr M. D.; Hof F.; Wulff J. E. In Vitro Assessment of Putative PD-1/PD-L1 Inhibitors: Suggestions of an Alternative Mode of Action. ACS Med. Chem. Lett. 2019, 10, 1187–1192. 10.1021/acsmedchemlett.9b00221. PubMed DOI PMC
Ganesan A.; Ahmed M.; Okoye I.; Arutyunova E.; Babu D.; Turnbull W. L.; Kundu J. K.; Shields J.; Agopsowicz K. C.; Xu L.; et al. Comprehensive in vitro characterization of PD-L1 small molecule inhibitors. Sci. Rep. 2019, 9, 12392.10.1038/s41598-019-48826-6. PubMed DOI PMC
Sasikumar P. G.; Ramachandra M.; Prasad A.; Naremaddepalli S. S. S.. 3-substituted-1,2,4-oxadiazole and thiadiazole compounds as immunomodulators. WO 2016142886 A3, 2016.
Chen F. F.; Li Z.; Ma D.; Yu Q. Small-molecule PD-L1 inhibitor BMS1166 abrogates the function of PD-L1 by blocking its ER export. Oncoimmunology 2020, 9, 1831153.10.1080/2162402X.2020.1831153. PubMed DOI PMC
Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. 10.1016/0003-2697(76)90527-3. PubMed DOI
Liao Y.; Chen L.; Feng Y.; Shen J.; Gao Y.; Cote G.; Choy E.; Harmon D.; Mankin H.; Hornicek F.; Duan Z. Targeting programmed cell death ligand 1 by CRISPR/Cas9 in osteosarcoma cells. Oncotarget 2017, 8, 30276–30287. 10.18632/oncotarget.16326. PubMed DOI PMC
Pettersen E. F.; Goddard T. D.; Huang C. C.; Couch G. S.; Greenblatt D. M.; Meng E. C.; Ferrin T. E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. 10.1002/jcc.20084. PubMed DOI
Trott O.; Olson A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2009, 31, 455–461. 10.1002/jcc.21334. PubMed DOI PMC