Mammalian maxilloturbinal evolution does not reflect thermal biology
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37479710
PubMed Central
PMC10361988
DOI
10.1038/s41467-023-39994-1
PII: 10.1038/s41467-023-39994-1
Knihovny.cz E-zdroje
- MeSH
- aklimatizace * MeSH
- bazální metabolismus MeSH
- ekologie MeSH
- savci * MeSH
- tělesná teplota MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The evolution of endothermy in vertebrates is a major research topic in recent decades that has been tackled by a myriad of research disciplines including paleontology, anatomy, physiology, evolutionary and developmental biology. The ability of most mammals to maintain a relatively constant and high body temperature is considered a key adaptation, enabling them to successfully colonize new habitats and harsh environments. It has been proposed that in mammals the anterior nasal cavity, which houses the maxilloturbinal, plays a pivotal role in body temperature maintenance, via a bony system supporting an epithelium involved in heat and moisture conservation. The presence and the relative size of the maxilloturbinal has been proposed to reflect the endothermic conditions and basal metabolic rate in extinct vertebrates. We show that there is no evidence to relate the origin of endothermy and the development of some turbinal bones by using a comprehensive dataset of µCT-derived maxilloturbinals spanning most mammalian orders. Indeed, we demonstrate that neither corrected basal metabolic rate nor body temperature significantly correlate with the relative surface area of the maxilloturbinal. Instead, we identify important variations in the relative surface area, morpho-anatomy, and complexity of the maxilloturbinal across the mammalian phylogeny and species ecology.
Biology Department Washington University St Louis MO 63130 USA
Faculty of Veterinary Medicine Freie Universität Berlin Germany
Institut Universitaire de France Paris France
Mammal Section Department of Life Sciences The Natural History Museum SW7 5DB London United Kingdom
Staatliches Museum für Naturkunde Stuttgart DE 70191 Stuttgart Germany
Zobrazit více v PubMed
Hillenius WJ, Ruben JA. The Evolution of Endothermy in Terrestrial Vertebrates: Who? When? Why? Physiol. Biochem. Zool. 2004;77:1019–1042. doi: 10.1086/425185. PubMed DOI
Lovegrove BG. The evolution of endothermy in Cenozoic mammals: a plesiomorphic-apomorphic continuum. Biol. Rev. 2012;87:128–162. doi: 10.1111/j.1469-185X.2011.00188.x. PubMed DOI
Hillenius WJ. The evolution of nasal turbinates and mammalian endothermy. Paleobiology. 1992;18:17–29. doi: 10.1017/S0094837300012197. DOI
Hillenius WJ. Turbinates in Therapsids: Evidence for Late Permian Origins of Mammalian Endothermy. Evolution. 1994;48:207–229. doi: 10.2307/2410089. PubMed DOI
Kubo T, Benton MJ. Tetrapod postural shift estimated from Permian and Triassic trackways. Palaeontology. 2009;52:1029–1037. doi: 10.1111/j.1475-4983.2009.00897.x. DOI
Crompton AW, Owerkowicz T, Bhullar B-AS, Musinsky C. Structure of the nasal region of non-mammalian cynodonts and mammaliaforms: Speculations on the evolution of mammalian endothermy. J. Vertebr. Paleontol. 2017;37:e1269116. doi: 10.1080/02724634.2017.1269116. DOI
Huttenlocker AK, Farmer CG. Bone Microvasculature Tracks Red Blood Cell Size Diminution in Triassic Mammal and Dinosaur Forerunners. Curr. Biol. 2017;27:48–54. doi: 10.1016/j.cub.2016.10.012. PubMed DOI
Benton MJ. The origin of endothermy in synapsids and archosaurs and arms races in the Triassic. Gondwana Res. 2021;100:261–289. doi: 10.1016/j.gr.2020.08.003. DOI
Araújo, R. et al. Inner ear biomechanics reveals a Late Triassic origin for mammalian endothermy. Nature 1–6 (2022) 10.1038/s41586-022-04963-z. PubMed
Negus, V. The Comparative Anatomy and Physiology of the Nose and Paranasal Sinuses. (1958).
Walker JEC, Wells RE. Heat and water exchange in the respiratory tract. Am. J. Med. 1961;30:259–267. doi: 10.1016/0002-9343(61)90097-3. PubMed DOI
Jackson DC, Schmidt-Nielsen K. Countercurrent heat exchange in the respiratory passages. Proc. Natl Acad. Sci. USA. 1964;51:1192–1197. doi: 10.1073/pnas.51.6.1192. PubMed DOI PMC
Schmidt-Nielsen K, Hainsworth FR, Murrish DE. Counter-current heat exchange in the respiratory passages: Effect on water and heat balance. Respir. Physiol. 1970;9:263–276. doi: 10.1016/0034-5687(70)90075-7. PubMed DOI
Collins JC, Pilkington TC, Schmidt-Nielsen K. A Model of Respiratory Heat Transfer in a Small Mammal. Biophys. J. 1971;11:886–914. doi: 10.1016/S0006-3495(71)86262-8. PubMed DOI PMC
Ruben JA, et al. The Metabolic Status of Some Late Cretaceous Dinosaurs. Science. 1996;273:1204–1207. doi: 10.1126/science.273.5279.1204. DOI
Owerkowicz, T., Musinsky, C., Middleton, K. M. & Crompton, A. W. Respiratory Turbinates and the Evolution of Endothermy in Mammals and Birds. Great Transformations in Vertebrate Evolution 143–166 (University of Chicago Press, 2015).
Van Valkenburgh B, et al. Aquatic adaptations in the nose of carnivorans: evidence from the turbinates. J. Anat. 2011;218:298–310. doi: 10.1111/j.1469-7580.2010.01329.x. PubMed DOI PMC
Martinez Q, et al. Convergent evolution of olfactory and thermoregulatory capacities in small amphibious mammals. Proc. Natl Acad. Sci. 2020;117:8958–8965. doi: 10.1073/pnas.1917836117. PubMed DOI PMC
Laaß M, et al. New insights into the respiration and metabolic physiology of Lystrosaurus. Acta Zool. 2011;92:363–371. doi: 10.1111/j.1463-6395.2010.00467.x. DOI
Martin CJI. Thermal adjustment and respiratory exchange in monotremes and marsupials.—A study in the development of homæothermism. Philos. Trans. R. Soc. Lond. Ser. B Contain. Pap. Biol. Character. 1903;195:1–37.
Wislocki GB. Location of the Testes and Body Temperature in Mammals. Q. Rev. Biol. 1933;8:385–396. doi: 10.1086/394446. DOI
McNab BK. The Metabolism of Fossorial Rodents: A Study of Convergence. Ecology. 1966;47:712–733. doi: 10.2307/1934259. DOI
Šumbera R. Thermal biology of a strictly subterranean mammalian family, the African mole-rats (Bathyergidae, Rodentia) - a review. J. Therm. Biol. 2019;79:166–189. doi: 10.1016/j.jtherbio.2018.11.003. PubMed DOI
Geiser F, Ruf T. Hibernation versus Daily Torpor in Mammals and Birds: Physiological Variables and Classification of Torpor Patterns. Physiol. Zool. 1995;68:935–966. doi: 10.1086/physzool.68.6.30163788. DOI
Wilz M, Heldmaier G. Comparison of hibernation, estivation and daily torpor in the edible dormouse, Glis glis. J. Comp. Physiol. [B] 2000;170:511–521. doi: 10.1007/s003600000129. PubMed DOI
Ramos-Lara N, Koprowski J, Krystufek B, Hoffmann I. Spermophilus citellus (Rodentia: Sciuridae) Mamm. Species. 2014;913:71–87. doi: 10.1644/913.1. DOI
Lurz PWW, Gurnell J, Magris L. Sciurus vulgaris. Mamm. Species. 2005;2005:1–10. doi: 10.1644/1545-1410(2005)769[0001:SV]2.0.CO;2. DOI
Wilson, D. E., Lacher Jr, T. E. & Mittermeier, R. A. Lagomorphs and rodents I Handbook of the Mammals of the World. 6 (2016).
Stenvinkel, P., Jani, A. & Johnson, R. Hibernating bears (Ursidae): Metabolic magicians of definite interest for the nephrologist. Kidney Int. 83, (2012). PubMed
Mittermeier, R. A. & Wilson, D. E. Carnivores Handbook of the mammals of the world. 1 (2009).
McKechnie A, Mzilikazi N. Heterothermy in Afrotropical Mammals and Birds: A Review. Integr. Comp. Biol. 2011;51:349–363. doi: 10.1093/icb/icr035. PubMed DOI
Maier, W. A neglected part of the mammalian skull: The outer nasal cartilages as progressive remnants of the chondrocranium. Vertebr. Zool.70, 367–382 (2020).
Ruf, I. Ontogenetic transformations of the ethmoidal region in Muroidea (Rodentia, Mammalia): new insights from perinatal stages. (2020).
White CR, Seymour RS. Does Basal Metabolic Rate Contain a Useful Signal? Mammalian BMR Allometry and Correlations with a Selection of Physiological, Ecological, and Life‐History Variables. Physiol. Biochem. Zool. 2004;77:929–941. doi: 10.1086/425186. PubMed DOI
Smith TD, Bhatnagar KP, Tuladhar P, Burrows AM. Distribution of olfactory epithelium in the primate nasal cavity: Are microsmia and macrosmia valid morphological concepts? Anat. Rec. A. Discov. Mol. Cell. Evol. Biol. 2004;281A:1173–1181. doi: 10.1002/ar.a.20122. PubMed DOI
Smith TD, Eiting TP, Bhatnagar KP. A Quantitative Study of Olfactory, Non-Olfactory, and Vomeronasal Epithelia in the Nasal Fossa of the Bat Megaderma lyra. J. Mamm. Evol. 2012;19:27–41. doi: 10.1007/s10914-011-9178-6. DOI
Smith TD, Rossie JB. Nasal Fossa of Mouse and Dwarf Lemurs (Primates, Cheirogaleidae) Anat. Rec. 2008;291:895–915. doi: 10.1002/ar.20724. PubMed DOI
Yee KK, Craven BA, Wysocki CJ, Van Valkenburgh B. Comparative Morphology and Histology of the Nasal Fossa in Four Mammals: Gray Squirrel, Bobcat, Coyote, and White-Tailed Deer. Anat. Rec. 2016;299:840–852. doi: 10.1002/ar.23352. PubMed DOI PMC
Herbert, R. A., Janardhan, K. S., Pandiri, A. R., Cesta, M. F. & Miller, R. A. Nose, Larynx, and Trachea. Boormans Pathol. Rat 391–435 (2018) 10.1016/B978-0-12-391448-4.00022-8.
Withers PC, Jarvis JUM. The effect of huddling on thermoregulation and oxygen consumption for the naked mole-rat. Comp. Biochem. Physiol. A Physiol. 1980;66:215–219. doi: 10.1016/0300-9629(80)90154-1. DOI
Buffenstein R, Yahav S. Is the naked mole-rat Hererocephalus glaber an endothermic yet poikilothermic mammal? J. Therm. Biol. 1991;16:227–232. doi: 10.1016/0306-4565(91)90030-6. DOI
Hislop MS, Buffenstein R. Noradrenaline induces nonshivering thermogenesis in both the naked mole-rat (Heterocephalus glaber) and the Damara mole-rat (Cryptomys damarensis) despite very different modes of thermoregulation. J. Therm. Biol. 1994;19:25–32. doi: 10.1016/0306-4565(94)90006-X. DOI
Buffenstein, R. et al. The naked truth: a comprehensive clarification and classification of current ‘myths’ in naked mole‐rat biology. Biol. Rev. brv.12791 (2021) 10.1111/brv.12791. PubMed PMC
Braude S, et al. Surprisingly long survival of premature conclusions about naked mole-rat biology. Biol. Rev. 2021;96:376–393. doi: 10.1111/brv.12660. PubMed DOI
Enger PS. Heat Regulation and Metabolism in some Tropical Mammals and Birds. Acta Physiol. Scand. 1957;40:161–166. doi: 10.1111/j.1748-1716.1957.tb01485.x. PubMed DOI
Cliffe RN, et al. The metabolic response of the Bradypus sloth to temperature. PeerJ. 2018;6:e5600. doi: 10.7717/peerj.5600. PubMed DOI PMC
Langman VA. Nasal heat exchange in a northern ungulate, the reindeer (Rangifer tarandus) Respir. Physiol. 1985;59:279–287. doi: 10.1016/0034-5687(85)90133-1. PubMed DOI
Van Valkenburgh B, Theodor J, Friscia A, Pollack A, Rowe T. Respiratory turbinates of canids and felids: a quantitative comparison. J. Zool. 2004;264:281–293. doi: 10.1017/S0952836904005771. DOI
Amson E, Billet G, de Muizon C. Evolutionary adaptation to aquatic lifestyle in extinct sloths can lead to systemic alteration of bone structure. Proc. R. Soc. B Biol. Sci. 2018;285:20180270. doi: 10.1098/rspb.2018.0270. PubMed DOI PMC
Green PA, et al. Respiratory and olfactory turbinal size in canid and arctoid carnivorans. J. Anat. 2012;221:609–621. doi: 10.1111/j.1469-7580.2012.01570.x. PubMed DOI PMC
Ade M. External Morphology and Evolution of the Rhinarium of Lagomorpha. With Special Reference to the Glires Hypothesis. Zoosyst. Evol. 1999;75:191–216. doi: 10.1002/mmnz.19990750203. DOI
Buffenstein R, Jarvis JUM. Thermoregulation and metabolism in the smallest African gerbil, Gerbillus pusillus. J. Zool. 1985;205:107–121. doi: 10.1111/j.1469-7998.1985.tb05616.x. DOI
Holtze S, et al. The microenvironment of naked mole-rat burrows in East Africa. Afr. J. Ecol. 2018;56:279–289. doi: 10.1111/aje.12448. DOI
Schmidt-Nielsen K. The neglected interface: the biology of water as a liquid-gas system*. Q. Rev. Biophys. 1969;2:283–304. doi: 10.1017/S0033583500001098. PubMed DOI
Schmidt-Nielsen K, Schroter RC, Shkolnik A. Desaturation of Exhaled Air in Camels. Proc. R. Soc. Lond. B Biol. Sci. 1981;211:305–319. doi: 10.1098/rspb.1981.0009. PubMed DOI
Mason MJ, Wenger LMD, Hammer Ø, Blix AS. Structure and function of respiratory turbinates in phocid seals. Polar Biol. 2020;43:157–173. doi: 10.1007/s00300-019-02618-w. DOI
Lester CW, Costa DP. Water conservation in fasting northern elephant seals (Mirounga angustirostris) J. Exp. Biol. 2006;209:4283–4294. doi: 10.1242/jeb.02503. PubMed DOI
Martinez Q, Courcelle M, Douzery E, Fabre P-H. When morphology does not fit the genomes: the case of rodent olfaction. Biol. Lett. 2023;19:20230080. doi: 10.1098/rsbl.2023.0080. PubMed DOI PMC
Burch GE, Winsor T. Rate of insensible perspiration (diffusion of water) locally through living and through dead human skin. Arch. Intern. Med. 1944;74:437–444. doi: 10.1001/archinte.1944.00210240027005. DOI
Schmidt-Nielsen K, Haines HB. Water Balance in a Carnivorous Desert Rodent the Grasshopper Mouse. Physiol. Zool. 1964;37:259–265. doi: 10.1086/physzool.37.3.30152396. DOI
Schroter RC, Watkins NV. Respiratory heat exchange in mammals. Respir. Physiol. 1989;78:357–367. doi: 10.1016/0034-5687(89)90110-2. PubMed DOI
Zwicker D, Ostilla-Mónico R, Lieberman DE, Brenner MP. Physical and geometric constraints shape the labyrinth-like nasal cavity. Proc. Natl Acad. Sci. 2018;115:2936–2941. doi: 10.1073/pnas.1714795115. PubMed DOI PMC
Craven BA, Paterson EG, Settles GS. The fluid dynamics of canine olfaction: unique nasal airflow patterns as an explanation of macrosmia. J. R. Soc. Interface. 2010;7:933–943. doi: 10.1098/rsif.2009.0490. PubMed DOI PMC
Bourke JM, Witmer LM. Nasal conchae function as aerodynamic baffles: Experimental computational fluid dynamic analysis in a turkey nose (Aves: Galliformes) Respir. Physiol. Neurobiol. 2016;234:32–46. doi: 10.1016/j.resp.2016.09.005. PubMed DOI
Pang B, et al. The influence of nasal airflow on respiratory and olfactory epithelial distribution in felids. J. Exp. Biol. 2016;219:1866–1874. PubMed PMC
Morgan KT, Monticello TM. Airflow, gas deposition, and lesion distribution in the nasal passages. Environ. Health Perspect. 1990;85:209–218. PubMed PMC
Harkema JR, Carey SA, Wagner JG. The Nose Revisited: A Brief Review of the Comparative Structure, Function, and Toxicologic Pathology of the Nasal Epithelium. Toxicol. Pathol. 2006;34:252–269. doi: 10.1080/01926230600713475. PubMed DOI
Baker MA, Hayward JN. The influence of the nasal mucosa and the carotid rete upon hypothalamic temperature in sheep. J. Physiol. 1968;198:561–579. doi: 10.1113/jphysiol.1968.sp008626. PubMed DOI PMC
Langman, V. A., Schmidt-Nielsen, G. M. K., Schroter, R. C. & Maloiy, G. M. O. Respiratory water and heat loss in camels subjected to dehydration. (1978). PubMed
Bourke JM, et al. Breathing Life Into Dinosaurs: Tackling Challenges of Soft-Tissue Restoration and Nasal Airflow in Extinct Species: Dinosaur Nasal Airflow. Anat. Rec. 2014;297:2148–2186. doi: 10.1002/ar.23046. PubMed DOI
Boyer D, Gunnell G, Kaufman S, McGeary T. Morphosource: Archiving and sharing 3-d digital specimen data. Paleontol. Soc. Pap. 2016;22:157–181. doi: 10.1017/scs.2017.13. DOI
Martinez Q, et al. Convergent evolution of an extreme dietary specialisation, the olfactory system of worm-eating rodents. Sci. Rep. 2018;8:17806. doi: 10.1038/s41598-018-35827-0. PubMed DOI PMC
Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. Linear and nonlinear mixed effects models. R package version109https://www.researchgate.net/publication/303803175_Nlme_Linear_and_Nonlinear_Mixed_Effects_Models (2006).
R. Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computin. Vienna, Austria: URL https://www.R-project.org/ (2017).
Fox, J. et al. Package ‘car’. Vienna: R Foundation for Statistical Computing (2012).
Clarke A, Rothery P, Isaac NJB. Scaling of basal metabolic rate with body mass and temperature in mammals. J. Anim. Ecol. 2010;79:610–619. doi: 10.1111/j.1365-2656.2010.01672.x. PubMed DOI
Stahl WR. Scaling of respiratory variables in mammals. J. Appl. Physiol. 1967;22:453–460. doi: 10.1152/jappl.1967.22.3.453. PubMed DOI
Frappell P, Lanthier C, Baudinette RV, Mortola JP. Metabolism and ventilation in acute hypoxia: a comparative analysis in small mammalian species. Am. J. Physiol. -Regul. Integr. Comp. Physiol. 1992;262:R1040–R1046. doi: 10.1152/ajpregu.1992.262.6.R1040. PubMed DOI
Hothorn, T. et al. Package ‘lmtest’. Testing linear regression models. https://cran.r-project.org/web/packages/lmtest/lmtest.pdf (2015).
Blomberg SP, Garland JRT, Ives AR. Testing for Phylogenetic Signal in Comparative Data: Behavioral Traits Are More Labile. Evolution. 2003;57:717–745. PubMed
Pagel M. Inferring the historical patterns of biological evolution. Nature. 1999;401:877–884. doi: 10.1038/44766. PubMed DOI
Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things) Methods Ecol. Evol. 2012;3:217–223. doi: 10.1111/j.2041-210X.2011.00169.x. DOI
Upham NS, Esselstyn JA, Jetz W. Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLOS Biol. 2019;17:e3000494. doi: 10.1371/journal.pbio.3000494. PubMed DOI PMC
Drummond A, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012;22:1185–1192. doi: 10.1093/molbev/msi103. PubMed DOI PMC
Van Valkenburgh B, Smith TD, Craven BA. Tour of a Labyrinth: Exploring the Vertebrate Nose. Anat. Rec. 2014;297:1975–1984. doi: 10.1002/ar.23021. PubMed DOI
Craven BA, et al. Reconstruction and Morphometric Analysis of the Nasal Airway of the Dog (Canis familiaris) and Implications Regarding Olfactory Airflow. Anat. Rec. 2007;290:1325–1340. doi: 10.1002/ar.20592. PubMed DOI
Wagner F, Ruf I. Who nose the borzoi? Turbinal skeleton in a dolichocephalic dog breed (Canis lupus familiaris) Mamm. Biol. 2019;94:106–119. doi: 10.1016/j.mambio.2018.06.005. DOI
Smith TD, Curtis A, Bhatnagar KP, Santana SE. Fissures, folds, and scrolls: The ontogenetic basis for complexity of the nasal cavity in a fruit bat (Rousettus leschenaultii) Anat. Rec. 2021;304:883–900. doi: 10.1002/ar.24488. PubMed DOI
Rygg AD, Van Valkenburgh B, Craven BA. The Influence of Sniffing on Airflow and Odorant Deposition in the Canine Nasal Cavity. Chem. Senses. 2017;42:683–698. doi: 10.1093/chemse/bjx053. PubMed DOI