Mammalian maxilloturbinal evolution does not reflect thermal biology

. 2023 Jul 21 ; 14 (1) : 4425. [epub] 20230721

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37479710
Odkazy

PubMed 37479710
PubMed Central PMC10361988
DOI 10.1038/s41467-023-39994-1
PII: 10.1038/s41467-023-39994-1
Knihovny.cz E-zdroje

The evolution of endothermy in vertebrates is a major research topic in recent decades that has been tackled by a myriad of research disciplines including paleontology, anatomy, physiology, evolutionary and developmental biology. The ability of most mammals to maintain a relatively constant and high body temperature is considered a key adaptation, enabling them to successfully colonize new habitats and harsh environments. It has been proposed that in mammals the anterior nasal cavity, which houses the maxilloturbinal, plays a pivotal role in body temperature maintenance, via a bony system supporting an epithelium involved in heat and moisture conservation. The presence and the relative size of the maxilloturbinal has been proposed to reflect the endothermic conditions and basal metabolic rate in extinct vertebrates. We show that there is no evidence to relate the origin of endothermy and the development of some turbinal bones by using a comprehensive dataset of µCT-derived maxilloturbinals spanning most mammalian orders. Indeed, we demonstrate that neither corrected basal metabolic rate nor body temperature significantly correlate with the relative surface area of the maxilloturbinal. Instead, we identify important variations in the relative surface area, morpho-anatomy, and complexity of the maxilloturbinal across the mammalian phylogeny and species ecology.

Zobrazit více v PubMed

Hillenius WJ, Ruben JA. The Evolution of Endothermy in Terrestrial Vertebrates: Who? When? Why? Physiol. Biochem. Zool. 2004;77:1019–1042. doi: 10.1086/425185. PubMed DOI

Lovegrove BG. The evolution of endothermy in Cenozoic mammals: a plesiomorphic-apomorphic continuum. Biol. Rev. 2012;87:128–162. doi: 10.1111/j.1469-185X.2011.00188.x. PubMed DOI

Hillenius WJ. The evolution of nasal turbinates and mammalian endothermy. Paleobiology. 1992;18:17–29. doi: 10.1017/S0094837300012197. DOI

Hillenius WJ. Turbinates in Therapsids: Evidence for Late Permian Origins of Mammalian Endothermy. Evolution. 1994;48:207–229. doi: 10.2307/2410089. PubMed DOI

Kubo T, Benton MJ. Tetrapod postural shift estimated from Permian and Triassic trackways. Palaeontology. 2009;52:1029–1037. doi: 10.1111/j.1475-4983.2009.00897.x. DOI

Crompton AW, Owerkowicz T, Bhullar B-AS, Musinsky C. Structure of the nasal region of non-mammalian cynodonts and mammaliaforms: Speculations on the evolution of mammalian endothermy. J. Vertebr. Paleontol. 2017;37:e1269116. doi: 10.1080/02724634.2017.1269116. DOI

Huttenlocker AK, Farmer CG. Bone Microvasculature Tracks Red Blood Cell Size Diminution in Triassic Mammal and Dinosaur Forerunners. Curr. Biol. 2017;27:48–54. doi: 10.1016/j.cub.2016.10.012. PubMed DOI

Benton MJ. The origin of endothermy in synapsids and archosaurs and arms races in the Triassic. Gondwana Res. 2021;100:261–289. doi: 10.1016/j.gr.2020.08.003. DOI

Araújo, R. et al. Inner ear biomechanics reveals a Late Triassic origin for mammalian endothermy. Nature 1–6 (2022) 10.1038/s41586-022-04963-z. PubMed

Negus, V. The Comparative Anatomy and Physiology of the Nose and Paranasal Sinuses. (1958).

Walker JEC, Wells RE. Heat and water exchange in the respiratory tract. Am. J. Med. 1961;30:259–267. doi: 10.1016/0002-9343(61)90097-3. PubMed DOI

Jackson DC, Schmidt-Nielsen K. Countercurrent heat exchange in the respiratory passages. Proc. Natl Acad. Sci. USA. 1964;51:1192–1197. doi: 10.1073/pnas.51.6.1192. PubMed DOI PMC

Schmidt-Nielsen K, Hainsworth FR, Murrish DE. Counter-current heat exchange in the respiratory passages: Effect on water and heat balance. Respir. Physiol. 1970;9:263–276. doi: 10.1016/0034-5687(70)90075-7. PubMed DOI

Collins JC, Pilkington TC, Schmidt-Nielsen K. A Model of Respiratory Heat Transfer in a Small Mammal. Biophys. J. 1971;11:886–914. doi: 10.1016/S0006-3495(71)86262-8. PubMed DOI PMC

Ruben JA, et al. The Metabolic Status of Some Late Cretaceous Dinosaurs. Science. 1996;273:1204–1207. doi: 10.1126/science.273.5279.1204. DOI

Owerkowicz, T., Musinsky, C., Middleton, K. M. & Crompton, A. W. Respiratory Turbinates and the Evolution of Endothermy in Mammals and Birds. Great Transformations in Vertebrate Evolution 143–166 (University of Chicago Press, 2015).

Van Valkenburgh B, et al. Aquatic adaptations in the nose of carnivorans: evidence from the turbinates. J. Anat. 2011;218:298–310. doi: 10.1111/j.1469-7580.2010.01329.x. PubMed DOI PMC

Martinez Q, et al. Convergent evolution of olfactory and thermoregulatory capacities in small amphibious mammals. Proc. Natl Acad. Sci. 2020;117:8958–8965. doi: 10.1073/pnas.1917836117. PubMed DOI PMC

Laaß M, et al. New insights into the respiration and metabolic physiology of Lystrosaurus. Acta Zool. 2011;92:363–371. doi: 10.1111/j.1463-6395.2010.00467.x. DOI

Martin CJI. Thermal adjustment and respiratory exchange in monotremes and marsupials.—A study in the development of homæothermism. Philos. Trans. R. Soc. Lond. Ser. B Contain. Pap. Biol. Character. 1903;195:1–37.

Wislocki GB. Location of the Testes and Body Temperature in Mammals. Q. Rev. Biol. 1933;8:385–396. doi: 10.1086/394446. DOI

McNab BK. The Metabolism of Fossorial Rodents: A Study of Convergence. Ecology. 1966;47:712–733. doi: 10.2307/1934259. DOI

Šumbera R. Thermal biology of a strictly subterranean mammalian family, the African mole-rats (Bathyergidae, Rodentia) - a review. J. Therm. Biol. 2019;79:166–189. doi: 10.1016/j.jtherbio.2018.11.003. PubMed DOI

Geiser F, Ruf T. Hibernation versus Daily Torpor in Mammals and Birds: Physiological Variables and Classification of Torpor Patterns. Physiol. Zool. 1995;68:935–966. doi: 10.1086/physzool.68.6.30163788. DOI

Wilz M, Heldmaier G. Comparison of hibernation, estivation and daily torpor in the edible dormouse, Glis glis. J. Comp. Physiol. [B] 2000;170:511–521. doi: 10.1007/s003600000129. PubMed DOI

Ramos-Lara N, Koprowski J, Krystufek B, Hoffmann I. Spermophilus citellus (Rodentia: Sciuridae) Mamm. Species. 2014;913:71–87. doi: 10.1644/913.1. DOI

Lurz PWW, Gurnell J, Magris L. Sciurus vulgaris. Mamm. Species. 2005;2005:1–10. doi: 10.1644/1545-1410(2005)769[0001:SV]2.0.CO;2. DOI

Wilson, D. E., Lacher Jr, T. E. & Mittermeier, R. A. Lagomorphs and rodents I Handbook of the Mammals of the World. 6 (2016).

Stenvinkel, P., Jani, A. & Johnson, R. Hibernating bears (Ursidae): Metabolic magicians of definite interest for the nephrologist. Kidney Int. 83, (2012). PubMed

Mittermeier, R. A. & Wilson, D. E. Carnivores Handbook of the mammals of the world. 1 (2009).

McKechnie A, Mzilikazi N. Heterothermy in Afrotropical Mammals and Birds: A Review. Integr. Comp. Biol. 2011;51:349–363. doi: 10.1093/icb/icr035. PubMed DOI

Maier, W. A neglected part of the mammalian skull: The outer nasal cartilages as progressive remnants of the chondrocranium. Vertebr. Zool.70, 367–382 (2020).

Ruf, I. Ontogenetic transformations of the ethmoidal region in Muroidea (Rodentia, Mammalia): new insights from perinatal stages. (2020).

White CR, Seymour RS. Does Basal Metabolic Rate Contain a Useful Signal? Mammalian BMR Allometry and Correlations with a Selection of Physiological, Ecological, and Life‐History Variables. Physiol. Biochem. Zool. 2004;77:929–941. doi: 10.1086/425186. PubMed DOI

Smith TD, Bhatnagar KP, Tuladhar P, Burrows AM. Distribution of olfactory epithelium in the primate nasal cavity: Are microsmia and macrosmia valid morphological concepts? Anat. Rec. A. Discov. Mol. Cell. Evol. Biol. 2004;281A:1173–1181. doi: 10.1002/ar.a.20122. PubMed DOI

Smith TD, Eiting TP, Bhatnagar KP. A Quantitative Study of Olfactory, Non-Olfactory, and Vomeronasal Epithelia in the Nasal Fossa of the Bat Megaderma lyra. J. Mamm. Evol. 2012;19:27–41. doi: 10.1007/s10914-011-9178-6. DOI

Smith TD, Rossie JB. Nasal Fossa of Mouse and Dwarf Lemurs (Primates, Cheirogaleidae) Anat. Rec. 2008;291:895–915. doi: 10.1002/ar.20724. PubMed DOI

Yee KK, Craven BA, Wysocki CJ, Van Valkenburgh B. Comparative Morphology and Histology of the Nasal Fossa in Four Mammals: Gray Squirrel, Bobcat, Coyote, and White-Tailed Deer. Anat. Rec. 2016;299:840–852. doi: 10.1002/ar.23352. PubMed DOI PMC

Herbert, R. A., Janardhan, K. S., Pandiri, A. R., Cesta, M. F. & Miller, R. A. Nose, Larynx, and Trachea. Boormans Pathol. Rat 391–435 (2018) 10.1016/B978-0-12-391448-4.00022-8.

Withers PC, Jarvis JUM. The effect of huddling on thermoregulation and oxygen consumption for the naked mole-rat. Comp. Biochem. Physiol. A Physiol. 1980;66:215–219. doi: 10.1016/0300-9629(80)90154-1. DOI

Buffenstein R, Yahav S. Is the naked mole-rat Hererocephalus glaber an endothermic yet poikilothermic mammal? J. Therm. Biol. 1991;16:227–232. doi: 10.1016/0306-4565(91)90030-6. DOI

Hislop MS, Buffenstein R. Noradrenaline induces nonshivering thermogenesis in both the naked mole-rat (Heterocephalus glaber) and the Damara mole-rat (Cryptomys damarensis) despite very different modes of thermoregulation. J. Therm. Biol. 1994;19:25–32. doi: 10.1016/0306-4565(94)90006-X. DOI

Buffenstein, R. et al. The naked truth: a comprehensive clarification and classification of current ‘myths’ in naked mole‐rat biology. Biol. Rev. brv.12791 (2021) 10.1111/brv.12791. PubMed PMC

Braude S, et al. Surprisingly long survival of premature conclusions about naked mole-rat biology. Biol. Rev. 2021;96:376–393. doi: 10.1111/brv.12660. PubMed DOI

Enger PS. Heat Regulation and Metabolism in some Tropical Mammals and Birds. Acta Physiol. Scand. 1957;40:161–166. doi: 10.1111/j.1748-1716.1957.tb01485.x. PubMed DOI

Cliffe RN, et al. The metabolic response of the Bradypus sloth to temperature. PeerJ. 2018;6:e5600. doi: 10.7717/peerj.5600. PubMed DOI PMC

Langman VA. Nasal heat exchange in a northern ungulate, the reindeer (Rangifer tarandus) Respir. Physiol. 1985;59:279–287. doi: 10.1016/0034-5687(85)90133-1. PubMed DOI

Van Valkenburgh B, Theodor J, Friscia A, Pollack A, Rowe T. Respiratory turbinates of canids and felids: a quantitative comparison. J. Zool. 2004;264:281–293. doi: 10.1017/S0952836904005771. DOI

Amson E, Billet G, de Muizon C. Evolutionary adaptation to aquatic lifestyle in extinct sloths can lead to systemic alteration of bone structure. Proc. R. Soc. B Biol. Sci. 2018;285:20180270. doi: 10.1098/rspb.2018.0270. PubMed DOI PMC

Green PA, et al. Respiratory and olfactory turbinal size in canid and arctoid carnivorans. J. Anat. 2012;221:609–621. doi: 10.1111/j.1469-7580.2012.01570.x. PubMed DOI PMC

Ade M. External Morphology and Evolution of the Rhinarium of Lagomorpha. With Special Reference to the Glires Hypothesis. Zoosyst. Evol. 1999;75:191–216. doi: 10.1002/mmnz.19990750203. DOI

Buffenstein R, Jarvis JUM. Thermoregulation and metabolism in the smallest African gerbil, Gerbillus pusillus. J. Zool. 1985;205:107–121. doi: 10.1111/j.1469-7998.1985.tb05616.x. DOI

Holtze S, et al. The microenvironment of naked mole-rat burrows in East Africa. Afr. J. Ecol. 2018;56:279–289. doi: 10.1111/aje.12448. DOI

Schmidt-Nielsen K. The neglected interface: the biology of water as a liquid-gas system*. Q. Rev. Biophys. 1969;2:283–304. doi: 10.1017/S0033583500001098. PubMed DOI

Schmidt-Nielsen K, Schroter RC, Shkolnik A. Desaturation of Exhaled Air in Camels. Proc. R. Soc. Lond. B Biol. Sci. 1981;211:305–319. doi: 10.1098/rspb.1981.0009. PubMed DOI

Mason MJ, Wenger LMD, Hammer Ø, Blix AS. Structure and function of respiratory turbinates in phocid seals. Polar Biol. 2020;43:157–173. doi: 10.1007/s00300-019-02618-w. DOI

Lester CW, Costa DP. Water conservation in fasting northern elephant seals (Mirounga angustirostris) J. Exp. Biol. 2006;209:4283–4294. doi: 10.1242/jeb.02503. PubMed DOI

Martinez Q, Courcelle M, Douzery E, Fabre P-H. When morphology does not fit the genomes: the case of rodent olfaction. Biol. Lett. 2023;19:20230080. doi: 10.1098/rsbl.2023.0080. PubMed DOI PMC

Burch GE, Winsor T. Rate of insensible perspiration (diffusion of water) locally through living and through dead human skin. Arch. Intern. Med. 1944;74:437–444. doi: 10.1001/archinte.1944.00210240027005. DOI

Schmidt-Nielsen K, Haines HB. Water Balance in a Carnivorous Desert Rodent the Grasshopper Mouse. Physiol. Zool. 1964;37:259–265. doi: 10.1086/physzool.37.3.30152396. DOI

Schroter RC, Watkins NV. Respiratory heat exchange in mammals. Respir. Physiol. 1989;78:357–367. doi: 10.1016/0034-5687(89)90110-2. PubMed DOI

Zwicker D, Ostilla-Mónico R, Lieberman DE, Brenner MP. Physical and geometric constraints shape the labyrinth-like nasal cavity. Proc. Natl Acad. Sci. 2018;115:2936–2941. doi: 10.1073/pnas.1714795115. PubMed DOI PMC

Craven BA, Paterson EG, Settles GS. The fluid dynamics of canine olfaction: unique nasal airflow patterns as an explanation of macrosmia. J. R. Soc. Interface. 2010;7:933–943. doi: 10.1098/rsif.2009.0490. PubMed DOI PMC

Bourke JM, Witmer LM. Nasal conchae function as aerodynamic baffles: Experimental computational fluid dynamic analysis in a turkey nose (Aves: Galliformes) Respir. Physiol. Neurobiol. 2016;234:32–46. doi: 10.1016/j.resp.2016.09.005. PubMed DOI

Pang B, et al. The influence of nasal airflow on respiratory and olfactory epithelial distribution in felids. J. Exp. Biol. 2016;219:1866–1874. PubMed PMC

Morgan KT, Monticello TM. Airflow, gas deposition, and lesion distribution in the nasal passages. Environ. Health Perspect. 1990;85:209–218. PubMed PMC

Harkema JR, Carey SA, Wagner JG. The Nose Revisited: A Brief Review of the Comparative Structure, Function, and Toxicologic Pathology of the Nasal Epithelium. Toxicol. Pathol. 2006;34:252–269. doi: 10.1080/01926230600713475. PubMed DOI

Baker MA, Hayward JN. The influence of the nasal mucosa and the carotid rete upon hypothalamic temperature in sheep. J. Physiol. 1968;198:561–579. doi: 10.1113/jphysiol.1968.sp008626. PubMed DOI PMC

Langman, V. A., Schmidt-Nielsen, G. M. K., Schroter, R. C. & Maloiy, G. M. O. Respiratory water and heat loss in camels subjected to dehydration. (1978). PubMed

Bourke JM, et al. Breathing Life Into Dinosaurs: Tackling Challenges of Soft-Tissue Restoration and Nasal Airflow in Extinct Species: Dinosaur Nasal Airflow. Anat. Rec. 2014;297:2148–2186. doi: 10.1002/ar.23046. PubMed DOI

Boyer D, Gunnell G, Kaufman S, McGeary T. Morphosource: Archiving and sharing 3-d digital specimen data. Paleontol. Soc. Pap. 2016;22:157–181. doi: 10.1017/scs.2017.13. DOI

Martinez Q, et al. Convergent evolution of an extreme dietary specialisation, the olfactory system of worm-eating rodents. Sci. Rep. 2018;8:17806. doi: 10.1038/s41598-018-35827-0. PubMed DOI PMC

Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. Linear and nonlinear mixed effects models. R package version109https://www.researchgate.net/publication/303803175_Nlme_Linear_and_Nonlinear_Mixed_Effects_Models (2006).

R. Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computin. Vienna, Austria: URL https://www.R-project.org/ (2017).

Fox, J. et al. Package ‘car’. Vienna: R Foundation for Statistical Computing (2012).

Clarke A, Rothery P, Isaac NJB. Scaling of basal metabolic rate with body mass and temperature in mammals. J. Anim. Ecol. 2010;79:610–619. doi: 10.1111/j.1365-2656.2010.01672.x. PubMed DOI

Stahl WR. Scaling of respiratory variables in mammals. J. Appl. Physiol. 1967;22:453–460. doi: 10.1152/jappl.1967.22.3.453. PubMed DOI

Frappell P, Lanthier C, Baudinette RV, Mortola JP. Metabolism and ventilation in acute hypoxia: a comparative analysis in small mammalian species. Am. J. Physiol. -Regul. Integr. Comp. Physiol. 1992;262:R1040–R1046. doi: 10.1152/ajpregu.1992.262.6.R1040. PubMed DOI

Hothorn, T. et al. Package ‘lmtest’. Testing linear regression models. https://cran.r-project.org/web/packages/lmtest/lmtest.pdf (2015).

Blomberg SP, Garland JRT, Ives AR. Testing for Phylogenetic Signal in Comparative Data: Behavioral Traits Are More Labile. Evolution. 2003;57:717–745. PubMed

Pagel M. Inferring the historical patterns of biological evolution. Nature. 1999;401:877–884. doi: 10.1038/44766. PubMed DOI

Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things) Methods Ecol. Evol. 2012;3:217–223. doi: 10.1111/j.2041-210X.2011.00169.x. DOI

Upham NS, Esselstyn JA, Jetz W. Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLOS Biol. 2019;17:e3000494. doi: 10.1371/journal.pbio.3000494. PubMed DOI PMC

Drummond A, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012;22:1185–1192. doi: 10.1093/molbev/msi103. PubMed DOI PMC

Van Valkenburgh B, Smith TD, Craven BA. Tour of a Labyrinth: Exploring the Vertebrate Nose. Anat. Rec. 2014;297:1975–1984. doi: 10.1002/ar.23021. PubMed DOI

Craven BA, et al. Reconstruction and Morphometric Analysis of the Nasal Airway of the Dog (Canis familiaris) and Implications Regarding Olfactory Airflow. Anat. Rec. 2007;290:1325–1340. doi: 10.1002/ar.20592. PubMed DOI

Wagner F, Ruf I. Who nose the borzoi? Turbinal skeleton in a dolichocephalic dog breed (Canis lupus familiaris) Mamm. Biol. 2019;94:106–119. doi: 10.1016/j.mambio.2018.06.005. DOI

Smith TD, Curtis A, Bhatnagar KP, Santana SE. Fissures, folds, and scrolls: The ontogenetic basis for complexity of the nasal cavity in a fruit bat (Rousettus leschenaultii) Anat. Rec. 2021;304:883–900. doi: 10.1002/ar.24488. PubMed DOI

Rygg AD, Van Valkenburgh B, Craven BA. The Influence of Sniffing on Airflow and Odorant Deposition in the Canine Nasal Cavity. Chem. Senses. 2017;42:683–698. doi: 10.1093/chemse/bjx053. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...