A Multi-epitope Vaccine Candidate Against Bolivian Hemorrhagic fever Caused by Machupo Virus
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37479961
DOI
10.1007/s12010-023-04604-9
PII: 10.1007/s12010-023-04604-9
Knihovny.cz E-zdroje
- Klíčová slova
- Immune simulation, Machupo virus, Molecular docking, Molecular dynamics simulation, Multi-epitope vaccine,
- MeSH
- americká hemoragická horečka * imunologie prevence a kontrola MeSH
- arenaviry Nového světa imunologie MeSH
- epitopy imunologie chemie MeSH
- lidé MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu MeSH
- virové vakcíny * imunologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- epitopy MeSH
- virové vakcíny * MeSH
Bolivian hemorrhagic fever (BHF) caused by Machupo virus (MACV) is a New World arenavirus having a reported mortality rate of 25-35%. The BHF starts with fever, followed by headache, and nausea which rapidly progresses to severe hemorrhagic phase within 7 days of disease onset. One of the key promoters for MACV viral entry into the cell followed by viral propagation is performed by the viral glycoprotein (GPC). GPC is post-transcriptionally cleaved into GP1, GP2 and a signal peptide. These proteins all take part in the viral infection in host body. Therefore, GPC protein is an ideal target for developing therapeutics against MACV infection. In this study, GPC protein was considered to design a multi-epitope, multivalent vaccine containing antigenic and immunogenic CTL and HTL epitopes. Different structural validations and physicochemical properties were analysed to validate the vaccine. Docking and molecular dynamics simulations were conducted to understand the interactions of the vaccine with various immune receptors. Finally, the vaccine was codon optimised in silico and along with which immune simulation studies was performed in order to evaluate the vaccine's effectiveness in triggering an efficacious immune response against MACV.
Independent Researcher Bangalore India
INRS Centre Armand Frappier Santé Biotechnologie Université de Québec Laval Québec H7V 1B7 Canada
Krupanidhi College of Physiotherapy Bangalore Karnataka 560035 India
Military Institute of Engineering Rio de Janerio Brazil
Zobrazit více v PubMed
Brisse, M. E., & Ly, H. (2019). Hemorrhagic fever-causing arenaviruses: Lethal pathogens and potent immune suppressors. Frontiers in Immunology., 10, 372. PubMed DOI PMC
Azim, K. F., Lasker, T., Akter, R., Hia, M. M., Bhuiyan, O. F., Hasan, M., et al. (2021). Combination of highly antigenic nucleoproteins to inaugurate a cross-reactive next generation vaccine candidate against Arenaviridae family. Heliyon, 7, e07022. PubMed DOI PMC
Kilgore, P. E., Ksiazek, T. G., Rollin, P. E., Mills, J. N., Villagra, M. R., Montenegro, M. J., et al. (1997). Treatment of Bolivian hemorrhagic fever with intravenous ribavirin. Clinical Infectious Diseases, 24, 718–722. PubMed DOI
Patterson, M., Seregin, A., Huang, C., Kolokoltsova, O., Smith, J., Miller, M., et al. (2014). Rescue of a recombinant Machupo virus from cloned cDNAs and in vivo characterization in interferon (αβ/γ) receptor double knockout mice. Journal of Virology, 88, 1914–1923. PubMed DOI PMC
Salazar-Bravo, J., Ruedas, L. A., & Yates, T. L. (2002). Mammalian reservoirs of arenaviruses. Current topics in Microbiology and Immunology, 262, 25–63. https://doi.org/10.1007/978-3-642-56029-3_2 PubMed DOI
Kumar, N., Wang, J., Lan, S., Danzy, S., Schelde, L. M., Seladi-Schulman, J., et al. (2012). Characterization of virulence-associated determinants in the envelope glycoprotein of Pichinde virus. Virology, 433, 97–103. PubMed DOI
Bell, T., Shaia, C., Bunton, T., Robinson, C., Wilkinson, E., Hensley, L., et al. (2015). Pathology of experimental Machupo virus infection, Chicava strain, in cynomolgus macaques (Macaca fascicularis) by intramuscular and aerosol exposure. Veterinary Pathology, 52, 26–37. PubMed DOI
Paessler, S., & Walker, D. H. (2013). Pathogenesis of the viral hemorrhagic fevers. Annual Review of Pathology: Mechanisms of Disease, 8, 411–440. DOI
Peters, C. J. (2002). Human infection with arenaviruses in the Americas. Current Topics in Microbiology and Immunology, 262, 65–74. https://doi.org/10.1007/978-3-642-56029-3_3 PubMed DOI
Beyer, W. R., Pöpplau, D., Garten, W., von Laer, D., & Lenz, O. (2003). Endoproteolytic processing of the lymphocytic choriomeningitis virus glycoprotein by the subtilase SKI-1/S1P. Journal of Virology, 77, 2866–2872. PubMed DOI PMC
Buchmeier, M. (2007). Arenaviridae: The viruses and their replication. Fields Virology, 1792–1827. https://cir.nii.ac.jp/crid/1571417126338591104
Bowden, T. A., Crispin, M., Graham, S. C., Harvey, D. J., Grimes, J. M., Jones, E. Y., et al. (2009). Unusual molecular architecture of the Machupo virus attachment glycoprotein. Journal of Virology, 83, 8259–8265. PubMed DOI PMC
Radoshitzky, S. R., Longobardi, L. E., Kuhn, J. H., Retterer, C., Dong, L., Clester, J. C., et al. (2011). Machupo virus glycoprotein determinants for human transferrin receptor 1 binding and cell entry. PLoS ONE, 6, e21398. PubMed DOI PMC
Koma, T., Huang, C., Aronson, J. F., Walker, A. G., Miller, M., Smith, J. N., et al. (2016). The ectodomain of glycoprotein from the candid# 1 vaccine strain of Junín virus rendered Machupo virus partially attenuated in mice lacking IFN-αβ/γ receptor. PLoS Neglected Tropical Diseases, 10, e0004969. PubMed DOI PMC
Koma, T., Patterson, M., Huang, C., Seregin, A. V., Maharaj, P. D., Miller, M., et al. (2016). Machupo virus expressing GPC of the candid# 1 vaccine strain of Junín virus is highly attenuated and immunogenic. Journal of Virology, 90, 1290–1297. PubMed DOI PMC
Johnson, D. M., Jokinen, J. D., Wang, M., Pfeffer, T., Tretyakova, I., Carrion, R., Jr., et al. (2020). Bivalent Junin & Machupo experimental vaccine based on alphavirus RNA replicon vector. Vaccine, 38, 2949–2959. PubMed DOI PMC
Palm, N. W., & Medzhitov, R. (2009). Pattern recognition receptors and control of adaptive immunity. Immunological Reviews, 227, 221–233. PubMed DOI
Sakaguchi, S., Miyara, M., Costantino, C. M., & Hafler, D. A. (2010). FOXP3+ regulatory T cells in the human immune system. Nature Reviews Immunology, 10, 490–500. PubMed DOI
Jutras, I., & Desjardins, M. (2005). Phagocytosis: At the crossroads of innate and adaptive immunity. Annual Review of Cell and Developmental Biology, 21, 511. PubMed DOI
Ahlers, J. D., & Belyakov, I. M. (2010). Molecular pathways regulating CD4+ T cell differentiation, anergy and memory with implications for vaccines. Trends in Molecular Medicine, 16, 478–491. PubMed DOI
Amanat, F., Duehr, J., Oestereich, L., Hastie, K. M., Ollmann Saphire, E., & Krammer, F. (2018). Antibodies to the glycoprotein GP2 subunit cross-react between Old and New World arenaviruses. MSphere, 3, e00189-e218. PubMed DOI PMC
Basak, S., Deb, D., Narsaria, U., Kar, T., Castiglione, F., Sanyal, I., et al. (2021). In silico designing of vaccine candidate against Clostridium difficile. Scientific Reports, 11, 1–22. DOI
Larsen, M. V., Lundegaard, C., Lamberth, K., Buus, S., Lund, O., & Nielsen, M. (2007). Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics, 8, 1–12. DOI
Jensen, K. K., Andreatta, M., Marcatili, P., Buus, S., Greenbaum, J. A., Yan, Z., et al. (2018). Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology, 154, 394–406. PubMed DOI PMC
Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8, 1–7. DOI
Moutaftsi, M., Peters, B., Pasquetto, V., Tscharke, D. C., Sidney, J., Bui, H.-H., et al. (2006). A consensus epitope prediction approach identifies the breadth of murine TCD8+-cell responses to vaccinia virus. Nature Biotechnology, 24, 817–819. PubMed DOI
Case, D. A., Darden, T. A., Cheatham, T. E., III., Simmerling, C. L., Wang, J., Duke, R. E., Luo, R., Crowley, M., Walker, R. C., Zhang, W., Merz, K. M., Wang, B., Hayik, S., Roitberg, A., Seabra, G., Kolossváry, I., Wong, K. F., Paesani, F., Vanicek, J., … Kollman, P. A. (2008). Amber 10. San Francisco: University of California.
Nelson, M. T., Humphrey, W., Gursoy, A., Dalke, A., Kalé, L. V., Skeel, R. D., & Schulten, K. (1996). NAMD: A parallel, object-oriented molecular dynamics program. The International Journal of Supercomputer Applications and High Performance Computing, 10(4), 251–268. DOI
Rapin, N., Lund, O., Bernaschi, M., & Castiglione, F. (2010). Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PLoS ONE, 5, e9862. PubMed DOI PMC
Testa, J. S., & Philip, R. (2012). Role of T-cell epitope-based vaccine in prophylactic and therapeutic applications. Future Virology, 7, 1077–1088. PubMed DOI PMC
Doherty, P. C., Allan, W., Eichelberger, M., & Carding, S. R. (1992). Roles of alphabeta and gammadelta T cell subsets in viral immunity. Annual Review of Immunology, 10, 123–151. PubMed DOI
Saadi, M., Karkhah, A., & Nouri, H. R. (2017). Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immunoinformatics based approaches. Infection, Genetics and Evolution, 51, 227–234. PubMed DOI
Kar, T., Narsaria, U., Basak, S., Deb, D., Castiglione, F., Mueller, D. M., et al. (2020). A candidate multi-epitope vaccine against SARS-CoV-2. Scientific Reports, 10, 1–24. DOI
Stratmann, T. (2015). Cholera toxin subunit B as adjuvant––An accelerator in protective immunity and a break in autoimmunity. Vaccines, 3, 579–596. PubMed DOI PMC
Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35, W407–W410. PubMed DOI PMC
Messaoudi, A., Belguith, H., & Ben, H. J. (2013). Homology modeling and virtual screening approaches to identify potent inhibitors of VEB-1 β-lactamase. Theoretical Biology and Medical Modelling, 10, 1–10. DOI
Calis, J. J., Maybeno, M., Greenbaum, J. A., Weiskopf, D., De Silva, A. D., Sette, A., et al. (2013). Properties of MHC class I presented peptides that enhance immunogenicity. PLoS Computational Biology, 9, e1003266. PubMed DOI PMC
Walker, J. M. (2005). The proteomics protocols handbook: Springer.
Carty, M., & Bowie, A. G. (2010). Recent insights into the role of Toll-like receptors in viral infection. Clinical & Experimental Immunology, 161, 397–406. DOI
Lester, S. N., & Li, K. (2014). Toll-like receptors in antiviral innate immunity. Journal of Molecular Biology, 426, 1246–1264. PubMed DOI
Hallam, S. J., Koma, T., Maruyama, J., & Paessler, S. (2018). Review of Mammarenavirus biology and replication. Frontiers in Microbiology, 9, 1751. https://doi.org/10.3389/fmicb.2018.01751 PubMed DOI PMC
Vangone, A., Schaarschmidt, J., Koukos, P., Geng, C., Citro, N., Trellet, M. E., et al. (2019). Large-scale prediction of binding affinity in protein–small ligand complexes: The PRODIGY-LIG web server. Bioinformatics, 35, 1585–1587. PubMed DOI
Omoniyi, A. A., Adebisi, S. S., Musa, S. A., Nzalak, J. O., Bauchi, Z. M., Bako, K. W., et al. (2022). In silico design and analyses of a multi-epitope vaccine against Crimean-Congo hemorrhagic fever virus through reverse vaccinology and immunoinformatics approaches. Scientific Reports, 12, 1–17. DOI
Zhang, L. (2018). Multi-epitope vaccines: A promising strategy against tumors and viral infections. Cellular & Molecular Immunology, 15, 182–184. DOI
Yang, Z., Bogdan, P., & Nazarian, S. (2021). An in silico deep learning approach to multi-epitope vaccine design: A SARS-CoV-2 case study. Scientific Reports, 11, 1–21.
Mohamed, S., Almofti, Y., & Abd, E. K. (2021). Exploring Crimean Congo hemorrhagic fever virus glycoprotein M to predict multi-epitopes based peptide vaccine using immunoinformatics approach. Clinical Microbiology, 10, 122.
Fadaka, A. O., Sibuyi, N. R. S., Martin, D. R., Goboza, M., Klein, A., Madiehe, A. M., et al. (2021). Immunoinformatics design of a novel epitope-based vaccine candidate against dengue virus. Scientific Reports, 11, 1–22. DOI
da Silva, H. C. Junior., Pestana, C. P., Galler, R., Medeiros, M. A. (2016). Solubility as a limiting factor for expression of hepatitis A virus proteins in insect cell-baculovirus system. Memórias do Instituto Oswaldo Cruz, 111, 535-8.
Browne, E. P. (2020). The role of toll-like receptors in retroviral infection. Microorganisms, 8, 1787. PubMed DOI PMC
Compton, T., Kurt-Jones, E. A., Boehme, K. W., Belko, J., Latz, E., Golenbock, D. T., et al. (2003). Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. Journal of Virology, 77, 4588–4596. PubMed DOI PMC