Recurrence quantification analysis for fine-scale characterisation of arrhythmic patterns in cardiac tissue
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
37481668
PubMed Central
PMC10363137
DOI
10.1038/s41598-023-38256-w
PII: 10.1038/s41598-023-38256-w
Knihovny.cz E-resources
- MeSH
- Benchmarking * MeSH
- Cicatrix MeSH
- Humans MeSH
- Cardiac Conduction System Disease MeSH
- Computer Simulation MeSH
- Heart Atria * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
This paper uses recurrence quantification analysis (RQA) combined with entropy measures and organization indices to characterize arrhythmic patterns and dynamics in computer simulations of cardiac tissue. We performed different simulations of cardiac tissues of sizes comparable to the human heart atrium. In these simulations, we observed four classic arrhythmic patterns: a spiral wave anchored to a highly fibrotic region resulting in sustained re-entry, a meandering spiral wave, fibrillation, and a spiral wave anchored to a scar region that breaks up into wavelets away from the main rotor. A detailed analysis revealed that, within the same simulation, maps of RQA metrics could differentiate regions with regular AP propagation from ones with chaotic activity. In particular, the combination of two RQA metrics, the length of the longest diagonal string of recurrence points and the mean length of diagonal lines, was able to identify the location of rotor tips, which are the active elements that maintain spiral waves and fibrillation. By proposing low-dimensional models based on the mean value and spatial correlation of metrics calculated from membrane potential time series, we identify RQA-based metrics that successfully separate the four different types of cardiac arrhythmia into distinct regions of the feature space, and thus might be used for automatic classification, in particular distinguishing between fibrillation driven by self-sustaining chaos and that created by a persistent rotor and wavebreak. We also discuss the practical applicability of such an approach.
Centre for Data Science Queensland Univeristy of Technology Brisbane 4000 Australia
Department of Computer Science University of Oxford Oxford UK
IT4Innovations VSB Technical University of Ostrava 708 00 Ostrava Czech Republic
See more in PubMed
Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952;117:500–544. doi: 10.1113/jphysiol.1952.sp004764. PubMed DOI PMC
Vagos MRSS, et al. Computational modeling of electrophysiology and pharmacotherapy of atrial fibrillation: Recent advances and future challenges. Front. Physiol. 2018;9:1221. doi: 10.3389/fphys.2018.01221. PubMed DOI PMC
Zhou X, Bueno-Orovio A, Rodriguez B. In silico evaluation of arrhythmia. Curr. Opin. Physiol. 2018;1:95–103. doi: 10.1016/j.cophys.2017.11.003. DOI
Zahid S, et al. Feasibility of using patient-specific models and the “minimum cut” algorithm to predict optimal ablation targets for left atrial flutter. Heart Rhythm. 2016;13:1687–1698. doi: 10.1016/j.hrthm.2016.04.009. PubMed DOI PMC
Dössel, O.
Ruchat P, et al. Use of a biophysical model of atrial fibrillation in the interpretation of the outcome of surgical ablation procedures. Eur. J. Cardio-Thoracic Surg. 2007;32:90–95. doi: 10.1016/j.ejcts.2007.02.031. PubMed DOI
Franz MR, Jamal SM, Narayan SM. The role of action potential alternans in the initiation of atrial fibrillation in humans: A review and future directions. EP Europace. 2012;14:v58–v64. doi: 10.1093/europace/eus273. PubMed DOI PMC
Shoulders B, Mauriello J, Shellman T, Follett C. Cardiac radiofrequency ablation: A clinical update for nurses. Dimens. Crit. Care Nurs. 2016;35:255–267. doi: 10.1097/DCC.0000000000000201. PubMed DOI
Latchamsetty R, Morady F. Complex fractional atrial electrograms: A worthwhile target for ablation of atrial fibrillation? Circ. Arrhythmia Electrophysiol. 2011;4:117–118. doi: 10.1161/CIRCEP.111.962274. PubMed DOI
Sohal M, et al. Is mapping of complex fractionated electrograms obsolete? Arrhythmia Electrophysiol. Rev. 2015;4(2):109–15. doi: 10.15420/AER.2015.04.02.109. PubMed DOI PMC
Marwan N, Carmen Romano M, Thiel M, Kurths J. Recurrence plots for the analysis of complex systems. Phys. Rep. 2007;438:237–329. doi: 10.1016/j.physrep.2006.11.001. DOI
Webber, C. & Marwan, N.
Webber CL, Hu Z, Akar JG. Unstable cardiac singularities may lead to atrial fibrillation. Int. J. Bifurc. Chaos. 2011;21:1141–1151. doi: 10.1142/S0218127411028994. DOI
Navoret, N., Jacquir, S., Laurent, G. & Binczak, S. Recurrence quantification analysis as a tool for complex fractionated atrial electrogram discrimination. In PubMed
Navoret N, Jacquir S, Laurent G, Binczak S. Detection of complex fractionated atrial electrograms using recurrence quantification analysis. IEEE Trans. Biomed. Eng. 2013;60:1975–1982. doi: 10.1109/TBME.2013.2247402. PubMed DOI
Almeida, T. P.
Almeida TP, et al. The temporal stability of recurrence quantification analysis attributes from chronic atrial fibrillation electrograms. Res. Biomed. Eng. 2018;34:337–349. doi: 10.1590/2446-4740.180040. DOI
Almeida TP, et al. Characterization of human persistent atrial fibrillation electrograms using recurrence quantification analysis. Chaos Interdiscip. J. Nonlinear Sci. 2018;28:085710. doi: 10.1063/1.5024248. PubMed DOI
Liu PR, et al. Focal impulse and rotor modulation of atrial rotors during atrial fibrillation leads to organization of left atrial activation as reflected by waveform morphology recurrence quantification analysis and organizational index. J. Arrhythmia. 2020;36:311–318. doi: 10.1002/joa3.12311. PubMed DOI PMC
Acharya UR, et al. Application of nonlinear methods to discriminate fractionated electrograms in paroxysmal versus persistent atrial fibrillation. Comput. Methods Programs Biomed. 2019;175:163–178. doi: 10.1016/j.cmpb.2019.04.018. PubMed DOI
Almeida, T. P. PubMed
Hummel JP, et al. A method for quantifying recurrent patterns of local wavefront direction during atrial fibrillation. Comput. Biol. Med. 2017;89:497–504. doi: 10.1016/j.compbiomed.2017.08.027. PubMed DOI
Baher A, et al. Recurrence quantification analysis of complex-fractionated electrograms differentiates active and passive sites during atrial fibrillation. J. Cardiovasc. Electrophysiol. 2019;30:2229–2238. doi: 10.1111/jce.14161. PubMed DOI
Karoui A, Bendahmane M, Zemzemi N. Cardiac activation maps reconstruction: A comparative study between data-driven and physics-based methods. Front. Physiol. 2021 doi: 10.3389/fphys.2021.686136. PubMed DOI PMC
Sakamoto Y, et al. Systematic evaluation of high-resolution activation mapping to identify residual endocardial and epicardial conduction across the mitral isthmus. JACC Clin. Electrophysiol. 2021;7:292–304. doi: 10.1016/j.jacep.2020.09.025. PubMed DOI
Vitillo P, et al. Endocardial lead placement guided by high resolution voltage mapping in a patient with recurrent failure of transvenous pacing system. Eur. Heart J. Suppl. 2021 doi: 10.1093/eurheartj/suab127.051. DOI
Fenton F, Karma A. Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation. Chaos Interdiscip. J. Nonlinear Sci. 1998;8:20–47. doi: 10.1063/1.166311. PubMed DOI
Davidenko JM, Pertsov AV, Salomonsz R, Baxter W, Jalife J. Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature. 1992;355:349–351. doi: 10.1038/355349a0. PubMed DOI
Zahid S, et al. Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern. Cardiovasc. Res. 2016;110:443–454. doi: 10.1093/cvr/cvw073. PubMed DOI PMC
Kwon DH, et al. Infarct characterization and quantification by delayed enhancement cardiac magnetic resonance imaging is a powerful independent and incremental predictor of mortality in patients with advanced ischemic cardiomyopathy. Circ. Cardiovasc. Imaging. 2014;7:796–804. doi: 10.1161/CIRCIMAGING.114.002077. PubMed DOI
Marwan N. A historical review of recurrence plots. Eur. Phys. J. Spec. Top. 2008;164:3–12. doi: 10.1140/epjst/e2008-00829-1. DOI
Everett TH, Moorman JR, Kok L-C, Akar JG, Haines DE. Assessment of global atrial fibrillation organization to optimize timing of atrial defibrillation. Circulation. 2001;103:2857–2861. doi: 10.1161/01.cir.103.23.2857. PubMed DOI
Everett TH, Akar JG, Kok L-C, Moorman J, Haines DE. Use of global atrial fibrillation organization to optimize the success of burst pace termination. J. Am. Coll. Cardiol. 2002;40:1831–1840. doi: 10.1016/S0735-1097(02)02476-2. PubMed DOI
Tobón C, Rodríguez JF, Ferrero J, María José, Hornero F, Saiz J. Dominant frequency and organization index maps in a realistic three-dimensional computational model of atrial fibrillation. EP Europace. 2012;14:v25–v32. doi: 10.1093/europace/eus268. PubMed DOI
Takahashi Y, et al. Organization of frequency spectra of atrial fibrillation: Relevance to radiofrequency catheter ablation. J. Cardiovasc. Electrophysiol. 2006;17:382–388. doi: 10.1111/j.1540-8167.2005.00414.x. PubMed DOI
Vanheusden FJ, et al. Systematic differences of non-invasive dominant frequency estimation compared to invasive dominant frequency estimation in atrial fibrillation. Comput. Biol. Med. 2019;104:299–309. doi: 10.1016/j.compbiomed.2018.11.017. PubMed DOI PMC
Choi Y-J, et al. Relationship between dominant frequency, organization index, and left atrial size in patients with atrial fibrillation. J. Cardiovasc. Electrophysiol. 2020;31:3159–3165. doi: 10.1111/jce.14785. PubMed DOI
Lawson BA, Burrage K, Burrage P, Drovandi CC, Bueno-Orovio A. Slow recovery of excitability increases ventricular fibrillation risk as identified by emulation. Front. Physiol. 2018;9:1114. doi: 10.3389/fphys.2018.01114. PubMed DOI PMC
Li X, et al. Automatic extraction of recurrent patterns of high dominant frequency mapping during human persistent atrial fibrillation. Front. Physiol. 2021;12:286. doi: 10.3389/fphys.2021.649486. PubMed DOI PMC
Pincus SM, Gladstone I, Ehrenkranz RA. A regularity statistic for medical data analysis. J. Clin. Monit. 1991;7:335–345. doi: 10.1007/BF01619355. PubMed DOI
Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000;278:H2039–H2049. doi: 10.1152/ajpheart.2000.278.6.H2039. PubMed DOI
Tomčala J. New fast apen and sampen entropy algorithms implementation and their application to supercomputer power consumption. Entropy. 2020 doi: 10.3390/e22080863. PubMed DOI PMC
Delgado-Bonal A, Marshak A. Approximate entropy and sample entropy: A comprehensive tutorial. Entropy. 2019 doi: 10.3390/e21060541. PubMed DOI PMC
Moran PAP. Notes on continuous stochastic phenomena. Biometrika. 1950;37:17–23. doi: 10.1093/biomet/37.1-2.17. PubMed DOI
Jalife J, Berenfeld O, Mansour M. Mother rotors and fibrillatory conduction: A mechanism of atrial fibrillation. Cardiovasc. Res. 2002;54:204–216. doi: 10.1016/s0008-6363(02)00223-7. PubMed DOI
Dharmaprani D, et al. A governing equation for rotor and wavelet number in human clinical ventricular fibrillation: Implications for sudden cardiac death. Heart Rhythm. 2022;19:295–305. doi: 10.1016/j.hrthm.2021.10.008. PubMed DOI
Lilienkamp H, Lilienkamp T. Detecting spiral wave tips using deep learning. Sci. Rep. 2021;11:19767. doi: 10.1038/s41598-021-99069-3. PubMed DOI PMC
Webber C, Marwan N. Recurrence Quantification Analysis: Theory and Best Practices. Springer; 2015.
Garcia, C. A.
Takens, F. Detecting strange attractors in turbulence. In
Cao L. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D Nonlinear Phenomena. 1997;110:43–50. doi: 10.1016/S0167-2789(97)00118-8. DOI
Khouj Y, Dawson J, Coad J, Vona-Davis L. Hyperspectral imaging and k-means classification for histologic evaluation of ductal carcinoma in situ. Front. Oncol. 2018;8:17. doi: 10.3389/fonc.2018.00017. PubMed DOI PMC
Horng M-H. Multi-class support vector machine for classification of the ultrasonic images of supraspinatus. Expert Syst. Appl. 2009;36:8124–8133. doi: 10.1016/j.eswa.2008.10.030. DOI
Montesinos L, Castaldo R, Pecchia L. On the use of approximate entropy and sample entropy with centre of pressure time-series. J. NeuroEng. Rehabil. 2018;15:116. doi: 10.1186/s12984-018-0465-9. PubMed DOI PMC
Lippi G, Sanchis-Gomar F, Cervellin G. Global epidemiology of atrial fibrillation: An increasing epidemic and public health challenge. Int. J. Stroke. 2021;16:217–221. doi: 10.1177/1747493019897870. PubMed DOI
Buist TJ, Zipes DP, Elvan A. Atrial fibrillation ablation strategies and technologies: Past, present, and future. Clin. Res. Cardiol. 2020;110:775–788. doi: 10.1007/s00392-020-01751-5. PubMed DOI
Hu H, et al. A wearable cardiac ultrasound imager. Nature. 2023;613:667–675. doi: 10.1038/s41586-022-05498-z. PubMed DOI PMC
Conti S, Sabatino F, De Blasi G, Di Stabile G, Sgarito G. Comparison between standard and high-definition multi-electrode mapping catheter in ventricular tachycardia ablation. J. Cardiovasc. Dev. Dis. 2022 doi: 10.3390/jcdd9080232. PubMed DOI PMC
Jurkiewicz J, Kroboth S, Zlochiver V, Hinow P. Automated feature extraction from large cardiac electrophysiological data sets. J. Electrocardiol. 2021;65:157–162. doi: 10.1016/j.jelectrocard.2021.02.003. PubMed DOI
Thiel M, et al. Influence of observational noise on the recurrence quantification analysis. Physica D Nonlinear Phenomena. 2002;171:138–152. doi: 10.1016/S0167-2789(02)00586-9. DOI
Wendi D, Marwan N. Extended recurrence plot and quantification for noisy continuous dynamical systems. Chaos Interdiscip. J. Nonlinear Sci. 2018;28:085722. doi: 10.1063/1.5025485. PubMed DOI
Sims JJ, Miller AW, Ujhelyi MR. Electrical heterogeneity and arrhythmogenesis: Importance of conduction velocity dispersion. J. Cardiovasc. Pharmacol. 2003;41:795–803. doi: 10.1097/00005344-200305000-00018. PubMed DOI
Antzelevitch C, Fish J. Electrical heterogeneity within the ventricular wall. Basic Res. Cardiol. 2001;96:517–527. doi: 10.1007/s003950170002. PubMed DOI
Britton OJ, et al. Experimentally calibrated population of models predicts and explains intersubject variability in cardiac cellular electrophysiology. Proc. Natl. Acad. Sci. 2013;110:E2098–E2105. doi: 10.1073/pnas.1304382110. PubMed DOI PMC