• This record comes from PubMed

Recurrence quantification analysis for fine-scale characterisation of arrhythmic patterns in cardiac tissue

. 2023 Jul 22 ; 13 (1) : 11828. [epub] 20230722

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 37481668
PubMed Central PMC10363137
DOI 10.1038/s41598-023-38256-w
PII: 10.1038/s41598-023-38256-w
Knihovny.cz E-resources

This paper uses recurrence quantification analysis (RQA) combined with entropy measures and organization indices to characterize arrhythmic patterns and dynamics in computer simulations of cardiac tissue. We performed different simulations of cardiac tissues of sizes comparable to the human heart atrium. In these simulations, we observed four classic arrhythmic patterns: a spiral wave anchored to a highly fibrotic region resulting in sustained re-entry, a meandering spiral wave, fibrillation, and a spiral wave anchored to a scar region that breaks up into wavelets away from the main rotor. A detailed analysis revealed that, within the same simulation, maps of RQA metrics could differentiate regions with regular AP propagation from ones with chaotic activity. In particular, the combination of two RQA metrics, the length of the longest diagonal string of recurrence points and the mean length of diagonal lines, was able to identify the location of rotor tips, which are the active elements that maintain spiral waves and fibrillation. By proposing low-dimensional models based on the mean value and spatial correlation of metrics calculated from membrane potential time series, we identify RQA-based metrics that successfully separate the four different types of cardiac arrhythmia into distinct regions of the feature space, and thus might be used for automatic classification, in particular distinguishing between fibrillation driven by self-sustaining chaos and that created by a persistent rotor and wavebreak. We also discuss the practical applicability of such an approach.

See more in PubMed

Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952;117:500–544. doi: 10.1113/jphysiol.1952.sp004764. PubMed DOI PMC

Vagos MRSS, et al. Computational modeling of electrophysiology and pharmacotherapy of atrial fibrillation: Recent advances and future challenges. Front. Physiol. 2018;9:1221. doi: 10.3389/fphys.2018.01221. PubMed DOI PMC

Zhou X, Bueno-Orovio A, Rodriguez B. In silico evaluation of arrhythmia. Curr. Opin. Physiol. 2018;1:95–103. doi: 10.1016/j.cophys.2017.11.003. DOI

Zahid S, et al. Feasibility of using patient-specific models and the “minimum cut” algorithm to predict optimal ablation targets for left atrial flutter. Heart Rhythm. 2016;13:1687–1698. doi: 10.1016/j.hrthm.2016.04.009. PubMed DOI PMC

Dössel, O.

Ruchat P, et al. Use of a biophysical model of atrial fibrillation in the interpretation of the outcome of surgical ablation procedures. Eur. J. Cardio-Thoracic Surg. 2007;32:90–95. doi: 10.1016/j.ejcts.2007.02.031. PubMed DOI

Franz MR, Jamal SM, Narayan SM. The role of action potential alternans in the initiation of atrial fibrillation in humans: A review and future directions. EP Europace. 2012;14:v58–v64. doi: 10.1093/europace/eus273. PubMed DOI PMC

Shoulders B, Mauriello J, Shellman T, Follett C. Cardiac radiofrequency ablation: A clinical update for nurses. Dimens. Crit. Care Nurs. 2016;35:255–267. doi: 10.1097/DCC.0000000000000201. PubMed DOI

Latchamsetty R, Morady F. Complex fractional atrial electrograms: A worthwhile target for ablation of atrial fibrillation? Circ. Arrhythmia Electrophysiol. 2011;4:117–118. doi: 10.1161/CIRCEP.111.962274. PubMed DOI

Sohal M, et al. Is mapping of complex fractionated electrograms obsolete? Arrhythmia Electrophysiol. Rev. 2015;4(2):109–15. doi: 10.15420/AER.2015.04.02.109. PubMed DOI PMC

Marwan N, Carmen Romano M, Thiel M, Kurths J. Recurrence plots for the analysis of complex systems. Phys. Rep. 2007;438:237–329. doi: 10.1016/j.physrep.2006.11.001. DOI

Webber, C. & Marwan, N.

Webber CL, Hu Z, Akar JG. Unstable cardiac singularities may lead to atrial fibrillation. Int. J. Bifurc. Chaos. 2011;21:1141–1151. doi: 10.1142/S0218127411028994. DOI

Navoret, N., Jacquir, S., Laurent, G. & Binczak, S. Recurrence quantification analysis as a tool for complex fractionated atrial electrogram discrimination. In PubMed

Navoret N, Jacquir S, Laurent G, Binczak S. Detection of complex fractionated atrial electrograms using recurrence quantification analysis. IEEE Trans. Biomed. Eng. 2013;60:1975–1982. doi: 10.1109/TBME.2013.2247402. PubMed DOI

Almeida, T. P.

Almeida TP, et al. The temporal stability of recurrence quantification analysis attributes from chronic atrial fibrillation electrograms. Res. Biomed. Eng. 2018;34:337–349. doi: 10.1590/2446-4740.180040. DOI

Almeida TP, et al. Characterization of human persistent atrial fibrillation electrograms using recurrence quantification analysis. Chaos Interdiscip. J. Nonlinear Sci. 2018;28:085710. doi: 10.1063/1.5024248. PubMed DOI

Liu PR, et al. Focal impulse and rotor modulation of atrial rotors during atrial fibrillation leads to organization of left atrial activation as reflected by waveform morphology recurrence quantification analysis and organizational index. J. Arrhythmia. 2020;36:311–318. doi: 10.1002/joa3.12311. PubMed DOI PMC

Acharya UR, et al. Application of nonlinear methods to discriminate fractionated electrograms in paroxysmal versus persistent atrial fibrillation. Comput. Methods Programs Biomed. 2019;175:163–178. doi: 10.1016/j.cmpb.2019.04.018. PubMed DOI

Almeida, T. P. PubMed

Hummel JP, et al. A method for quantifying recurrent patterns of local wavefront direction during atrial fibrillation. Comput. Biol. Med. 2017;89:497–504. doi: 10.1016/j.compbiomed.2017.08.027. PubMed DOI

Baher A, et al. Recurrence quantification analysis of complex-fractionated electrograms differentiates active and passive sites during atrial fibrillation. J. Cardiovasc. Electrophysiol. 2019;30:2229–2238. doi: 10.1111/jce.14161. PubMed DOI

Karoui A, Bendahmane M, Zemzemi N. Cardiac activation maps reconstruction: A comparative study between data-driven and physics-based methods. Front. Physiol. 2021 doi: 10.3389/fphys.2021.686136. PubMed DOI PMC

Sakamoto Y, et al. Systematic evaluation of high-resolution activation mapping to identify residual endocardial and epicardial conduction across the mitral isthmus. JACC Clin. Electrophysiol. 2021;7:292–304. doi: 10.1016/j.jacep.2020.09.025. PubMed DOI

Vitillo P, et al. Endocardial lead placement guided by high resolution voltage mapping in a patient with recurrent failure of transvenous pacing system. Eur. Heart J. Suppl. 2021 doi: 10.1093/eurheartj/suab127.051. DOI

Fenton F, Karma A. Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation. Chaos Interdiscip. J. Nonlinear Sci. 1998;8:20–47. doi: 10.1063/1.166311. PubMed DOI

Davidenko JM, Pertsov AV, Salomonsz R, Baxter W, Jalife J. Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature. 1992;355:349–351. doi: 10.1038/355349a0. PubMed DOI

Zahid S, et al. Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern. Cardiovasc. Res. 2016;110:443–454. doi: 10.1093/cvr/cvw073. PubMed DOI PMC

Kwon DH, et al. Infarct characterization and quantification by delayed enhancement cardiac magnetic resonance imaging is a powerful independent and incremental predictor of mortality in patients with advanced ischemic cardiomyopathy. Circ. Cardiovasc. Imaging. 2014;7:796–804. doi: 10.1161/CIRCIMAGING.114.002077. PubMed DOI

Marwan N. A historical review of recurrence plots. Eur. Phys. J. Spec. Top. 2008;164:3–12. doi: 10.1140/epjst/e2008-00829-1. DOI

Everett TH, Moorman JR, Kok L-C, Akar JG, Haines DE. Assessment of global atrial fibrillation organization to optimize timing of atrial defibrillation. Circulation. 2001;103:2857–2861. doi: 10.1161/01.cir.103.23.2857. PubMed DOI

Everett TH, Akar JG, Kok L-C, Moorman J, Haines DE. Use of global atrial fibrillation organization to optimize the success of burst pace termination. J. Am. Coll. Cardiol. 2002;40:1831–1840. doi: 10.1016/S0735-1097(02)02476-2. PubMed DOI

Tobón C, Rodríguez JF, Ferrero J, María José, Hornero F, Saiz J. Dominant frequency and organization index maps in a realistic three-dimensional computational model of atrial fibrillation. EP Europace. 2012;14:v25–v32. doi: 10.1093/europace/eus268. PubMed DOI

Takahashi Y, et al. Organization of frequency spectra of atrial fibrillation: Relevance to radiofrequency catheter ablation. J. Cardiovasc. Electrophysiol. 2006;17:382–388. doi: 10.1111/j.1540-8167.2005.00414.x. PubMed DOI

Vanheusden FJ, et al. Systematic differences of non-invasive dominant frequency estimation compared to invasive dominant frequency estimation in atrial fibrillation. Comput. Biol. Med. 2019;104:299–309. doi: 10.1016/j.compbiomed.2018.11.017. PubMed DOI PMC

Choi Y-J, et al. Relationship between dominant frequency, organization index, and left atrial size in patients with atrial fibrillation. J. Cardiovasc. Electrophysiol. 2020;31:3159–3165. doi: 10.1111/jce.14785. PubMed DOI

Lawson BA, Burrage K, Burrage P, Drovandi CC, Bueno-Orovio A. Slow recovery of excitability increases ventricular fibrillation risk as identified by emulation. Front. Physiol. 2018;9:1114. doi: 10.3389/fphys.2018.01114. PubMed DOI PMC

Li X, et al. Automatic extraction of recurrent patterns of high dominant frequency mapping during human persistent atrial fibrillation. Front. Physiol. 2021;12:286. doi: 10.3389/fphys.2021.649486. PubMed DOI PMC

Pincus SM, Gladstone I, Ehrenkranz RA. A regularity statistic for medical data analysis. J. Clin. Monit. 1991;7:335–345. doi: 10.1007/BF01619355. PubMed DOI

Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000;278:H2039–H2049. doi: 10.1152/ajpheart.2000.278.6.H2039. PubMed DOI

Tomčala J. New fast apen and sampen entropy algorithms implementation and their application to supercomputer power consumption. Entropy. 2020 doi: 10.3390/e22080863. PubMed DOI PMC

Delgado-Bonal A, Marshak A. Approximate entropy and sample entropy: A comprehensive tutorial. Entropy. 2019 doi: 10.3390/e21060541. PubMed DOI PMC

Moran PAP. Notes on continuous stochastic phenomena. Biometrika. 1950;37:17–23. doi: 10.1093/biomet/37.1-2.17. PubMed DOI

Jalife J, Berenfeld O, Mansour M. Mother rotors and fibrillatory conduction: A mechanism of atrial fibrillation. Cardiovasc. Res. 2002;54:204–216. doi: 10.1016/s0008-6363(02)00223-7. PubMed DOI

Dharmaprani D, et al. A governing equation for rotor and wavelet number in human clinical ventricular fibrillation: Implications for sudden cardiac death. Heart Rhythm. 2022;19:295–305. doi: 10.1016/j.hrthm.2021.10.008. PubMed DOI

Lilienkamp H, Lilienkamp T. Detecting spiral wave tips using deep learning. Sci. Rep. 2021;11:19767. doi: 10.1038/s41598-021-99069-3. PubMed DOI PMC

Webber C, Marwan N. Recurrence Quantification Analysis: Theory and Best Practices. Springer; 2015.

Garcia, C. A.

Takens, F. Detecting strange attractors in turbulence. In

Cao L. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D Nonlinear Phenomena. 1997;110:43–50. doi: 10.1016/S0167-2789(97)00118-8. DOI

Khouj Y, Dawson J, Coad J, Vona-Davis L. Hyperspectral imaging and k-means classification for histologic evaluation of ductal carcinoma in situ. Front. Oncol. 2018;8:17. doi: 10.3389/fonc.2018.00017. PubMed DOI PMC

Horng M-H. Multi-class support vector machine for classification of the ultrasonic images of supraspinatus. Expert Syst. Appl. 2009;36:8124–8133. doi: 10.1016/j.eswa.2008.10.030. DOI

Montesinos L, Castaldo R, Pecchia L. On the use of approximate entropy and sample entropy with centre of pressure time-series. J. NeuroEng. Rehabil. 2018;15:116. doi: 10.1186/s12984-018-0465-9. PubMed DOI PMC

Lippi G, Sanchis-Gomar F, Cervellin G. Global epidemiology of atrial fibrillation: An increasing epidemic and public health challenge. Int. J. Stroke. 2021;16:217–221. doi: 10.1177/1747493019897870. PubMed DOI

Buist TJ, Zipes DP, Elvan A. Atrial fibrillation ablation strategies and technologies: Past, present, and future. Clin. Res. Cardiol. 2020;110:775–788. doi: 10.1007/s00392-020-01751-5. PubMed DOI

Hu H, et al. A wearable cardiac ultrasound imager. Nature. 2023;613:667–675. doi: 10.1038/s41586-022-05498-z. PubMed DOI PMC

Conti S, Sabatino F, De Blasi G, Di Stabile G, Sgarito G. Comparison between standard and high-definition multi-electrode mapping catheter in ventricular tachycardia ablation. J. Cardiovasc. Dev. Dis. 2022 doi: 10.3390/jcdd9080232. PubMed DOI PMC

Jurkiewicz J, Kroboth S, Zlochiver V, Hinow P. Automated feature extraction from large cardiac electrophysiological data sets. J. Electrocardiol. 2021;65:157–162. doi: 10.1016/j.jelectrocard.2021.02.003. PubMed DOI

Thiel M, et al. Influence of observational noise on the recurrence quantification analysis. Physica D Nonlinear Phenomena. 2002;171:138–152. doi: 10.1016/S0167-2789(02)00586-9. DOI

Wendi D, Marwan N. Extended recurrence plot and quantification for noisy continuous dynamical systems. Chaos Interdiscip. J. Nonlinear Sci. 2018;28:085722. doi: 10.1063/1.5025485. PubMed DOI

Sims JJ, Miller AW, Ujhelyi MR. Electrical heterogeneity and arrhythmogenesis: Importance of conduction velocity dispersion. J. Cardiovasc. Pharmacol. 2003;41:795–803. doi: 10.1097/00005344-200305000-00018. PubMed DOI

Antzelevitch C, Fish J. Electrical heterogeneity within the ventricular wall. Basic Res. Cardiol. 2001;96:517–527. doi: 10.1007/s003950170002. PubMed DOI

Britton OJ, et al. Experimentally calibrated population of models predicts and explains intersubject variability in cardiac cellular electrophysiology. Proc. Natl. Acad. Sci. 2013;110:E2098–E2105. doi: 10.1073/pnas.1304382110. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...