Relative Membrane Potential Measurements Using DISBAC2(3) Fluorescence in Arabidopsis thaliana Primary Roots

. 2023 Jul 20 ; 13 (14) : e4778. [epub] 20230720

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37497461

In vivo microscopy of plants with high-frequency imaging allows observation and characterization of the dynamic responses of plants to stimuli. It provides access to responses that could not be observed by imaging at a given time point. Such methods are particularly suitable for the observation of fast cellular events such as membrane potential changes. Classical measurement of membrane potential by probe impaling gives quantitative and precise measurements. However, it is invasive, requires specialized equipment, and only allows measurement of one cell at a time. To circumvent some of these limitations, we developed a method to relatively quantify membrane potential variations in Arabidopsis thaliana roots using the fluorescence of the voltage reporter DISBAC2(3). In this protocol, we describe how to prepare experiments for agar media and microfluidics, and we detail the image analysis. We take an example of the rapid plasma membrane depolarization induced by the phytohormone auxin to illustrate the method. Relative membrane potential measurements using DISBAC2(3) fluorescence increase the spatio-temporal resolution of the measurements and are non-invasive and suitable for live imaging of growing roots. Studying membrane potential with a more flexible method allows to efficiently combine mature electrophysiology literature and new molecular knowledge to achieve a better understanding of plant behaviors. Key features Non-invasive method to relatively quantify membrane potential in plant roots. Method suitable for imaging seedlings root in agar or liquid medium. Straightforward quantification.

Zobrazit více v PubMed

Baluška F., Mancuso S., Volkmann D. and Barlow P. W.(2010). Root apex transition zone: a signalling–response nexus in the root. Trends Plant Sci. 15(7): 402-408. PubMed

Cuin T. A., Betts S. A., Chalmandrier R. and Shabala S.(2008). A root’s ability to retain K+ correlates with salt tolerance in wheat. J. Exp. Bot. 59(10): 2697-2706. PubMed PMC

Dindas J., Becker D., Roelfsema M. R. G., Scherzer S., Bennett M. and Hedrich R.(2020). Pitfalls in auxin pharmacology. New Phytol. 227(2): 286-292. PubMed

Dindas J., Scherzer S., Roelfsema M. R. G., von Meyer K., Müller H. M., Al-Rasheid K. A. S., Palme K., Dietrich P., Becker D., Bennett M. J., et al. .(2018). AUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+ signaling. Nat. Commun. 9(1): e1038/s41467-018-03582-5. PubMed PMC

Fendrych M., Akhmanova M., Merrin J., Glanc M., Hagihara S., Takahashi K., Uchida N., Torii K. U. and Friml J.(2018). Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nat. Plants 4: 453-459. PubMed PMC

Grossmann G., Guo W.-J., Ehrhardt D. W., Frommer W. B., Sit R. V., Quake S. R. and Meier M.(2011). The RootChip: An Integrated Microfluidic Chip for Plant Science. Plant Cell 23(12): 4234-4240. PubMed PMC

Konietschke F., Placzek M., Schaarschmidt F. and Hothorn L. A.(2015). nparcomp: An R Software Package for Nonparametric Multiple Comparisons and Simultaneous Confidence Intervals. J. Stat. Softw. 64(9): 1-17.

Li L., Verstraeten I., Roosjen M., Takahashi K., Rodriguez L., Merrin J., Chen J., Shabala L., Smet W., Ren H., et al. .(2021). Cell surface and intracellular auxin signalling for H+ fluxes in root growth. Nature 599(7884): 273-277. PubMed PMC

Lindsey B. E., Rivero L., Calhoun C. S., Grotewold E. and Brkljacic J.(2017). Standardized Method for High-throughput Sterilization of Arabidopsis Seeds. J. Vis. Exp.(128): e56587. PubMed PMC

Mudrilov M., Ladeynova M., Grinberg M., Balalaeva I. and Vodeneev V.(2021). Electrical Signaling of Plants under Abiotic Stressors: Transmission of Stimulus-Specific Information. Int. J. Mol. Sci. 22(19): 10715. PubMed PMC

Paponov I. A., Dindas J., Król E., Friz T., Budnyk V., Teale W., Paponov M., Hedrich R. and Palme K.(2019). Auxin-Induced Plasma Membrane Depolarization Is Regulated by Auxin Transport and Not by AUXIN BINDING PROTEIN1. Front. Plant Sci. 9: e01953. PubMed PMC

Qi L., Kwiatkowski M., Chen H., Hoermayer L., Sinclair S., Zou M., del Genio C. I., Kubeš M. F., Napier R., Jaworski K., et al. .(2022). Adenylate cyclase activity of TIR1/AFB auxin receptors in plants. Nature 611(7934): 133-138. PubMed

Ragel P., Raddatz N., Leidi E. O., Quintero F. J. and Pardo J. M.(2019). Regulation of K+ Nutrition in Plants. Front. Plant Sci. 10: e00281. PubMed PMC

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. .(2012). Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7): 676-682. PubMed PMC

Roosjen M., Kuhn A., Mutte S. K., Boeren S., Krupar P., Koehorst J., Fendrych M., Friml J. and Weijers D.(2022). An ultra-fast, proteome-wide response to the plant hormone auxin. Plant Biology.: e517949.

Shabala L., Cuin T. A., Newman I. A. and Shabala S.(2005). Salinity-induced ion flux patterns from the excised roots of Arabidopsis sos mutants. Planta 222(6): 1041-1050. PubMed

Serre N. B. C., Kralík D., Yun P., Slouka Z., Shabala S. and Fendrych M.(2021). AFB1 controls rapid auxin signalling through membrane depolarization in Arabidopsis thaliana root. Nat. Plants 7(9): 1229-1238. PubMed PMC

Sze H.(1985). H+-Translocating ATPases: Advances Using Membrane Vesicles. Annu. Rev. Plant Physiol. 36(1): 175-208.

Sze H., Li X. and Palmgren M. G.(1999). Energization of Plant Cell Membranes by H+-Pumping ATPases: Regulation and Biosynthesis. Plant Cell 11(4): 677-689. PubMed PMC

Tretyn A., Wagner G. and Felle H. H.(1991). Signal Transduction in Sinapis alba Root Hairs: Auxins as External Messengers. J. Plant Physiol. 139(2): 187-193.

Tyerman S. D. and Schachtman D. P.(1992). The role of ion channels in plant nutrition and prospects for their genetic manipulation. Plant Soil 146: 137-144.

von Wangenheim D., Hauschild R., Fendrych M., Barone V., Benková E. and Friml J.(2017). Live tracking of moving samples in confocal microscopy for vertically grown roots. eLife 6: e26792. PubMed PMC

Yanagisawa N., Kozgunova E., Grossmann G., Geitmann A. and Higashiyama T.(2021). Microfluidics-Based Bioassays and Imaging of Plant Cells. Plant Cell Physiol. 62(8): 1239-1250. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace