One-dimensional scintillator film with benign grain boundaries for high-resolution and fast x-ray imaging
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37506201
PubMed Central
PMC10381942
DOI
10.1126/sciadv.adh1789
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Fast and high-resolution x-ray imaging demands scintillator films with negligible afterglow, high scintillation yield, and minimized cross-talk. However, grain boundaries (GBs) are abundant in polycrystalline scintillator film, and, for current inorganic scintillators, detrimental dangling bonds at GBs inevitably extend radioluminescence lifetime and increase nonradiative recombination loss, deteriorating afterglow and scintillation yield. Here, we demonstrate that scintillators with one-dimensional (1D) crystal structure, Cs5Cu3Cl6I2 explored here, possess benign GBs without dangling bonds, yielding nearly identical afterglow and scintillation yield for single crystals and polycrystalline films. Because of its 1D crystal structure, Cs5Cu3Cl6I2 films with desired columnar morphology are easily obtained via close space sublimation, exhibit negligible afterglow (0.1% at 10 ms) and high scintillation yield (1.2 times of CsI:Tl). We have also demonstrated fast x-ray imaging with 27 line pairs mm-1 resolution and frame rate up to 33 fps, surpassing most existing scintillators. We believe that the 1D scintillators can greatly boost x-ray imaging performance.
Department of Physics Zhejiang Normal University Jinhua 321004 Zhejiang China
Optics Valley Laboratory Hubei 430074 China
Wuhan National Laboratory for Optoelectronics Wuhan 430074 China
Zobrazit více v PubMed
P. Russo, Ed., in Handbook of X-ray Imaging: Physics and Technology (CRC Press, 2017), p. 1419.
Chrzanowski K., Review of night vision metrology. Opto-Electronics Rev. 23, 149–164 (2015).
Autrata R., Schauer P., Kuapil J., Kuapil J., A single crystal of YAG-new fast scintillator in SEM. J. Phys. E 11, 707–708 (1978).
Auffray E., Cavallari F., Lebeau M., Lecoq P., Schneegans M., Sempere-Roldan P., Crystal conditioning for high-energy physics detectors. Nucl. Inst. Methods Phys. Res. A 486, 22–34 (2002).
Dujardin C., Auffray E., Bourret-Courchesne E., Dorenbos P., Lecoq P., Nikl M., Vasil’Ev A. N., Yoshikawa A., Zhu R. Y., Needs, trends, and advances in inorganic scintillators. IEEE Trans. Nucl. Sci. 65, 1977–1997 (2018).
Martin T., Koch A., Recent developments in X-ray imaging with micrometer spatial resolution. J. Synchrotron Radiat. 13, 180–194 (2006). PubMed
Nagarkar V. V., Gupta T. K., Miller S. R., Klugerman Y., Squillante M. R., Entine G., Structured CsI(Tl) scintillators for X-ray imaging applications. IEEE Trans. Nucl. Sci. 45, 492–496 (1998).
Nagarkar V. V., Thacker S. C., Gaysinskiy V., Ovechkina L. E., Miller S. R., Cool S., Brecher C., Suppression of afterglow in microcolumnar CsI:Tl by codoping with Sm: Recent advances. IEEE Trans. Nucl. Sci. 56, 565–569 (2009). PubMed PMC
Wu Y., Ren G., Meng F., Chen X., Ding D., Li H., Pan S., Effects of Bi3+ codoping on the optical and scintillation properties of CsI:Tl single crystals. Phys. Status Solidi 211, 2586–2591 (2014).
Chen Q., Wu J., Ou X., Huang B., Almutlaq J., Zhumekenov A. A., Guan X., Han S., Liang L., Yi Z., Li J., Xie X., Wang Y., Li Y., Fan D., Teh D. B. L., All A. H., Mohammed O. F., Bakr O. M., Wu T., Bettinelli M., Yang H., Huang W., Liu X., All-inorganic perovskite nanocrystal scintillators. Nature 561, 88–93 (2018). PubMed
Greskovich C., Duclos S., Ceramic scintillators. Annu. Rev. Mater. Sci. 27, 69–88 (1997).
van Eijk C. W. E., Inorganic scintillators in medical imaging detectors. Nucl. Inst. Methods Phys. Res. A 509, 17–25 (2003).
G. Blasse, B. C. Grabmaier, Luminescent Materials (Springer, 1994).
Chiriu D., Faedda N., Lehmann A. G., Ricci P. C., Anedda A., Desgreniers S., Fortin E., Structural characterization of Lu1.8Y0.2SiO5 crystals. Phys. Rev. B - Condens. Matter Mater. Phys. 76, 054112 (2007).
Labr L., Kramer K., Schulze M., Three bromides of lanthanum: LaBr2, La2Br5, and LaBr3. Z. Anorg. Allg. Chem. 575, 61–70 (1989).
Zorenko Y., Voznyak T., Turchak R., Fedorov A., Wiesniewski K., Grinberg M., Luminescent and scintillation properties of CsI:Tl films grown by the liquid phase epitaxy method. Phys. Status Solidi Appl. Mater. Sci. 207, 2344–2350 (2010).
Fedorov A., Lebedinsky A., Zelenskaya O., Scintillation efficiency, structure and spatial resolution of CsI(Tl) layers. Nucl. Instr. Meth. Phys. Res. A 564, 328–331 (2006).
Chhowalla M., Jena D., Zhang H., Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).
Lin R., Guo Q., Zhu Q., Zhu Y., Zheng W., Huang F., All-inorganic CsCu2I3 single crystal with high-PLQY (≍15.7%) intrinsic white-light emission via strongly localized 1D excitonic recombination. Adv. Mater. 31, 1905079 (2019). PubMed
M. Zhang, X. Wang, B. Yang, J. Zhu, G. Niu, H. Wu, L. Yin, X. Du, M. Niu, Y. Ge, Q. Xie, Y. Yan, J. Tang, Metal halide scintillators with fast and self-absorption-free defect-bound excitonic radioluminescence for dynamic X-ray imaging. 31, 2007921 (2021).
Yang B., Yin L., Niu G., Yuan J., Xue K., Tan Z., Miao X., Niu M., Du X., Song H., Lifshitz E., Tang J., Lead-free halide Rb2CuBr3 as sensitive X-ray scintillator. Adv. Mater. 31, e1904711 (2019). PubMed
M. Baskaran, Handbook of Environmental Isotope Geochemistry (Springer, 2012).
S. O. Ferreira, Advanced Topics on Crystal Growth (InTech, 2013).
Li J., Inoshita T., Ying T., Ooishi A., Kim J., Hosono H., A highly efficient and stable blue-emitting Cs5 Cu3 Cl6 I2 with a 1D chain structure. Adv. Mater. 32, 2002945 (2020). PubMed
Niu X., Xiao J., Lou B., Yan Z., Zhou Q., Lin T., Ma C., Han X., Highly efficient blue emissive copper halide Cs5Cu3Cl6I2 scintillators for X-ray detection and imaging. Ceram. Int. 48, 30788–30796 (2022).
Zhang M., Zhu J., Yang B., Niu G., Wu H., Zhao X., Yin L., Jin T., Liang X., Tang J., Oriented-structured CsCu2I3 film by close-space sublimation and nanoscale seed screening for high-resolution X-ray imaging. Nano Lett. 21, 1392–1399 (2021). PubMed
Ribeiro R. M., Coutinho J., Torres V. J. B., Jones R., Sque S. J., Öberg S., Shaw M. J., Briddon P. R., Ab initio study of CsI and its surface. Phys. Rev. B 74, 035430 (2006).
Nishimura H., Sakata M., Tsujimoto T., Nakayama M., Origin of the 4.1-eV luminescence in pure CsI scintillator. Phys. Rev. B 51, 2167–2172 (1995). PubMed
Bos A. J. J., Thermoluminescence as a research tool to investigate luminescence mechanisms. Materials 10, 1357 (2017). PubMed PMC
Chen R., Glow curves with general order kinetics. J. Electrochem. Soc. 116, 1254 (1969).
Zhou Y., Zhao L., Ni Z., Xu S., Zhao J., Xiao X., Huang J., Heterojunction structures for reduced noise in large-area and sensitive perovskite x-ray detectors. Sci. Adv. 7, eabg6716 (2021). PubMed PMC
Gao Y., Ge Y., Wang X., Liu J., Liu W., Cao Y., Gu K., Guo Z., Wei Y., Zhou N., Yu D., Meng H., Yu X. F., Zheng H., Huang W., Li J., Ultrathin and ultrasensitive direct X-ray detector based on heterojunction phototransistors. Adv. Mater. 33, 2101717 (2021). PubMed
Clairand I., Bordy J. M., Carinou E., Daures J., Debroas J., Denozire M., Donadille L., Ginjaume M., Itié C., Koukorava C., Krim S., Lebacq A. L., Martin P., Struelens L., Sans-Merce M., Vanhavere F., Use of active personal dosemeters in interventional radiology and cardiology: Tests in laboratory conditions and recommendations–ORAMED project. Radiat. Meas. 46, 1252–1257 (2011).
Wang J. X., Gutiérrez-Arzaluz L., Wang X., He T., Zhang Y., Eddaoudi M., Bakr O. M., Mohammed O. F., Heavy-atom engineering of thermally activated delayed fluorophores for high-performance X-ray imaging scintillators. Nat. Photon. 16, 869–875 (2022).
Wang Z., Sun R., Liu N., Fan H., Hu X., Shen D., Zhang Y., Liu H., X-Ray imager of 26-μm resolution achieved by perovskite assembly. Nano Res. 15, 2399–2404 (2022).
Zhang H., Yang Z., Zhou M., Zhao L., Jiang T., Yang H., Yu X., Qiu J., Yang Y., Xu X., Reproducible X-ray imaging with a perovskite nanocrystal scintillator embedded in a transparent amorphous network structure. Adv. Mater. 33, 2102529 (2021). PubMed
Ou X., Qin X., Huang B., Zan J., Wu Q., Hong Z., Xie L., Bian H., Yi Z., Chen X., Wu Y., Song X., Li J., Chen Q., Yang H., Liu X., High-resolution X-ray luminescence extension imaging. Nature 590, 410–415 (2021). PubMed
Howansky A., Mishchenko A., Lubinsky A. R., Zhao W., Comparison of CsI:Tl and Gd2O2S:Tb indirect flat panel detector X-ray imaging performance in front- and back-irradiation geometries. Med. Phys. 46, 4857–4868 (2019). PubMed PMC
V. Nagarkar, V. Gaysinskiy, Multi-layer radiation detector and related methods. U.S. Patent, US7772558B1 (2010).
Konstantinidis A. C., Szafraniec M. B., Speller R. D., Olivo A., The Dexela 2923 CMOS X-ray detector: A flat panel detector based on CMOS active pixel sensors for medical imaging applications. Nucl. Inst. Methods Phys. Res. A 689, 12–21 (2012).
N. Haouchine, P. Juvekar, X. Xiong, J. Luo, T. Kapur, R. Du, A. Golby, S. Frisken, Estimation of High Framerate Digital Subtraction Angiography Sequences at Low Radiation Dose, paper presented at the 24th International Conference on Medical Image Computing and Computer Assisted Intervention (Strasbourg, France, 27 September 2021). PubMed PMC
Perdew J. P., Burke K., Ernzerhof M., Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). PubMed
Blöchl P. E., Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). PubMed
Kocevski V., Temperature dependence of radiative lifetimes, optical and electronic properties of silicon nanocrystals capped with various organic ligands. J. Chem. Phys. 149, 054301 (2018). PubMed
Li J. Y., Wang C. F., Wu H., Liu L., Xu Q. L., Ye S. Y., Tong L., Chen X., Gao Q., Hou Y. L., Wang F. M., Tang J., Chen L. Z., Zhang Y., Eco-friendly and highly efficient light-emission ferroelectric scintillators by precise molecular design. Adv. Funct. Mater. 31, 2102848 (2021).
Kentsch R., Morgenroth M., Scholz M., Xu K., Schmedt auf der Günne J., Lenzer T., Oum K., Direct observation of the exciton self-trapping process in CsCu2I3 thin films. J. Phys. Chem. Lett. 11, 4286–4291 (2020). PubMed
Du M. H., Emission trend of multiple self-trapped excitons in luminescent 1D copper halides. ACS Energy Lett. 5, 464–469 (2020).
Creason T. D., McWhorter T. M., Bell Z., Du M. H., Saparov B., K2CuX3(X = Cl, Br): All-inorganic lead-free blue emitters with near-unity photoluminescence quantum yield. Chem. Mater. 32, 6197–6205 (2020).
Stand L., Rutstrom D., Koschan M., Du M. H., Melcher C., Shirwadkar U., Glodo J., Van Loef E., Shah K., Zhuravleva M., Crystal growth and scintillation properties of pure and Tl-doped Cs3Cu2I5. Nucl. Inst. Methods Phys. Res. A 991, 164963 (2021).
Tauc J., Menth A., States in the gap. J. Non Cryst. Solids 8, 569–585 (1972).
S. Tavernier, A. Gektin, B. Grinyov, W. W. Moses, Radiation Detectors for Medical Applications (Springer, 2013).
Shepherd J. A., Study of afterglow in X-ray phosphors for use on fast-framing charge-coupled device detectors. Opt. Eng. 36, 3212 (1997).
Koppert W. J. C., Dietze M. M. A., van Der Velden S., Steenbergen J. H. L., de Jong H. W. A. M., A comparative study of NaI(Tl), CeBr3, and CZT for use in a real-time simultaneous nuclear and fluoroscopic dual-layer detector. Phys. Med. Biol. 64, 135012 (2019). PubMed
Nagarkar V. V., Miller S., Singh B., Thacker S., Gaysinskiy V., Meller B. W., Barber H. B., Wilson D., Development of microcolumnar LaBr3:Ce scintillator. Penetrating Radiat. Syst. Appl. X 7450, 745006 (2009).
Cheng S., Nikl M., Beitlerova A., Kucerkova R., Du X., Niu G., Jia Y., Tang J., Ren G., Wu Y., Ultrabright and highly efficient all-inorganic zero-dimensional perovskite scintillators. Adv. Opt. Mater. 9, 2100460 (2021).
Cheng S., Beitlerova A., Kucerkova R., Mihokova E., Nikl M., Zhou Z., Ren G., Wu Y., Non-hygroscopic, self-absorption free, and efficient 1D CsCu2I3 perovskite single crystal for radiation detection. ACS Appl. Mater. Interfaces 13, 12198–12202 (2021). PubMed
Wei Y., Cheng Z., Lin J., An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem. Soc. Rev. 48, 310–350 (2019). PubMed