Obacunone Photoprotective Effects against Solar-Simulated Radiation-Induced Molecular Modifications in Primary Keratinocytes and Full-Thickness Human Skin

. 2023 Jul 14 ; 24 (14) : . [epub] 20230714

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37511243

Grantová podpora
PID2020-114871RB-I00 Ministry of Science and Innovation
PI20/01363 (JM) and CIBERES (CB06/06/0027) Instituto de Salud Carlos III
CDTi (ARTSKIN IDI-20190271) Ministry of Science and Innovation

Solar radiation can cause damage to the skin, leading to various adverse effects such as sunburn, reactive oxygen species production, inflammation, DNA damage, and photoaging. To study the potential of photoprotective agents, full-thickness skin models are increasingly being used as in vitro tools. One promising approach to photoprotection involves targeting the redox-sensitive transcription factor Nrf2, which is responsible for regulating various cellular defense mechanisms, including the antioxidant response, inflammatory signaling, and DNA repair. Obacunone, a natural triterpenoid, has been identified as a potent Nrf2 agonist. The present study aims to evaluate the relevance of full-thickness (FT) skin models in photoprotection studies and to explore the potential photoprotective effects of obacunone on those models and in human keratinocytes. Phenion® full-thickness skin models and keratinocytes were incubated with increasing concentrations of obacunone and irradiated with solar-simulated radiation (SSR). Various photodamage markers were evaluated, including histological integrity, oxidative stress, apoptosis, inflammation, photoaging-related dermal markers, and photocarcinogenesis markers. Increasing doses of SSR were found to modulate various biomarkers related to sun damage in the FT skin models. However, obacunone attenuated cytotoxicity, inflammation, oxidative stress, sunburn reaction, photoaging, and photocarcinogenesis in both keratinocytes and full thickness skin models exposed to SSR. These results suggest that obacunone may have potential as a photoprotective agent for preventing the harmful effects of solar radiation on the skin.

Zobrazit více v PubMed

Roger M., Fullard N., Costello L., Bradbury S., Markiewicz E., O’Reilly S., Darling N., Ritchie P., Määttä A., Karakesisoglou I., et al. Bioengineering the microanatomy of human skin. J. Anat. 2019;234:438–455. doi: 10.1111/joa.12942. PubMed DOI PMC

Sánchez-Marzo N., Pérez-Sánchez A., Ruiz-Torres V., Martínez-Tébar A., Castillo J., Herranz-López M., Barrajón-Catalán E. Antioxidant and Photoprotective Activity of Apigenin and its Potassium Salt Derivative in Human Keratinocytes and Absorption in Caco-2 Cell Monolayers. Int. J. Mol. Sci. 2019;20:2148. doi: 10.3390/ijms20092148. PubMed DOI PMC

Lawrence K., Al-Jamal M., Kohli I., Hamzavi I. Clinical and Biological Relevance of Visible and Infrared Radiation. In: Wang S.Q., Lim H.W., editors. Principles and Practice of Photoprotection. Springer International Publishing; Cham, Switzerland: 2016. pp. 3–22.

Bernerd F., Vioux C., Asselineau D. Evaluation of the protective effect of sunscreens on in vitro reconstructed human skin exposed to UVB or UVA irradiation. Photochem. Photobiol. 2000;71:314–320. doi: 10.1562/0031-8655(2000)071<0314:EOTPEO>2.0.CO;2. PubMed DOI

Marionnet C., Tricaud C., Bernerd F. Exposure to Non-Extreme Solar UV Daylight: Spectral Characterization, Effects on Skin and Photoprotection. Int. J. Mol. Sci. 2014;16:68–90. doi: 10.3390/ijms16010068. PubMed DOI PMC

Schäfer M., Dütsch S., Auf dem Keller Keller U., Navid F., Schwarz A., Johnson D.A., Johnson J.A., Werner S. Nrf2 establishes a glutathione-mediated gradient of UVB cytoprotection in the epidermis. Genes Dev. 2010;24:1045–1058. doi: 10.1101/gad.568810. PubMed DOI PMC

Bernerd F., Marionnet C., Duval C. Solar ultraviolet radiation induces biological alterations in human skin in vitro: Relevance of a well-balanced UVA/UVB protection. Indian J. Dermatol. Venereol. Leprol. 2012;78:15–23. doi: 10.4103/0378-6323.97351. PubMed DOI

Meloni M., Farina A., de Servi B. Molecular modifications of dermal and epidermal biomarkers following UVA exposures on reconstructed full-thickness human skin. Photochem. Photobiol. Sci. 2010;9:439–447. doi: 10.1039/b9pp00164f. PubMed DOI

Bernerd F., Asselineau D. An organotypic model of skin to study photodamage and photoprotection in vitro. J. Am. Acad. Dermatol. 2008;58:S155–S159. doi: 10.1016/j.jaad.2007.08.050. PubMed DOI

De la Vega M.R., Krajisnik A., Zhang D.D., Wondrak G.T. Targeting NRF2 for Improved Skin Barrier Function and Photoprotection: Focus on the Achiote-Derived Apocarotenoid Bixin. Nutrients. 2017;9:1371. doi: 10.3390/nu9121371. PubMed DOI PMC

González S., Astner S., An W., Pathak M.A., Goukassian D. Dietary Lutein/Zeaxanthin Decreases Ultraviolet B-Induced Epidermal Hyperproliferation and Acute Inflammation in Hairless Mice. J. Investig. Dermatol. 2003;121:399–405. doi: 10.1046/j.1523-1747.2003.12355.x. PubMed DOI

Nichols J.A., Katiyar S.K. Skin photoprotection by natural polyphenols: Anti-inflammatory, antioxidant and DNA repair mechanisms. Arch. Dermatol. Res. 2009;302:71–83. doi: 10.1007/s00403-009-1001-3. PubMed DOI PMC

Wondrak G.T. Sunscreen-Based Skin Protection Against Solar Insult: Molecular Mechanisms and Opportunities. In: Alberts D., Hess L.M., editors. Fundamentals of Cancer Prevention. Springer; Berlin/Heidelberg, Germany: 2014. pp. 301–320.

Saw C.L., Huang M.-T., Liu Y., Khor T.O., Conney A.H., Kong A.-N. Impact of Nrf2 on UVB-induced skin inflammation/photoprotection and photoprotective effect of sulforaphane: Photoprotection of Nrf2 and sulforaphane. Mol. Carcinog. 2011;50:479–486. doi: 10.1002/mc.20725. PubMed DOI

Xian D., Xiong X., Xu J., Xian L., Lei Q., Song J., Zhong J. Nrf2 Overexpression for the Protective Effect of Skin-Derived Precursors against UV-Induced Damage: Evidence from a Three-Dimensional Skin Model. Oxidative Med. Cell. Longev. 2019;2019:7021428. doi: 10.1155/2019/7021428. PubMed DOI PMC

Tao S., Justiniano R., Zhang D.D., Wondrak G.T. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV. Redox Biol. 2013;1:532–541. doi: 10.1016/j.redox.2013.10.004. PubMed DOI PMC

Rojo de la Vega M., Zhang D.D., Wondrak G.T. Topical Bixin Confers NRF2-Dependent Protection Against Photodamage and Hair Graying in Mouse Skin. Front. Pharmacol. 2018;9:287. doi: 10.3389/fphar.2018.00287. PubMed DOI PMC

Zhou J., Wang T., Wang H., Jiang Y., Peng S. Obacunone attenuates high glucose-induced oxidative damage in NRK-52E cells by inhibiting the activity of GSK-3β. Biochem. Biophys. Res. Commun. 2019;513:226–233. doi: 10.1016/j.bbrc.2019.03.201. PubMed DOI

Bai Y., Wang W., Wang L., Ma L., Zhai D., Wang F., Shi R., Liu C., Xu Q., Chen G., et al. Obacunone Attenuates Liver Fibrosis with Enhancing Anti-Oxidant Effects of GPx-4 and Inhibition of EMT. Molecules. 2021;26:318. doi: 10.3390/molecules26020318. PubMed DOI PMC

Gao Y., Hou R., Liu F., Liu H., Fei Q., Han Y., Cai R., Peng C., Qi Y. Obacunone causes sustained expression of MKP-1 thus inactivating p38 MAPK to suppress pro-inflammatory mediators through intracellular MIF. J. Cell. Biochem. 2018;119:837–849. doi: 10.1002/jcb.26248. PubMed DOI

Huang D.-R., Dai C.-M., Li S.-Y., Li X.-F. Obacunone protects retinal pigment epithelium cells from ultra-violet radiation-induced oxidative injury. Aging. 2021;13:11010–11025. doi: 10.18632/aging.202437. PubMed DOI PMC

Liu Y., Wang R., He X., Dai H., Betts R.J., Marionnet C., Bernerd F., Planel E., Wang X., Nocairi H., et al. Validation of a predictive method for sunscreen formula evaluation using gene expression analysis in a Chinese reconstructed full-thickness skin model. Int. J. Cosmet. Sci. 2019;41:147–155. doi: 10.1111/ics.12518. PubMed DOI

Marionnet C., Bernerd F. Organotypic models for evaluating sunscreens. Princ. Pract. Photoprotection. 2016;I:199–225.

Storey A., Rogers J.S., McArdle F., Jackson M.J., Rhodes L.E. Conjugated linoleic acids modulate UVR-induced IL-8 and PGE2 in human skin cells: Potential of CLA isomers in nutritional photoprotection. Carcinogenesis. 2007;28:1329–1333. doi: 10.1093/carcin/bgm065. PubMed DOI

Torricelli P., Fini M., Fanti P.A., Dika E., Milani M. Protective effects of Polypodium leucotomos extract against UVB-induced damage in a model of reconstructed human epidermis. Photodermatol. Photoimmunol. Photomed. 2017;33:156–163. doi: 10.1111/phpp.12297. PubMed DOI

Duval C., Schmidt R., Regnier M., Facy V., Asselineau D., Bernerd F. The use of reconstructed human skin to evaluate UV-induced modifications and sunscreen efficacy. Exp. Dermatol. 2003;12:64–70. doi: 10.1034/j.1600-0625.12.s2.10.x. PubMed DOI

Murphy M., Mabruk M.J.E.M.F., Lenane P., Liew A., McCann P., Buckley A., Flatharta C.O., Hevey D., Billet P., Robertson W., et al. Comparison of the expression of p53, p21, Bax and the induction of apoptosis between patients with basal cell carcinoma and normal controls in response to ultraviolet irradiation. J. Clin. Pathol. 2002;55:829–833. doi: 10.1136/jcp.55.11.829. PubMed DOI PMC

Acute response of human skin to solar radiation: Regulation and function of the p53 protein—ScienceDirect. [(accessed on 19 June 2023)]. Available online: https://www.sciencedirect.com/science/article/pii/S1011134401002044?via%3Dihub.

Hollmann G., Linden R., Giangrande A., Allodi S. Increased p53 and decreased p21 accompany apoptosis induced by ultraviolet radiation in the nervous system of a crustacean. Aquat. Toxicol. 2016;173:1–8. doi: 10.1016/j.aquatox.2015.12.025. PubMed DOI

Chaturvedi V., Qin J.-Z., Stennett L., Choubey D., Nickoloff B. Resistance to UV-induced apoptosis in human keratinocytes during accelerated senescence is associated with functional inactivation of p53. J. Cell. Physiol. 2003;198:100–109. doi: 10.1002/jcp.10392. PubMed DOI

Lei X., Liu B., Han W., Ming M., He Y.-Y. UVB-Induced p21 degradation promotes apoptosis of human keratinocytes. Photochem. Photobiol. Sci. 2010;9:1640–1648. doi: 10.1039/c0pp00244e. PubMed DOI PMC

Gao Y., Chen A., Huang X., Xue Z., Cao D., Huang K., Chen J., Pan Y. The Role of p21 in Apoptosis, Proliferation, Cell Cycle Arrest, and Antioxidant Activity in UVB-Irradiated Human HaCaT Keratinocytes. Med. Sci. Monit. Basic Res. 2015;21:86–95. doi: 10.12659/MSMBR.893608. PubMed DOI PMC

Marrot L., Planel E., Ginestet A.-C., Belaïdi J.-P., Jones C., Meunier J.-R. In vitro tools for photobiological testing: Molecular responses to simulated solar UV of keratinocytes growing as monolayers or as part of reconstructed skin. Photochem. Photobiol. Sci. 2010;9:448–458. doi: 10.1039/b9pp00145j. PubMed DOI

Brennan M., Bhatti H., Nerusu K.C., Bhagavathula N., Kang S., Fisher G.J., Varani J., Voorhees J.J. Matrix metalloproteinase-1 is the major collagenolytic enzyme responsible for collagen damage in UV-irradiated human skin. Photochem. Photobiol. 2003;78:43–48. doi: 10.1562/0031-8655(2003)078<0043:MMITMC>2.0.CO;2. PubMed DOI

Keurentjes A.J., Jakasa I., van Dijk A., van Putten E., Brans R., John S.M., Rustemeyer T., van der Molen H.F., Kezic S. Stratum corneum biomarkers after in vivo repeated exposure to sub-erythemal dosages of ultraviolet radiation in unprotected and sunscreen (SPF 50+) protected skin. Photodermatol. Photoimmunol. Photomed. 2021;38:60–68. doi: 10.1111/phpp.12717. PubMed DOI

Dunaway S., Odin R., Zhou L., Ji L., Zhang Y., Kadekaro A.L. Natural Antioxidants: Multiple Mechanisms to Protect Skin From Solar Radiation. Front. Pharmacol. 2018;9:392. doi: 10.3389/fphar.2018.00392. PubMed DOI PMC

Pinto D., Trink A., Giuliani G., Rinaldi F. Protective Effects of Sunscreen (50+) and Octatrienoic Acid 0.1% in Actinic Keratosis and UV Damages. J. Investig. Med. 2022;70:92–98. doi: 10.1136/jim-2021-001972. PubMed DOI PMC

Kahremany S., Hofmann L., Gruzman A., Dinkova-Kostova A.T., Cohen G. NRF2 in dermatological disorders: Pharmacological activation for protection against cutaneous photodamage and photodermatosis. Free. Radic. Biol. Med. 2022;188:262–276. doi: 10.1016/j.freeradbiomed.2022.06.238. PubMed DOI PMC

Kawachi Y., Xu X., Taguchi S., Sakurai H., Nakamura Y., Ishii Y., Fujisawa Y., Furuta J., Takahashi T., Itoh K., et al. Attenuation of UVB-Induced Sunburn Reaction and Oxidative DNA Damage with no Alterations in UVB-Induced Skin Carcinogenesis in Nrf2 Gene-Deficient Mice. J. Investig. Dermatol. 2008;128:1773–1779. doi: 10.1038/sj.jid.5701245. PubMed DOI

Chaiprasongsuk A., Janjetovic Z., Kim T.-K., Jarrett S.G., D’Orazio J.A., Holick M.F., Tang E.K., Tuckey R., Panich U., Li W., et al. Protective effects of novel derivatives of vitamin D3 and lumisterol against UVB-induced damage in human keratinocytes involve activation of Nrf2 and p53 defense mechanisms. Redox Biol. 2019;24:101206. doi: 10.1016/j.redox.2019.101206. PubMed DOI PMC

Ryšavá A., Vostálová J., Svobodová A.R. Effect of ultraviolet radiation on the Nrf2 signaling pathway in skin cells. Int. J. Radiat. Biol. 2021;97:1383–1403. doi: 10.1080/09553002.2021.1962566. PubMed DOI

Marionnet C., Pierrard C., Golebiewski C., Bernerd F. Diversity of Biological Effects Induced by Longwave UVA Rays (UVA1) in Reconstructed Skin. PLoS ONE. 2014;9:e105263. doi: 10.1371/journal.pone.0105263. PubMed DOI PMC

Marionnet C., Pierrard C., Lejeune F., Sok J., Thomas M., Bernerd F. Different Oxidative Stress Response in Keratinocytes and Fibroblasts of Reconstructed Skin Exposed to Non Extreme Daily-Ultraviolet Radiation. PLoS ONE. 2010;5:e12059. doi: 10.1371/journal.pone.0012059. PubMed DOI PMC

Afaq F., Mukhtar H. Effects of solar radiation on cutaneous detoxification pathways. J. Photochem. Photobiol. B Biol. 2001;63:61–69. doi: 10.1016/S1011-1344(01)00217-2. PubMed DOI

Svobodová A., Vostálová J. Solar radiation induced skin damage: Review of protective and preventive options. Int. J. Radiat. Biol. 2010;86:999–1030. doi: 10.3109/09553002.2010.501842. PubMed DOI

Meewes C., Brenneisen P., Wenk J., Kuhr L., Ma W., Alikoski J., Poswig A., Krieg T., Scharffetter-Kochanek K. Adaptive antioxidant response protects dermal fibroblasts from UVA-induced phototoxicity. Free. Radic. Biol. Med. 2001;30:238–247. doi: 10.1016/S0891-5849(00)00463-9. PubMed DOI

Qin D., Ren R., Jia C., Lu Y., Yang Q., Chen L., Wu X., Zhu J., Guo Y., Yang P., et al. Rapamycin Protects Skin Fibroblasts from Ultraviolet B-Induced Photoaging by Suppressing the Production of Reactive Oxygen Species. Cell. Physiol. Biochem. 2018;46:1849–1860. doi: 10.1159/000489369. PubMed DOI

OECD Test No. 442D: In Vitro Skin Sensitisation. 2022. [(accessed on 13 February 2023)]. Available online: https://www.oecd-ilibrary.org/content/publication/9789264229822-en.

Mukaka M.M. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012;24:69–71. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...