Antimicrobially Active Zn(II) Complexes of Reduced Schiff Bases Derived from Cyclohexane-1,2-diamine and Fluorinated Benzaldehydes-Synthesis, Crystal Structure and Bioactivity

. 2023 Jul 06 ; 13 (7) : . [epub] 20230706

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37511891

Grantová podpora
FaF/41/2022 Faculty of Pharmacy, Comenius University
1/0145/20 Scientific Grant Agency of the Slovak Republic VEGA
1/0175/23 Scientific Grant Agency of the Slovak Republic VEGA
APVV-20-0213 Slovak Research and Development Agency
ITMS 26240220084 Ministry of Education, Science, Research and Sport of the Slovak Republic

A series of Schiff base ligands obtained by the condensation of trans-cyclohexane-1,2-diamine and fluorinated benzaldehydes were prepared, followed by their reduction with NaBH4. The reduced ligands were employed in the synthesis of zinc complexes of the general formula [ZnCl2(L)]. The structures of both the original and the reduced Schiff bases, as well as of the zinc complexes, were characterized by single-crystal X-ray analysis, along with NMR and IR spectroscopy. The antimicrobial activities of the reduced Schiff bases and their zinc complexes were evaluated in vitro against E. coli, S. aureus, and C. albicans. The compounds containing the 4-(trifluoromethylphenyl) moiety showed marked antibacterial activity. Interestingly, the antimicrobial effect of the zinc complex with this moiety was significantly higher than that of the corresponding free reduced ligand, comparable with ciprofloxacin used as standard. Thus, a synergic effect upon the complexation with zinc can be inferred.

Zobrazit více v PubMed

Antimicrobial Resistance Collaborators Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet. 2022;399:629–655. doi: 10.1016/S0140-6736(21)02724-0. PubMed DOI PMC

Frei A., Verderosa A.D., Elliott A.G., Zuegg J., Blaskovich M.A.T. Metals to combat antimicrobial resistance. Nat. Rev. Chem. 2023;7:202–224. doi: 10.1038/s41570-023-00463-4. PubMed DOI PMC

Regiel-Futyra A., Dąbrowski J.M., Mazuryk O., Śpiewak K., Kyzioł A., Pucelik B., Brindell M., Stochel G. Bioinorganic antimicrobial strategies in the resistance era. Coord. Chem. Rev. 2017;351:76–117. doi: 10.1016/j.ccr.2017.05.005. DOI

Boulechfar C., Ferkous H., Delimi A., Djedouani A., Kahlouche A., Boublia A., Darwish A.S., Lemaoui T., Verma R., Benguerba Y. Schiff bases and their metal complexes: A review on the history, synthesis, and applications. Inorg. Chem. Comm. 2023;150:110451. doi: 10.1016/j.inoche.2023.110451. DOI

El-Hiti G.A., Alotaibi M.H., Ahmed A.A., Hamad B.A., Ahmed D.S., Ahmed A., Hashim H., Yousif E. The morphology and performance of poly(vinyl chloride) containing melamine Schiff bases against ultraviolet light. Molecules. 2019;24:803. doi: 10.3390/molecules24040803. PubMed DOI PMC

Jeevadason A.W., Murugavel K.K., Neelakantan M.A. Review on Schiff bases and their metal complexes as organic photovoltaic materials. Renew. Sustain. Energy Rev. 2014;36:220–227. doi: 10.1016/j.rser.2014.04.060. DOI

De S., Jain A., Barman P. Recent advances in the catalytic applications of chiral Schiff-base ligands and metal complexes in asymmetric organic transformations. ChemistrySelect. 2022;7:e202104334. doi: 10.1002/slct.202104334. DOI

Qin W., Long S., Panunzio M., Biondi S. Schiff bases: A short survey on an evergreen chemistry tool. Molecules. 2013;18:12264–12289. doi: 10.3390/molecules181012264. PubMed DOI PMC

Iacopetta D., Ceramella J., Catalano A., Saturnino C., Bonomo M.G., Franchini C., Sinicropi M.S. Schiff bases: Interesting scaffolds with promising antitumoral properties. Appl. Sci. 2021;11:1877. doi: 10.3390/app11041877. DOI

Ceramella J., Iacopetta D., Catalano A., Cirillo F., Lappano R., Sinicropi M.S. A review on the antimicrobial activity of Schiff bases: Data collection and recent studies. Antibiotics. 2022;11:191. doi: 10.3390/antibiotics11020191. PubMed DOI PMC

Habala L., Devínsky F., Egger A.E. Metal complexes as urease inhibitors. J. Coord. Chem. 2018;71:907–940. doi: 10.1080/00958972.2018.1458228. DOI

Sumrra S.H., Zafar W., Imran M., Chohan Z.H. A review on the biomedical efficacy of transition metal triazole compounds. J. Coord. Chem. 2022;75:293–334. doi: 10.1080/00958972.2022.2059359. DOI

Sumrra S.H., Sahrish I., Raza M.A., Ahmad Z., Zafar M.N., Chohan Z.H., Khalid M., Ahmed S. Efficient synthesis, characterization, and in vitro bactericidal studies of unsymmetrically substituted triazole-derived Schiff base ligand and its transition metal complexes. Monatsh. Chem. 2020;151:549–557. doi: 10.1007/s00706-020-02571-z. DOI

Narang R., Narasimhan B., Sharma S. A review on biological activities and chemical synthesis of hydrazide derivatives. Curr. Med. Chem. 2012;19:569–612. doi: 10.2174/092986712798918789. PubMed DOI

Alsantali R.I., Mughal E.U., Naeem N., Alsharif M.A., Sadiq A., Ali A., Jassas R.S., Javed Q., Javid A., Sumrra S.H., et al. Flavone-based hydrazones as new tyrosinase inhibitors: Synthetic imines with emerging biological potential, SAR, molecular docking and drug-likeness studies. J. Mol. Struct. 2022;1251:131933. doi: 10.1016/j.molstruc.2021.131933. DOI

Aly A.A., Abdallah E.M., Qassem S.A., Rabee M.M., Bräse S. Transition metal complexes of thiosemicarbazides, thiocarbohydrazides, and their corresponding carbazones with Cu(I), Cu(II), Co(II), Ni(II), Pd(II), and Ag(I)—A review. Molecules. 2023;28:1808. doi: 10.3390/molecules28041808. PubMed DOI PMC

Kalinowski D.S., Quach P., Richardson D.R. Thiosemicarbazones: The new wave in cancer treatment. Future Med. Chem. 2009;1:1143–1151. doi: 10.4155/fmc.09.80. PubMed DOI

Dilworth J.R., Hueting R. Metal complexes of thiosemicarbazones for imaging and therapy. Inorg. Chim. Acta. 2012;389:3–15. doi: 10.1016/j.ica.2012.02.019. DOI

Nutting C.M., van Herpen C.M., Miah A.B., Bhide S.A., Machiels J.P., Buter J., Kelly C., de Raucourt D., Harrington K.J. Phase II study of 3-AP Triapine in patients with recurrent or metastatic head and neck squamous cell carcinoma. Ann. Oncol. 2009;20:1275–1279. doi: 10.1093/annonc/mdn775. PubMed DOI

Ratner E.S., Zhu Y.L., Penketh P.G., Berenblum J., Whicker M.E., Huang P.H., Lee Y., Ishiguro K., Zhu R., Sartorelli A.C., et al. Triapine potentiates platinum-based combination therapy by disruption of homologous recombination repair. Br. J. Cancer. 2016;114:777–786. doi: 10.1038/bjc.2016.54. PubMed DOI PMC

Pósa V., Hajdu B., Tóth G., Dömötör O., Kowol C.R., Keppler B.K., Spengler G., Gyurcsik B., Enyedy É.A. The coordination modes of (thio)semicarbazone copper(II) complexes strongly modulate the solution chemical properties and mechanism of anticancer activity. J. Inorg. Biochem. 2022;231:111786. doi: 10.1016/j.jinorgbio.2022.111786. PubMed DOI

Sinicropi M.S., Ceramella J., Iacopetta D., Catalano A., Mariconda A., Rosano C., Saturnino C., El-Kashef H., Longo P. Metal complexes with Schiff bases: Data collection and recent studies on biological activities. Int. J. Mol. Sci. 2022;23:14840. doi: 10.3390/ijms232314840. PubMed DOI PMC

Pessoa J.C., Correia I. Salan vs. salen metal complexes in catalysis and medicinal applications: Virtues and pitfalls. Coord. Chem. Rev. 2019;388:227–247. doi: 10.1016/j.ccr.2019.02.035. DOI

Habala L., Varényi S., Bilková A., Herich P., Valentová J., Kožíšek J., Devínsky F. Antimicrobial activity and urease inhibition of Schiff bases derived from isoniazid and fluorinated benzaldehydes and of their copper(II) complexes. Molecules. 2016;21:1742. doi: 10.3390/molecules21121742. PubMed DOI PMC

Valentová J., Varényi S., Herich P., Baran P., Bilková A., Kožíšek J., Habala L. Synthesis, structures and biological activity of copper(II) and zinc(II) Schiff base complexes derived from aminocyclohexane-1-carboxylic acid. New type of geometrical isomerism in polynuclear complexes. Inorg. Chim. Acta. 2018;480:16–26. doi: 10.1016/j.ica.2018.04.058. DOI

Almoudi M.M., Hussein A.S., Abu Hassan M.I., Mohamad Zain N. A systematic review on antibacterial activity of zinc against Streptococcus mutans. Saudi Dent. J. 2018;30:283–291. doi: 10.1016/j.sdentj.2018.06.003. PubMed DOI PMC

Mutlu N., Liverani L., Kurtuldu F., Galusek D., Boccaccini A.R. Zinc improves antibacterial, anti-inflammatory and cell motility activity of chitosan for wound healing applications. Int. J. Biol. Macromol. 2022;213:845–857. doi: 10.1016/j.ijbiomac.2022.05.199. PubMed DOI PMC

Schwartz J.R. Zinc pyrithione: A topical antimicrobial with complex pharmaceutics. J. Drugs Dermatol. 2016;15:140–144. PubMed

Böhm H.J., Banner D., Bendels S., Kansy M., Kuhn B., Müller K., Obst-Sander U., Stahl M. Fluorine in medicinal chemistry. ChemBioChem. 2004;5:637–643. doi: 10.1002/cbic.200301023. PubMed DOI

Nguyen Q.T., Jeong J.H. Syntheses and X-ray structures of Cu(II) and Zn(II) complexes of N,N′-dibenzyl-(R,R)-1,2-diaminocyclohexane and application to nitroaldol reaction. Polyhedron. 2008;27:3227–3230. doi: 10.1016/j.poly.2008.07.011. DOI

Roh S.G., Yoon J.U., Jeong J.H. Synthesis and characterization of a chiral Zn(II) complex based on a trans-1,2-diaminocyclohexane derivative and catalytic reduction of acetophenone. Polyhedron. 2004;23:2063–2067. doi: 10.1016/j.poly.2004.04.033. DOI

Nayab S., Lee H., Jeong J.H. Synthesis and structural characterization of a dichloro zinc complex of N,N′-bis-(2,6-dichloro-benzyl)-(R,R)-1,2-diaminocyclohexane: Application to ring opening polymerization of rac-lactide. Polyhedron. 2012;31:682–687. doi: 10.1016/j.poly.2011.10.035. DOI

Nguyen Q.T., Jeong J.H. Synthesis and X-ray structure of Zn(II) complex of N,N′-bis(2-fluorobenzyl)-(R,R)-1,2-diaminocyclohexane and application to nitroaldol reaction. Bull. Korean Chem. Soc. 2008;29:483–486. doi: 10.1002/chin.200828074. DOI

Cho J., Jeong J.H., Shin H.J., Min K.S. Synthesis, structure and photoluminescence properties of naphthalene-based chiral zinc(II) complexes. Polyhedron. 2020;187:114643. doi: 10.1016/j.poly.2020.114643. DOI

STOE & Cie GmbH . X-Area. STOE & Cie GmbH; Darmstadt, Germany: 2018. version 1.84. Software Package for Collecting Single-Crystal Data on STOE Area-Detector Diffractometers, for Image Processing, Scaling Reflection Intensities and for Outlier Rejection.

Rigaku . CrysAlisPRO. Rigaku Oxford Diffraction; Yarnton, UK: 2022. version 1.0.43.

Dolomanov H., Bouhris O.V., Gildea L.J., Howard R.J., Puschmann J.A.K. OLEX 2. J. Appl. Cryst. 2009;42:339–341. doi: 10.1107/S0021889808042726. DOI

Sheldrick G.M. SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015;A71:3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC

Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015;C71:3–8. PubMed PMC

Bergerhoff G., Berndt M., Brandenburg K. Evaluation of Crystallographic Data with the Program DIAMOND. J. Res. Natl. Inst. Stand. Technol. 1996;101:221–225. doi: 10.6028/jres.101.023. PubMed DOI PMC

Lukáč M., Lacko I., Bukovský M., Kyselová Z., Karlovská J., Horváth B., Devínsky F. Synthesis and Antimicrobial Activity of a Series of Optically Active Quaternary Ammonium Salts Derived from Phenylalanine. Open Chem. 2010;8:194–201. doi: 10.2478/s11532-009-0126-8. DOI

Sreenivasulu B. Schiff Base and Reduced Schiff Base Ligands. In: Gale P., Steed J., editors. Supramolecular Chemistry: From Molecules to Nanomaterials. John Wiley & Sons; New York, NY, USA: 2012.

Smith B. Infrared Spectral Interpretation. CRC Press; Boca Raton, FL, USA: 1998. Organic Nitrogen Compounds.

Sharma M., Joshi P., Kumar N., Joshi S., Rohilla R.K., Roy N., Rawat D.S. Synthesis, Antimicrobial Activity and Structure–Activity Relationship Study of N,N-Dibenzyl-Cyclohexane-1,2-Diamine Derivatives. Eur. J. Med. Chem. 2011;46:480–487. doi: 10.1016/j.ejmech.2010.11.027. PubMed DOI

Aslantaş M., Kendi E., Demir N., Şabik A.E., Tümer M., Kertmen M. Synthesis, spectroscopic, structural characterization, electrochemical and antimicrobial activity studies of the Schiff base ligand and its transition metal complexes. Spectrochim. Acta A. 2009;74:617–624. doi: 10.1016/j.saa.2009.07.006. PubMed DOI

Bahaffi S.O., Abdel Aziz A.A., El-Naggar M.M. Synthesis, spectral characterization, DNA binding ability and antibacterial screening of copper(II) complexes of symmetrical NOON tetradentate Schiff bases bearing different bridges. J. Mol. Struct. 2012;1020:188–196. doi: 10.1016/j.molstruc.2012.04.017. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...