Antimicrobially Active Zn(II) Complexes of Reduced Schiff Bases Derived from Cyclohexane-1,2-diamine and Fluorinated Benzaldehydes-Synthesis, Crystal Structure and Bioactivity
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FaF/41/2022
Faculty of Pharmacy, Comenius University
1/0145/20
Scientific Grant Agency of the Slovak Republic VEGA
1/0175/23
Scientific Grant Agency of the Slovak Republic VEGA
APVV-20-0213
Slovak Research and Development Agency
ITMS 26240220084
Ministry of Education, Science, Research and Sport of the Slovak Republic
PubMed
37511891
PubMed Central
PMC10381420
DOI
10.3390/life13071516
PII: life13071516
Knihovny.cz E-zdroje
- Klíčová slova
- Schiff bases, antimicrobial activity, fluorinated compounds, medicinal chemistry, metal complexes, zinc,
- Publikační typ
- časopisecké články MeSH
A series of Schiff base ligands obtained by the condensation of trans-cyclohexane-1,2-diamine and fluorinated benzaldehydes were prepared, followed by their reduction with NaBH4. The reduced ligands were employed in the synthesis of zinc complexes of the general formula [ZnCl2(L)]. The structures of both the original and the reduced Schiff bases, as well as of the zinc complexes, were characterized by single-crystal X-ray analysis, along with NMR and IR spectroscopy. The antimicrobial activities of the reduced Schiff bases and their zinc complexes were evaluated in vitro against E. coli, S. aureus, and C. albicans. The compounds containing the 4-(trifluoromethylphenyl) moiety showed marked antibacterial activity. Interestingly, the antimicrobial effect of the zinc complex with this moiety was significantly higher than that of the corresponding free reduced ligand, comparable with ciprofloxacin used as standard. Thus, a synergic effect upon the complexation with zinc can be inferred.
Zobrazit více v PubMed
Antimicrobial Resistance Collaborators Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet. 2022;399:629–655. doi: 10.1016/S0140-6736(21)02724-0. PubMed DOI PMC
Frei A., Verderosa A.D., Elliott A.G., Zuegg J., Blaskovich M.A.T. Metals to combat antimicrobial resistance. Nat. Rev. Chem. 2023;7:202–224. doi: 10.1038/s41570-023-00463-4. PubMed DOI PMC
Regiel-Futyra A., Dąbrowski J.M., Mazuryk O., Śpiewak K., Kyzioł A., Pucelik B., Brindell M., Stochel G. Bioinorganic antimicrobial strategies in the resistance era. Coord. Chem. Rev. 2017;351:76–117. doi: 10.1016/j.ccr.2017.05.005. DOI
Boulechfar C., Ferkous H., Delimi A., Djedouani A., Kahlouche A., Boublia A., Darwish A.S., Lemaoui T., Verma R., Benguerba Y. Schiff bases and their metal complexes: A review on the history, synthesis, and applications. Inorg. Chem. Comm. 2023;150:110451. doi: 10.1016/j.inoche.2023.110451. DOI
El-Hiti G.A., Alotaibi M.H., Ahmed A.A., Hamad B.A., Ahmed D.S., Ahmed A., Hashim H., Yousif E. The morphology and performance of poly(vinyl chloride) containing melamine Schiff bases against ultraviolet light. Molecules. 2019;24:803. doi: 10.3390/molecules24040803. PubMed DOI PMC
Jeevadason A.W., Murugavel K.K., Neelakantan M.A. Review on Schiff bases and their metal complexes as organic photovoltaic materials. Renew. Sustain. Energy Rev. 2014;36:220–227. doi: 10.1016/j.rser.2014.04.060. DOI
De S., Jain A., Barman P. Recent advances in the catalytic applications of chiral Schiff-base ligands and metal complexes in asymmetric organic transformations. ChemistrySelect. 2022;7:e202104334. doi: 10.1002/slct.202104334. DOI
Qin W., Long S., Panunzio M., Biondi S. Schiff bases: A short survey on an evergreen chemistry tool. Molecules. 2013;18:12264–12289. doi: 10.3390/molecules181012264. PubMed DOI PMC
Iacopetta D., Ceramella J., Catalano A., Saturnino C., Bonomo M.G., Franchini C., Sinicropi M.S. Schiff bases: Interesting scaffolds with promising antitumoral properties. Appl. Sci. 2021;11:1877. doi: 10.3390/app11041877. DOI
Ceramella J., Iacopetta D., Catalano A., Cirillo F., Lappano R., Sinicropi M.S. A review on the antimicrobial activity of Schiff bases: Data collection and recent studies. Antibiotics. 2022;11:191. doi: 10.3390/antibiotics11020191. PubMed DOI PMC
Habala L., Devínsky F., Egger A.E. Metal complexes as urease inhibitors. J. Coord. Chem. 2018;71:907–940. doi: 10.1080/00958972.2018.1458228. DOI
Sumrra S.H., Zafar W., Imran M., Chohan Z.H. A review on the biomedical efficacy of transition metal triazole compounds. J. Coord. Chem. 2022;75:293–334. doi: 10.1080/00958972.2022.2059359. DOI
Sumrra S.H., Sahrish I., Raza M.A., Ahmad Z., Zafar M.N., Chohan Z.H., Khalid M., Ahmed S. Efficient synthesis, characterization, and in vitro bactericidal studies of unsymmetrically substituted triazole-derived Schiff base ligand and its transition metal complexes. Monatsh. Chem. 2020;151:549–557. doi: 10.1007/s00706-020-02571-z. DOI
Narang R., Narasimhan B., Sharma S. A review on biological activities and chemical synthesis of hydrazide derivatives. Curr. Med. Chem. 2012;19:569–612. doi: 10.2174/092986712798918789. PubMed DOI
Alsantali R.I., Mughal E.U., Naeem N., Alsharif M.A., Sadiq A., Ali A., Jassas R.S., Javed Q., Javid A., Sumrra S.H., et al. Flavone-based hydrazones as new tyrosinase inhibitors: Synthetic imines with emerging biological potential, SAR, molecular docking and drug-likeness studies. J. Mol. Struct. 2022;1251:131933. doi: 10.1016/j.molstruc.2021.131933. DOI
Aly A.A., Abdallah E.M., Qassem S.A., Rabee M.M., Bräse S. Transition metal complexes of thiosemicarbazides, thiocarbohydrazides, and their corresponding carbazones with Cu(I), Cu(II), Co(II), Ni(II), Pd(II), and Ag(I)—A review. Molecules. 2023;28:1808. doi: 10.3390/molecules28041808. PubMed DOI PMC
Kalinowski D.S., Quach P., Richardson D.R. Thiosemicarbazones: The new wave in cancer treatment. Future Med. Chem. 2009;1:1143–1151. doi: 10.4155/fmc.09.80. PubMed DOI
Dilworth J.R., Hueting R. Metal complexes of thiosemicarbazones for imaging and therapy. Inorg. Chim. Acta. 2012;389:3–15. doi: 10.1016/j.ica.2012.02.019. DOI
Nutting C.M., van Herpen C.M., Miah A.B., Bhide S.A., Machiels J.P., Buter J., Kelly C., de Raucourt D., Harrington K.J. Phase II study of 3-AP Triapine in patients with recurrent or metastatic head and neck squamous cell carcinoma. Ann. Oncol. 2009;20:1275–1279. doi: 10.1093/annonc/mdn775. PubMed DOI
Ratner E.S., Zhu Y.L., Penketh P.G., Berenblum J., Whicker M.E., Huang P.H., Lee Y., Ishiguro K., Zhu R., Sartorelli A.C., et al. Triapine potentiates platinum-based combination therapy by disruption of homologous recombination repair. Br. J. Cancer. 2016;114:777–786. doi: 10.1038/bjc.2016.54. PubMed DOI PMC
Pósa V., Hajdu B., Tóth G., Dömötör O., Kowol C.R., Keppler B.K., Spengler G., Gyurcsik B., Enyedy É.A. The coordination modes of (thio)semicarbazone copper(II) complexes strongly modulate the solution chemical properties and mechanism of anticancer activity. J. Inorg. Biochem. 2022;231:111786. doi: 10.1016/j.jinorgbio.2022.111786. PubMed DOI
Sinicropi M.S., Ceramella J., Iacopetta D., Catalano A., Mariconda A., Rosano C., Saturnino C., El-Kashef H., Longo P. Metal complexes with Schiff bases: Data collection and recent studies on biological activities. Int. J. Mol. Sci. 2022;23:14840. doi: 10.3390/ijms232314840. PubMed DOI PMC
Pessoa J.C., Correia I. Salan vs. salen metal complexes in catalysis and medicinal applications: Virtues and pitfalls. Coord. Chem. Rev. 2019;388:227–247. doi: 10.1016/j.ccr.2019.02.035. DOI
Habala L., Varényi S., Bilková A., Herich P., Valentová J., Kožíšek J., Devínsky F. Antimicrobial activity and urease inhibition of Schiff bases derived from isoniazid and fluorinated benzaldehydes and of their copper(II) complexes. Molecules. 2016;21:1742. doi: 10.3390/molecules21121742. PubMed DOI PMC
Valentová J., Varényi S., Herich P., Baran P., Bilková A., Kožíšek J., Habala L. Synthesis, structures and biological activity of copper(II) and zinc(II) Schiff base complexes derived from aminocyclohexane-1-carboxylic acid. New type of geometrical isomerism in polynuclear complexes. Inorg. Chim. Acta. 2018;480:16–26. doi: 10.1016/j.ica.2018.04.058. DOI
Almoudi M.M., Hussein A.S., Abu Hassan M.I., Mohamad Zain N. A systematic review on antibacterial activity of zinc against Streptococcus mutans. Saudi Dent. J. 2018;30:283–291. doi: 10.1016/j.sdentj.2018.06.003. PubMed DOI PMC
Mutlu N., Liverani L., Kurtuldu F., Galusek D., Boccaccini A.R. Zinc improves antibacterial, anti-inflammatory and cell motility activity of chitosan for wound healing applications. Int. J. Biol. Macromol. 2022;213:845–857. doi: 10.1016/j.ijbiomac.2022.05.199. PubMed DOI PMC
Schwartz J.R. Zinc pyrithione: A topical antimicrobial with complex pharmaceutics. J. Drugs Dermatol. 2016;15:140–144. PubMed
Böhm H.J., Banner D., Bendels S., Kansy M., Kuhn B., Müller K., Obst-Sander U., Stahl M. Fluorine in medicinal chemistry. ChemBioChem. 2004;5:637–643. doi: 10.1002/cbic.200301023. PubMed DOI
Nguyen Q.T., Jeong J.H. Syntheses and X-ray structures of Cu(II) and Zn(II) complexes of N,N′-dibenzyl-(R,R)-1,2-diaminocyclohexane and application to nitroaldol reaction. Polyhedron. 2008;27:3227–3230. doi: 10.1016/j.poly.2008.07.011. DOI
Roh S.G., Yoon J.U., Jeong J.H. Synthesis and characterization of a chiral Zn(II) complex based on a trans-1,2-diaminocyclohexane derivative and catalytic reduction of acetophenone. Polyhedron. 2004;23:2063–2067. doi: 10.1016/j.poly.2004.04.033. DOI
Nayab S., Lee H., Jeong J.H. Synthesis and structural characterization of a dichloro zinc complex of N,N′-bis-(2,6-dichloro-benzyl)-(R,R)-1,2-diaminocyclohexane: Application to ring opening polymerization of rac-lactide. Polyhedron. 2012;31:682–687. doi: 10.1016/j.poly.2011.10.035. DOI
Nguyen Q.T., Jeong J.H. Synthesis and X-ray structure of Zn(II) complex of N,N′-bis(2-fluorobenzyl)-(R,R)-1,2-diaminocyclohexane and application to nitroaldol reaction. Bull. Korean Chem. Soc. 2008;29:483–486. doi: 10.1002/chin.200828074. DOI
Cho J., Jeong J.H., Shin H.J., Min K.S. Synthesis, structure and photoluminescence properties of naphthalene-based chiral zinc(II) complexes. Polyhedron. 2020;187:114643. doi: 10.1016/j.poly.2020.114643. DOI
STOE & Cie GmbH . X-Area. STOE & Cie GmbH; Darmstadt, Germany: 2018. version 1.84. Software Package for Collecting Single-Crystal Data on STOE Area-Detector Diffractometers, for Image Processing, Scaling Reflection Intensities and for Outlier Rejection.
Rigaku . CrysAlisPRO. Rigaku Oxford Diffraction; Yarnton, UK: 2022. version 1.0.43.
Dolomanov H., Bouhris O.V., Gildea L.J., Howard R.J., Puschmann J.A.K. OLEX 2. J. Appl. Cryst. 2009;42:339–341. doi: 10.1107/S0021889808042726. DOI
Sheldrick G.M. SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015;A71:3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC
Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015;C71:3–8. PubMed PMC
Bergerhoff G., Berndt M., Brandenburg K. Evaluation of Crystallographic Data with the Program DIAMOND. J. Res. Natl. Inst. Stand. Technol. 1996;101:221–225. doi: 10.6028/jres.101.023. PubMed DOI PMC
Lukáč M., Lacko I., Bukovský M., Kyselová Z., Karlovská J., Horváth B., Devínsky F. Synthesis and Antimicrobial Activity of a Series of Optically Active Quaternary Ammonium Salts Derived from Phenylalanine. Open Chem. 2010;8:194–201. doi: 10.2478/s11532-009-0126-8. DOI
Sreenivasulu B. Schiff Base and Reduced Schiff Base Ligands. In: Gale P., Steed J., editors. Supramolecular Chemistry: From Molecules to Nanomaterials. John Wiley & Sons; New York, NY, USA: 2012.
Smith B. Infrared Spectral Interpretation. CRC Press; Boca Raton, FL, USA: 1998. Organic Nitrogen Compounds.
Sharma M., Joshi P., Kumar N., Joshi S., Rohilla R.K., Roy N., Rawat D.S. Synthesis, Antimicrobial Activity and Structure–Activity Relationship Study of N,N-Dibenzyl-Cyclohexane-1,2-Diamine Derivatives. Eur. J. Med. Chem. 2011;46:480–487. doi: 10.1016/j.ejmech.2010.11.027. PubMed DOI
Aslantaş M., Kendi E., Demir N., Şabik A.E., Tümer M., Kertmen M. Synthesis, spectroscopic, structural characterization, electrochemical and antimicrobial activity studies of the Schiff base ligand and its transition metal complexes. Spectrochim. Acta A. 2009;74:617–624. doi: 10.1016/j.saa.2009.07.006. PubMed DOI
Bahaffi S.O., Abdel Aziz A.A., El-Naggar M.M. Synthesis, spectral characterization, DNA binding ability and antibacterial screening of copper(II) complexes of symmetrical NOON tetradentate Schiff bases bearing different bridges. J. Mol. Struct. 2012;1020:188–196. doi: 10.1016/j.molstruc.2012.04.017. DOI