The Influence of Various Adhesive Systems and Polishing Methods on Enamel Surface Roughness after Debonding of Orthodontic Brackets: A Three-Dimensional In Vitro Evaluation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Progres Q29/1LF
Charles University
Cooperatio 207030 Dental Medicine/LF1
Charles University
PubMed
37512378
PubMed Central
PMC10384124
DOI
10.3390/ma16145107
PII: ma16145107
Knihovny.cz E-zdroje
- Klíčová slova
- CLSM, adhesives, dental materials, dentistry, enamel surface roughness, orthodontics, polishing,
- Publikační typ
- časopisecké články MeSH
A slight alteration of the enamel surface is inevitable upon debonding of orthodontic brackets, adhesive removal, and finishing/polishing. The aim of this in vitro study was to compare two adhesives and three polishing methods by measuring enamel surface roughness using confocal laser scanning microscopy (CLSM). Brackets were bonded on 42 extracted human premolars using Transbond XT (Transbond group) or Fuji Ortho (Fuji group). After debracketing, adhesives were removed with a tungsten carbide bur, and surfaces were polished using Sof-Lex discs, a rotary brush with a prophylactic paste (Depural), or a prophylactic cup with two polishing pastes (n = 7 in each subgroup). Surface roughness (Sa, Sku, Sq, and Sz) was measured using CLSM and compared before treatment (T1), after debracketing and adhesive removal (T2), and after polishing (T3). The data were statistically analyzed using the Mann-Whitney U and Kruskal-Wallis tests with Bonferroni correction. The time required for adhesive removal was measured and compared using a two-sample t-test. Surface roughness at T2 increased compared to T1, but the difference was significant only for the Fuji group (p < 0.01). The time required to remove Transbond XT (94.1 ± 6.8 s) was significantly higher compared to Fuji (72.1 ± 5.9 s, p < 0.0001). Polishing with Sof-Lex discs resulted in lower surface roughness compared to T1 (p = 0.018). Using Depural and polishing pastes showed no significant difference in surface roughness compared to T1, except for a significant decrease in Sa and Sq for Transbond (p = 0.043) and in Sku for Fuji (p = 0.018) after polishing with Depural. In conclusion, the removal of Transbond took significantly longer, but there were fewer residues of composite resin on the enamel surface. Sof-Lex discs decreased enamel roughness, whereas enamel morphology and roughness were similar to the pre-treatment state after polishing with polishing pastes.
Zobrazit více v PubMed
Pont H.B., Ozcan M., Bagis B., Ren Y. Loss of surface enamel after bracket debonding: An in-vivo and ex-vivo evaluation. Am. J. Orthod. Dentofac. Orthop. 2010;138:387.e1–387.e9. doi: 10.1016/j.ajodo.2010.01.028. PubMed DOI
Al Shamsi A.H., Cunningham J.L., Lamey P.J., Lynch E. Three-dimensional measurement of residual adhesive and enamel loss on teeth after debonding of orthodontic brackets: An in-vitro study. Am. J. Orthod. Dentofac. Orthop. 2007;131:e9–e301. doi: 10.1016/j.ajodo.2006.01.026. PubMed DOI
Ireland A.J., Hosein I., Sherriff M. Enamel loss at bond-up, debond and clean-up following the use of a conventional light-cured composite and a resin-modified glass polyalkenoate cement. Eur. J. Orthod. 2005;27:413–419. doi: 10.1093/ejo/cji031. PubMed DOI
Sugsompian K., Tansalarak R., Piyapattamin T. Comparison of the enamel surface roughness from different polishing methods: Scanning electron microscopy and atomic force microscopy investigation. Eur. J. Dent. 2020;14:299–305. doi: 10.1055/s-0040-1709945. PubMed DOI PMC
Shah P., Sharma P., Goje S.K., Kanzariya N., Parikh M. Comparative evaluation of enamel surface roughness after debonding using four finishing and polishing systems for residual resin removal-an in vitro study. Prog. Orthod. 2019;20:18. doi: 10.1186/s40510-019-0269-x. PubMed DOI PMC
Mohebi S., Shafiee H.A., Ameli N. Evaluation of enamel surface roughness after orthodontic bracket debonding with atomic force microscopy. Am. J. Orthod. Dentofac. Orthop. 2017;151:521–527. doi: 10.1016/j.ajodo.2016.08.025. PubMed DOI
Dumbryte I., Malinauskas M. In vivo examination of enamel microcracks after orthodontic debonding: Is there a need for detailed analysis? Am. J. Orthod. Dentofac. Orthop. 2021;159:e103–e111. doi: 10.1016/j.ajodo.2020.09.013. PubMed DOI
Cochrane N.J., Lo T.W.G., Adams G.G., Schneider P.M. Quantitative analysis of enamel on debonded orthodontic brackets. Am. J. Orthod. Dentofac. Orthop. 2017;152:312–319. doi: 10.1016/j.ajodo.2017.01.020. PubMed DOI
Øgaard B., Rolla G. Oral microbiological changes, long-term enamel alterations due to decalcification, and caries prophylactic aspects. In: Brantley W.A., Eliades T., editors. Orthodontic Materials: Scientific and Clinical Aspects. Thieme; Stuttgart, Germany: 2001. pp. 123–142.
Bollen C.M., Lambrechts P., Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: A review of the literature. Dent. Mater. 1997;13:258–269. doi: 10.1016/S0109-5641(97)80038-3. PubMed DOI
Janiszewska-Olszowska J., Tandecka K., Szatkiewicz T., Sporniak-Tutak K., Grocholewicz K. Three-dimensional quantitative analysis of adhesive remnants and enamel loss resulting from debonding orthodontic molar tubes. Head Face Med. 2014;10:37. doi: 10.1186/1746-160X-10-37. PubMed DOI PMC
Zachrisson B.U., Årthun J. Enamel surface appearance after various debonding techniques. Am. J. Orthod. 1979;75:121–127. doi: 10.1016/0002-9416(79)90181-7. PubMed DOI
Alessandri Bonetti G., Zanarini M., Incerti Parenti S., Lattuca M., Marchionni S., Gatto M.R. Evaluation of enamel surfaces after bracket debonding: An in-vivo study with scanning electron microscopy. Am. J. Orthod. Dentofac. Orthop. 2011;140:696–702. doi: 10.1016/j.ajodo.2011.02.027. PubMed DOI
Eminkahyagil N., Arman A., Cetinsahin A., Karabulut E. Effect of resin-removal methods on enamel and shear bond strength of rebonded brackets. Angle Orthod. 2006;76:314–321. PubMed
Sigiliao L.C., Marquezan M., Elias C.N., Ruellas A.C., Sant’Anna E.F. Efficiency of different protocols for enamel clean-up after bracket debonding: An in vitro study. Dent. Press J. Orthod. 2015;20:78–85. doi: 10.1590/2177-6709.20.5.078-085.oar. PubMed DOI PMC
Degrazia F.W., Genari B., Ferrazzo V.A., Santos-Pinto A.D., Grehs R.A. Enamel roughness changes after removal of orthodontic adhesive. Dent. J. 2018;6:39. doi: 10.3390/dj6030039. PubMed DOI PMC
Ferreira J.T.L., Borsatto M.C., Saraiva M.C.P., Matsumoto M.A.N., Torres C.P., Romano F.L. Evaluation of enamel roughness in vitro after orthodontic bracket debonding using different methods of residual adhesive removal. Turk. J. Orthod. 2020;33:43–51. doi: 10.5152/TurkJOrthod.2020.19016. PubMed DOI PMC
Karan S., Kircelli B.H., Tasdelen B. Enamel surface roughness after debonding. Angle Orthod. 2010;80:1081–1088. doi: 10.2319/012610-55.1. PubMed DOI PMC
Sfondrini M.F., Scribante A., Fraticelli D., Roncallo S., Gandini P. Epidemiological survey of different clinical techniques of orthodontic bracket debonding and enamel polishing. J. Orthod. Sci. 2015;4:123–127. doi: 10.4103/2278-0203.173425. PubMed DOI PMC
Zarrinnia K., Eid N.M., Kehoe M.J. The effect of different debonding techniques on the enamel surface: An in vitro qualitative study. Am. J. Orthod. Dentofac. Orthop. 1995;108:284–293. doi: 10.1016/S0889-5406(95)70023-4. PubMed DOI
Cardoso L.A., Valdrighi H.C., Vedovello Filho M., Correr A.B. Effect of adhesive remnant removal on enamel topography after bracket debonding. Dent. Press J. Orthod. 2014;19:105–112. doi: 10.1590/2176-9451.19.6.105-112.oar. PubMed DOI PMC
Eliades T., Gioka C., Eliades G., Makou M. Enamel surface roughness following debonding using two resin grinding methods. Eur. J. Orthod. 2004;26:333–338. doi: 10.1093/ejo/26.3.333. PubMed DOI
Fjeld M., Ogaard B. Scanning electron microscopic evaluation of enamel surfaces exposed to 3 orthodontic bonding systems. Am. J. Orthod. Dentofac. Orthop. 2006;130:575–581. doi: 10.1016/j.ajodo.2006.07.002. PubMed DOI
Norevall L.I., Marcusson A., Persson M. A clinical evaluation of a glass ionomer cement as an orthodontic bonding adhesive compared with an acrylic resin. Eur. J. Orthod. 1996;18:373–384. doi: 10.1093/ejo/18.4.373. PubMed DOI
David V.A., Staley R.N., Bigelow H.F., Jakobsen J.R. Remnant amount and cleanup for 3 adhesives after debracketing. Am. J. Orthod. Dentofac. Orthop. 2002;121:291–296. doi: 10.1067/mod.2002.121008. PubMed DOI
Cacciafesta V., Sfondrini M.F., De Angelis M., Scribante A., Klersy C. Effect of water and saliva contamination on shear bond strength of brackets bonded with conventional, hydrophilic, and self-etching primers. Am. J. Orthod. Dentofac. Orthop. 2003;123:633–640. doi: 10.1016/S0889-5406(03)00198-7. PubMed DOI
Cacciafesta V., Sfondrini M.F., Scribante A., De Angelis M., Klersy C. Effect of blood contamination on shear bond strength of brackets bonded with a self-etching primer combined with a resin-modified glass ionomer. Am. J. Orthod. Dentofac. Orthop. 2004;126:703–708. doi: 10.1016/j.ajodo.2003.10.041. PubMed DOI
Valente R.M., De Rijk W.G., Drummond J.L., Evans C.A. Etching conditions for resin-modified glass ionomer cement for orthodontic brackets. Am. J. Orthod. Dentofac. Orthop. 2002;121:516–520. doi: 10.1067/mod.2002.122165. PubMed DOI
Mickenautsch S., Yengopal V., Banerjee A. Retention of orthodontic brackets bonded with resin-modified GIC versus composite resin adhesives—A quantitative systematic review of clinical trials. Clin. Oral Investig. 2012;16:1–14. doi: 10.1007/s00784-011-0626-8. PubMed DOI
Armstrong S., Breschi L., Ozcan M., Pfefferkorn F., Ferrari M., Van Meerbeek B. Academy of Dental Materials guidance on in vitro testing of dental composite bonding effectiveness to dentin/enamel using micro-tensile bond strength (µTBS) approach. Dent. Mater. 2017;33:133–143. doi: 10.1016/j.dental.2016.11.015. PubMed DOI
Mattick C.R., Hobson R.S. A comparative micro-topographic study of the buccal enamel of different tooth types. J. Orthod. 2000;27:143–148. doi: 10.1093/ortho/27.2.143. PubMed DOI
Brauchli L.M., Baumgartner E.M., Ball J., Wichelhaus A. Roughness of enamel surfaces after different bonding and debonding procedures: An in vitro study. J. Orofac Orthop. 2011;72:61–67. doi: 10.1007/s00056-010-0002-3. PubMed DOI
Ferreira F.G., da Silva E.M., Vilella O.V. A novel method using confocal laser scanning microscopy for three-dimensional analysis of human dental enamel subjected to ceramic bracket debonding. Microsc Microanal. 2020;26:1053–1060. doi: 10.1017/S1431927620024319. PubMed DOI
Ferreira F.G., Nouer D.F., Silva N.P., Garbui I.U., Correr-Sobrinho L., Nouer P.R. Qualitative and quantitative evaluation of human dental enamel after bracket debonding: A noncontact three-dimensional optical profilometry analysis. Clin. Oral Investig. 2014;18:1853–1864. doi: 10.1007/s00784-013-1159-0. PubMed DOI
Vilchis R.J., Hotta Y., Yamamoto K. Examination of enamel-adhesive interface with focused ion beam and scanning electron microscopy. Am. J. Orthod. Dentofac. Orthop. 2007;131:646–650. doi: 10.1016/j.ajodo.2006.11.017. PubMed DOI
van Waes H., Matter T., Krejci I. Three-dimensional measurement of enamel loss caused by bonding and debonding of orthodontic brackets. Am. J. Orthod. Dentofac. Orthop. 1997;112:666–669. doi: 10.1016/S0889-5406(97)70232-4. PubMed DOI
Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters. International Organization for Standardization; Geneva, Switzerland: 2021.
Kim J.H., Kim K.B., Kim W.C., Kim J.H., Kim H.Y. Accuracy and precision of polyurethane dental arch models fabricated using a three-dimensional subtractive rapid prototyping method with an intraoral scanning technique. Korean J. Orthod. 2014;44:69–76. doi: 10.4041/kjod.2014.44.2.69. PubMed DOI PMC
Rix D., Foley T.F., Mamandras A. Comparison of bond strength of three adhesives: Composite resin, hybrid GIC, and glass-filled GIC. Am. J. Orthod. Dentofac. Orthop. 2001;119:36–42. doi: 10.1067/mod.2001.110519. PubMed DOI
Rodrigues D.S., Buciumeanu M., Martinelli A.E., Nascimento R.M., Henriques B., Silva F.S., Souza J.C.M. Mechanical strength and wear of dental glass-ionomer and resin composites affected by porosity and chemical composition. J. Bio.-Tribo-Corros. 2015;1:24. doi: 10.1007/s40735-015-0025-9. DOI
Faria-Junior E.M., Guiraldo R.D., Berger S.B., Correr A.B., Correr-Sobrinho L., Contreras E.F., Lopes M.B. In-vivo evaluation of the surface roughness and morphology of enamel after bracket removal and polishing by different techniques. Am. J. Orthod. Dentofac. Orthop. 2015;147:324–329. doi: 10.1016/j.ajodo.2014.10.033. PubMed DOI
Ozer T., Basaran G., Kama J.D. Surface roughness of the restored enamel after orthodontic treatment. Am. J. Orthod. Dentofac. Orthop. 2010;137:368–374. doi: 10.1016/j.ajodo.2008.02.025. PubMed DOI
Ahrari F., Akbari M., Akbari J., Dabiri G. Enamel surface roughness after debonding of orthodontic brackets and various clean-up techniques. J. Dent. 2013;10:82–93. PubMed PMC
Retief D.H., Denys F.R. Finishing of enamel surfaces after debonding of orthodontic attachments. Angle Orthod. 1979;49:1–10. PubMed
Vidor M.M., Felix R.P., Marchioro E.M., Hahn L. Enamel surface evaluation after bracket debonding and different resin removal methods. Dent. Press J. Orthod. 2015;20:61–67. doi: 10.1590/2176-9451.20.2.061-067.oar. PubMed DOI PMC
Sfondrini M.F., Cacciafesta V., Scribante A., Klersy C. Plasma arc versus halogen light curing of orthodontic brackets: A 12-month clinical study of bond failures. Am. J. Orthod. Dentofac. Orthop. 2004;125:342–347. doi: 10.1016/j.ajodo.2003.02.008. PubMed DOI
Hama T., Namura Y., Nishio Y., Yoneyama T., Shimizu N. Effect of orthodontic adhesive thickness on force required by debonding pliers. J. Oral. Sci. 2014;56:185–190. doi: 10.2334/josnusd.56.185. PubMed DOI