Electrospun PA6 Nanofibers Bearing the CeO2 Dephosphorylation Catalyst

. 2023 Jul 25 ; 8 (29) : 26610-26618. [epub] 20230712

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37521625

Two types of CeO2 nanoparticles (CeNPs) prepared by low-temperature (<100 °C) precipitation methods in water were successfully immobilized in a matrix of electrospun PA6 nanofibers. The colloidal solutions of CeNPs in AcOH were directly mixed with the polymer solution before the needle electrospinning process, thereby achieving their good dispersion in the nanofibers. CeNPs embedded in the structure and on the surface of nanofibers exposing their reactive surfaces showed robust dephosphorylation catalytic activity, as demonstrated by monitoring the hydrolytic cleavage of three phosphodiester molecules (p-NP-TMP, p-NPPC, BNPP) in water by the HPLC method. This procedure allowed us to study the kinetics and mechanism of the hydrolytic cleavage and the ability of immobilized CeNPs to cleave different types of P-O bonds. One of the main hydrolysis products, p-nitrophenol, was effectively adsorbed on PA6 nanofibers, which may allow the selective separation of the degradation products after hydrolysis.

Zobrazit více v PubMed

Johansson B.; Luo W.; Li S.; Ahuja R. Cerium; Crystal Structure and Position in the Periodic Table. Sci. Rep. 2014, 4, 6398.10.1038/srep06398. PubMed DOI PMC

Helali Z.; Jedidi A.; Syzgantseva O. A.; Calatayud M.; Minot C. Scaling Reducibility of Metal Oxides. Theor. Chem. Acc. 2017, 136, 100.10.1007/s00214-017-2130-y. DOI

Puigdollers A. R.; Schlexer P.; Tosoni S.; Pacchioni G. Increasing Oxide Reducibility: The Role of Metal/Oxide Interfaces in the Formation of Oxygen Vacancies. ACS Catal. 2017, 7, 6493–6513. 10.1021/acscatal.7b01913. DOI

Montini T.; Melchionna M.; Monai M.; Fornasiero P. Fundamentals and Catalytic Applications of CeO2-Based Materials. Chem. Rev. 2016, 116, 5987–6041. 10.1021/acs.chemrev.5b00603. PubMed DOI

Zeng L.; Cheng Z.; Fan J. A.; Fan L. S.; Gong J. Metal Oxide Redox Chemistry for Chemical Looping Processes. Nat. Rev. Chem. 2018, 2, 349–364. 10.1038/s41570-018-0046-2. DOI

Metiu H.; Chrétien S.; Hu Z.; Li B.; Sun X. Chemistry of Lewis Acid–Base Pairs on Oxide Surfaces. J. Phys. Chem. C 2012, 116, 10439–10450. 10.1021/jp301341t. DOI

Majumder D.; Roy S. Development of Low-Ppm CO Sensors Using Pristine CeO2 Nanospheres with High Surface Area. ACS Omega 2018, 3, 4433–4440. 10.1021/acsomega.8b00146. PubMed DOI PMC

Waterhouse G. I. N.; Metson J. B.; Idriss H.; Sun-Waterhouse D. Physical and Optical Properties of Inverse Opal CeO2 Photonic Crystals. Chem. Mater. 2008, 20, 1183–1190. 10.1021/cm703005g. DOI

Melchionna M.; Fornasiero P. The Role of Ceria-Based Nanostructured Materials in Energy Applications. Mater. Today 2014, 17, 349–357. 10.1016/j.mattod.2014.05.005. DOI

Seal S.; Jeyaranjan A.; Neal C. J.; Kumar U.; Sakthivel T. S.; Sayle D. C. Engineered Defects in Cerium Oxides: Tuning Chemical Reactivity for Biomedical, Environmental, & Energy Applications. Nanoscale 2020, 12, 6879–6899. 10.1039/d0nr01203c. PubMed DOI

Xu C.; Qu X. Cerium Oxide Nanoparticle: A Remarkably Versatile Rare Earth Nanomaterial for Biological Applications. NPG Asia Mater. 2014, 6, e9010.1038/am.2013.88. DOI

Rzigalinski B. A.; Carfagna C. S.; Ehrich M. Cerium Oxide Nanoparticles in Neuroprotection and Considerations for Efficacy and Safety. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2017, 9, e144410.1002/wnan.1444. PubMed DOI PMC

Fang G.; Kang R.; Cai S.; Ge C. Insight into Nanozymes for Their Environmental Applications as Antimicrobial and Antifouling Agents: Progress, Challenges and Prospects. Nano Today 2023, 48, 10175510.1016/j.nantod.2023.101755. DOI

Alizadeh N.; Salimi A.; Sham T. K.; Bazylewski P.; Fanchini G. Intrinsic Enzyme-like Activities of Cerium Oxide Nanocomposite and Its Application for Extracellular H2O2 Detection Using an Electrochemical Microfluidic Device. ACS Omega 2020, 5, 11883–11894. 10.1021/acsomega.9b03252. PubMed DOI PMC

Yang Y.; Mao Z.; Huang W.; Liu L.; Li J.; Li J.; Wu Q. Redox Enzyme-Mimicking Activities of CeO2 Nanostructures: Intrinsic Influence of Exposed Facets. Sci. Rep. 2016, 6, 35344.10.1038/srep35344. PubMed DOI PMC

Tian Z.; Li J.; Zhang Z.; Gao W.; Zhou X.; Qu Y. Highly Sensitive and Robust Peroxidase-like Activity of Porous Nanorods of Ceria and Their Application for Breast Cancer Detection. Biomaterials 2015, 59, 116–124. 10.1016/j.biomaterials.2015.04.039. PubMed DOI

Baldim V.; Bedioui F.; Mignet N.; Margaill I.; Berret J. F. The Enzyme-like Catalytic Activity of Cerium Oxide Nanoparticles and Its Dependency on Ce3+ Surface Area Concentration. Nanoscale 2018, 10, 6971–6980. 10.1039/c8nr00325d. PubMed DOI

Manto M. J.; Xie P.; Wang C. Catalytic Dephosphorylation Using Ceria Nanocrystals. ACS Catal. 2017, 7, 1931–1938. 10.1021/acscatal.6b03472. DOI

Janoš P.; Lovászová I.; Pfeifer J.; Ederer J.; Došek M.; Loučka T.; Henych J.; Kolská Z.; Milde D.; Opletal T. Accelerated Dephosphorylation of Adenosine Phosphates and Related Compounds in the Presence of Nanocrystalline Cerium Oxide. Environ Sci Nano 2016, 3, 847–856. 10.1039/c6en00086j. DOI

Janoš P.; Henych J.; Pfeifer J.; Zemanová N.; Pilařová V.; Milde D.; Opletal T.; Tolasz J.; Malý M.; Štengl V. Nanocrystalline Cerium Oxide Prepared from a Carbonate Precursor and Its Ability to Breakdown Biologically Relevant Organophosphates. Environ Sci Nano 2017, 4, 1283–1293. 10.1039/c7en00119c. DOI

Janoš P.; Ederer J.; Došek M.; Štojdl J.; Henych J.; Tolasz J.; Kormunda M.; Mazanec K. Can Cerium Oxide Serve as a Phosphodiesterase-Mimetic Nanozyme?. Environ Sci Nano 2019, 6, 3684–3698. 10.1039/c9en00815b. DOI

Henych J.; Št’astný M.; Ederer J.; Němečková Z.; Pogorzelska A.; Tolasz J.; Kormunda M.; Ryšánek P.; Bażanów B.; Stygar D.; Mazanec K.; Janoš P. How the Surface Chemical Properties of Nanoceria Are Related to Its Enzyme-like, Antiviral and Degradation Activity. Environ Sci Nano 2022, 9, 3485–3501. 10.1039/d2en00173j. DOI

Zhang S.; Tang N.; Cao L.; Yin X.; Yu J.; Ding B. Highly Integrated Polysulfone/Polyacrylonitrile/Polyamide-6 Air Filter for Multilevel Physical Sieving Airborne Particles. ACS Appl. Mater. Interfaces 2016, 8, 29062–29072. 10.1021/acsami.6b10094. PubMed DOI

Wang X.; Hsiao B. S. Electrospun Nanofiber Membranes. Curr Opin Chem Eng 2016, 12, 62–81. 10.1016/j.coche.2016.03.001. DOI

Wang Y.; Yokota T.; Someya T. Electrospun Nanofiber-Based Soft Electronics. NPG Asia Mater. 2021, 13, 22.10.1038/s41427-020-00267-8. DOI

Li Y.; Fu Z.; Lu S.; Sun X.; Zhang X.; Weng L. Polymer Nanofibers Framework Composite Solid Electrolyte with Lithium Dendrite Suppression for Long Life All-Solid-State Lithium Metal Battery. Chem. Eng. J. 2022, 440, 13581610.1016/j.cej.2022.135816. DOI

Rasouli R.; Barhoum A.; Bechelany M.; Dufresne A. Nanofibers for Biomedical and Healthcare Applications. Macromol. Biosci. 2019, 19, 1800256.10.1002/mabi.201800256. PubMed DOI

Vasita R.; Katti D. S. Nanofibers and Their Applications in Tissue Engineering. Int. J. Nanomed. 2006, 1, 15–30. 10.2147/nano.2006.1.1.15. PubMed DOI PMC

Zhang S.; Wu Y.; Ji P.; Ran Q.; Wang H.; Chen B.; Wang C. Sustainable Production of Polyamide 6 Fibers: Direct Melt Spinning and Efficient Reuse of Residual Oligomers during Polymerization. ACS Sustainable Chem. Eng. 2023, 11, 3789–3800. 10.1021/acssuschemeng.2c06974. DOI

Knapczyk-Korczak J.; Ura D. P.; Gajek M.; Marzec M. M.; Berent K.; Bernasik A.; Chiverton J. P.; Stachewicz U. Fiber-Based Composite Meshes with Controlled Mechanical and Wetting Properties for Water Harvesting. ACS Appl. Mater. Interfaces 2020, 12, 1665–1676. 10.1021/acsami.9b19839. PubMed DOI

Liu Y.; Jiang S.; Yan W.; Qin J.; He M.; Qin S.; Yu J. Enhanced Thermal Property and Anti-Moisture Absorption of PA6/P (N-(4-Carboxyphenyl)Maleimide-Alt-Triallyl Isocyanurate) Composites Based on Solid-State Interfacial Reaction. J Mater Res Technol 2020, 9, 11291–11302. 10.1016/j.jmrt.2020.07.103. DOI

Mercante L. A.; Pavinatto A.; Iwaki L. E.; Scagion V. P.; Zucolotto V.; Oliveira O. N. Jr.; Mattoso L. H.; Correa D. S. Electrospun Polyamide 6/Poly(Allylamine Hydrochloride) Nanofibers Functionalized with Carbon Nanotubes for Electrochemical Detection of Dopamine. ACS Appl. Mater. Interfaces 2015, 7, 4784–4790. 10.1021/am508709c. PubMed DOI

Deyab N. M.; Ekram B.; Badr K. R.; Abd El-Hady B. M.; Allam N. K. Antiviral Electrospun Polyamide Three-Layered Mask Filter Containing Metal Oxide Nanoparticles and Black Seed Oil. ACS Omega 2022, 7, 44438–44447. 10.1021/acsomega.2c06611. PubMed DOI PMC

Gao L.; Li J.; Ju J.; Cheng B.; Kang W.; Deng N. High-Performance All-Solid-State Polymer Electrolyte with Fast Conductivity Pathway Formed by Hierarchical Structure Polyamide 6 Nanofiber for Lithium Metal Battery. J. Energy Chem. 2021, 54, 644–654. 10.1016/j.jechem.2020.06.035. DOI

Niu X.; Wang L.; Xu M.; Qin M.; Zhao L.; Wei Y.; Hu Y.; Lian X.; Liang Z.; Chen S.; Chen W.; Huang D. Electrospun Polyamide-6/Chitosan Nanofibers Reinforced Nano-Hydroxyapatite/Polyamide-6 Composite Bilayered Membranes for Guided Bone Regeneration. Carbohydr. Polym. 2021, 260, 11776910.1016/j.carbpol.2021.117769. PubMed DOI

Rather A. H.; Khan R. S.; Wani T. U.; Beigh M. A.; Sheikh F. A. Overview on Immobilization of Enzymes on Synthetic Polymeric Nanofibers Fabricated by Electrospinning. Biotechnol. Bioeng. 2022, 119, 9–33. 10.1002/bit.27963. PubMed DOI

Wang Z. G.; Wan L. S.; Liu Z. M.; Huang X. J.; Xu Z. K. Enzyme Immobilization on Electrospun Polymer Nanofibers: An Overview. J. Mol. Catal. B: Enzym. 2009, 56, 189–195. 10.1016/j.molcatb.2008.05.005. DOI

Hu M.; Korschelt K.; Viel M.; Wiesmann N.; Kappl M.; Brieger J.; Landfester K.; Thérien-Aubin H.; Tremel W. Nanozymes in Nanofibrous Mats with Haloperoxidase-like Activity To Combat Biofouling. ACS Appl. Mater. Interfaces 2018, 10, 44722–44730. 10.1021/acsami.8b16307. PubMed DOI

Hu M.; Korschelt K.; Daniel P.; Landfester K.; Tremel W.; Bannwarth M. B.; Bannwarth M. Fibrous Nanozyme Dressings with Catalase-Like Activity for H2O2 Reduction To Promote Wound Healing. ACS Appl. Mater. Interfaces 2017, 9, 38024–38031. 10.1021/acsami.7b12212. PubMed DOI

Xi J.; Dandan L.; Gao L. Fabrication of PAN/FeNPs Electrospun Nanofibers: Nanozyme and an Efficient Antimicrobial Agent. Mater. Today Commun. 2021, 26, 102168.10.1016/j.mtcomm.2021.102168. DOI

Ryšánek P.; Malý M.; Čapková P.; Kormunda M.; Kolská Z.; Gryndler M.; Novák O.; Hocelíková L.; Bystrianský L.; Munzarová M. Antibacterial Modification of Nylon-6 Nanofibers: Structure, Properties and Antibacterial Activity. J. Polym. Res. 2017, 24, 208.10.1007/s10965-017-1365-6. DOI

Ryšánek P.; Čapková P.; Štojdl J.; Trögl J.; Benada O.; Kormunda M.; Kolská Z.; Munzarová M. Stability of Antibacterial Modification of Nanofibrous PA6/DTAB Membrane during Air Filtration. Mater Sci Eng C 2019, 96, 807–813. 10.1016/j.msec.2018.11.065. PubMed DOI

Kormunda M.; Ryšánek P.; Kylián O.; Benkocká M.; Čapková P. Hydrophobisation of Electrospun Nanofiber Membranes by Plasma Deposited CF Coating. Surf Interfaces 2021, 26, 10133310.1016/j.surfin.2021.101333. DOI

Clogston J. D.; Patri A. K. Zeta Potential Measurement . In Characterization of Nanoparticles Intended for Drug Delivery; McNeil S. E., Ed.; Humana Press: Totowa, NJ, 2011; pp. 63–70. 10.1007/978-1-60327-198-1_6. PubMed DOI

Miller J. V.; Bartick E. G. Forensic Analysis of Single Fibers by Raman Spectroscopy. Appl. Spectrosc. 2001, 55, 1729–1732. 10.1366/0003702011954099. DOI

Sakagami H.; Aoki J.; Natori Y.; Nishikawa K.; Kakehi Y.; Natori Y.; Arai H. Biochemical and Molecular Characterization of a Novel Choline-Specific Glycerophosphodiester Phosphodiesterase Belonging to the Nucleotide Pyrophosphatase/Phosphodiesterase Family. J Biol Chem 2005, 280, 23084–23093. 10.1074/jbc.M413438200. PubMed DOI

Kirby A. J.; Mora J. R.; Nome F. New Light on Phosphate Transfer from Triesters. Biochim. Biophys. Acta, Proteins Proteom. 2013, 1834, 454–463. 10.1016/j.bbapap.2012.04.010. PubMed DOI

Tony Liu C.; Neverov A. A.; Maxwell C. I.; Stan Brown R. Demonstration of Prominent Cu(Ll)-Promoted Leaving Group Stabilization of the Cleavage of a Homologous Set of Phosphate Mono-, Di-, and Triesters in Methanol. J. Am. Chem. Soc. 2010, 132, 3561–3573. 10.1021/ja910111q. PubMed DOI

Janoš P.; Ederer J.; Štastný M.; Tolasz J.; Henych J. Degradation of Parathion Methyl by Reactive Sorption on the Cerium Oxide Surface: The Effect of Solvent on the Degradation Efficiency. Arab J Chem 2022, 15, 103852.10.1016/j.arabjc.2022.103852. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...