The separation of the enantiomers of diquats by capillary electrophoresis using randomly sulfated cyclodextrins as chiral selectors
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Czech Science Foundation
Czech Academy of Sciences
PubMed
37528727
DOI
10.1002/jssc.202300417
Knihovny.cz E-zdroje
- Klíčová slova
- capillary electrophoresis, chiral analysis, diquats, enantioseparation, sulfated cyclodextrins,
- Publikační typ
- časopisecké články MeSH
Diquats, derivatives of the widely used herbicide diquat, represent a new class of functional organic molecules. A combination of their special electrochemical properties and axial chirality could potentially result in their important applications in supramolecular chemistry, chiral catalysis, and chiral analysis. However, prior to their practical applications, the diquats have to be prepared in enantiomerically pure forms and the enantiomeric purity of their P- and M-isomers has to be checked. Hence, a chiral capillary electrophoresis (CE) method has been developed and applied for separation of P- and M-enantiomers of 11 new diquats. Fast and better than baseline CE separations of enantiomers of all 11 diquats within a short time 5-7 min were achieved using acidic buffer, 22 mM NaOH, 35 mM H3 PO4 , pH 2.5, as a background electrolyte, and 6 mM randomly sulfated α-, β-, and γ-cyclodextrins as chiral selectors. The most successful selector was sulfated γ-cyclodextrin, which baseline separated the enantiomers of all 11 diquats, followed by sulfated β-cyclodextrin and sulfated α-cyclodextrin, which baseline separated enantiomers of 10 and nine diquats, respectively. Using this method, a high enantiopurity degree of the isolated P- and M-enantiomers of three diquats with a defined absolute configuration was confirmed and their migration order was identified.
Zobrazit více v PubMed
Brian RC, Homer RF, Stubbs J, Jones RL. New herbicide .1. 1'-ethylene-2-2'-dipyridylium dibromide. Nature. 1958;181:446-7.
Summers LA. The bipyridinium herbicides. New York: Academic Press; 1980.
Ritter AM, Shaw JL, Williams WM, Travis KZ. Characterizing aquatic ecological risks from pesticides using a diquat dibromide case study. I. Probabilistic exposure estimates. Environ Toxicol Chem. 2000;19:749-59.
Walcarius A, Lamberts L. Square wave voltammetric determination of paraquat and diquat in aqueous solution. J Electroanal Chem. 1996;406:59-68.
Pizzutti IR, Vela GME, de Kok A, Scholten JM, Dias JV, Cardoso CD, et al. Determination of paraquat and diquat: LC-MS method optimization and validation. Food Chem. 2016;209:248-55.
Homer RF, Tomlinson TE. Redox properties of some dipyridyl quaternary salts. Nature. 1959;184:2012-3.
Clark CD, Debad JD, Yonemoto EH, Mallouk TE, Bard AJ. Effect of oxygen on linked Ru(bpy)(3)(2+)-viologen species and methylviologen: a reinterpretation of the electrogenerated chemiluminescence. J. Am. Chem. Soc. 1997;119:10525-31.
Vachon J, Bernardinelli G, Lacour J. Resolution of the first nonracemic diquats. Chem.-Eur. J. 2010;16:2797-805.
Adriaenssens L, Severa L, Salova T, Cisarova I, Pohl R, Saman D, et al. Helquats: a facile, modular, scalable route to novel helical dications. Chem.-Eur. J. 2009;15:1072-6.
Cizkova M, Pospisil L, Klepetarova B, Koval D, Teply F. Linquats: synthesis, characterization, and properties of linear extended diquats. Chem.-Eur. J. 2016;22:12154-9.
Pospisil L, Bednarova L, Stepanek P, Slavicek P, Vavra J, Hromadova M, et al. Intense chiroptical switching in a dicationic helicene-like derivative: exploration of a viologen-type redox manifold of a non-racemic helquat. J. Am. Chem. Soc. 2014;136:10826-9.
Derry JE, Hamor TA. Stereochemistry of diquat ion in crystalline dibromide salt. Nature. 1969;221:464-5.
Moody GJ, Owusu RK, Slawin AMZ, Spencer N, Stoddart JF, Thomas JDR, et al. Noncovalent bonding interactions between tetraphenylborate anions and paraquat and diquat dications. Angew Chem Int Ed. 1987;26:890-2.
Duchene D. In: Bilensoy E, editors. Cyclodextrins in pharmaceutics, cosmetics, and biomedicine: current and future industrial applications. John Wiley & Sons, Inc.; 2011. p. 3-18.
Kim Y, Das A, Zhang HY, Dutta PK. Zeolite membrane-based artificial photosynthetic assembly for long-lived charge separation. J Phys Chem B. 2005;109:6929-32.
Vitoria P, Beitia JI, Gutierrez-Zorrilla JM, Saiz ER, Luque A, Insausti M, et al. Tetracyanometalates of Ni, Pd, and Pt with cyclic diquaternary cations of 2,2'-bipyridine and 1,10-phenanthroline. A vibrational, crystallographic, and theoretical study of intermolecular weak interactions. Inorg Chem. 2002;41:4396-404.
Talele HR, Koval D, Severa L, Reyes-Gutierrez PE, Cisarova I, Sazelova P, et al. Diquats with robust chirality: facile resolution, synthesis of chiral dyes, and application as selectors in chiral analysis. Chem-Eur J. 2018;24:7601-4.
Fanali S, Chankvetadze B. Some thoughts about enantioseparations in capillary electrophoresis. Electrophoresis. 2019;40:2420-37.
Bernardo-Bermejo S, Sanchez-Lopez E, Castro-Puyana M, Marina ML. Chiral capillary electrophoresis. Trends Anal Chem. 2020;124:115807.
de Koster N, Clark CP, Kohler I. Past, present, and future developments in enantioselective analysis using capillary electromigration techniques. Electrophoresis. 2021;42:38-57.
El Deeb S, Silva CF, Nascimento CS, Hanafi RS, Borges KB. Chiral capillary electrokinetic chromatography: principle and applications, detection and identification, design of experiment, and exploration of chiral recognition using molecular modeling. Molecules. 2021;26:2841.
Krait S, Konjaria ML, Scriba GKE. Advances of capillary electrophoresis enantioseparations in pharmaceutical analysis (2017-2020). Electrophoresis. 2021;42:1709-25.
Stavrou IJ, Agathokleous EA, Kapnissi-Christodoulou CP. Chiral selectors in CE: recent development and applications (mid-2014 to mid-2016). Electrophoresis. 2017;38:786-819.
Rezanka P, Navratilova K, Rezanka M, Kral V, Sykora D. Application of cyclodextrins in chiral capillary electrophoresis. Electrophoresis. 2014;35:2701-21.
Scriba GKE. Chiral recognition in separation sciences. Part I: polysaccharide and cyclodextrin selectors. Trends Anal Chem. 2019;120:115639.
Peluso P, Chankvetadze B. Native and substituted cyclodextrins as chiral selectors for capillary electrophoresis enantioseparations: structures, features, application, and molecular modeling. Electrophoresis. 2021;42:1676-708.
Severa L, Koval D, Novotna P, Oncak M, Sazelova P, Saman D, et al. Resolution of a configurationally stable [5]helquat: enantiocomposition analysis of a helicene congener by capillary electrophoresis. New J Chem. 2010;34:1063-7.
Koval D, Severa L, Adriaenssens L, Vavra J, Teply F, Kasicka V. Chiral analysis of helquats by capillary electrophoresis: resolution of helical N-heteroaromatic dications using randomly sulfated cyclodextrins. Electrophoresis. 2011;32:2683-92.
Severa L, Sazelova P, Cisarova I, Saman D, Koval D, Devadig P, et al. Dutch Resolution of a configurationally stable [5]helquat. Chirality. 2018;30:254-60.
Dubsky P, Ordogova M, Maly M, Riesova M. CEval: all-in-one software for data processing and statistical evaluations in affinity capillary electrophoresis. J Chromatogr A. 2016;1445:158-65.
Koval D, Kasicka V, Cottet H. Analysis of glycated hemoglobin A1c by capillary electrophoresis and capillary isoelectric focusing. Anal Biochem. 2011;413:8-15.
Ruzicka M, Cizkova M, Jirasek M, Teply F, Koval D, Kasicka V. Study of deoxyribonucleic acid-ligand interactions by partial filling affinity capillary electrophoresis. J Chromatogr A. 2014;1349:116-21.
Ruzicka M, Koval D, Vavra J, Reyes-Gutierrez PE, Teply F, Kasicka V. Interactions of of helquats with chiral acidic aromatic analytes investigated by partial-filling affinity capillary electrophoresis. J Chromatogr A. 2016;1467:417-26.
Williams BA, Vigh G. Fast, accurate mobility determination method for capillary electrophoresis. Anal Chem. 1996;68:1174-80.