Does Leptinotarsa decemlineata larval survival after pesticide treatment depend on microbiome composition?
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Ministry of Agriculture of the Czech Republic
PubMed
37532920
DOI
10.1002/ps.7694
Knihovny.cz E-zdroje
- Klíčová slova
- Lactococcus lactis, larvae, microbiome, pesticide, resistance,
- MeSH
- brouci * MeSH
- dursban * farmakologie MeSH
- larva MeSH
- pesticidy * farmakologie MeSH
- Solanum tuberosum * genetika MeSH
- střevní mikroflóra * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dursban * MeSH
- pesticidy * MeSH
BACKGROUND: The microbiomes of some arthropods are believed to eliminate pesticides by chemical degradation or stimulation of the host immune system. The Colorado potato beetle (CPB; Leptinotarsa decemlineata) is an important agricultural pest with known resistance to used pesticides. We sought to analyze microbiome composition in CPB larvae from different sites and to identify the effect of pesticides on the microbiome of surviving and dead larvae after chlorpyrifos treatment in laboratory. Changes in the Lactococcus lactis community in larvae treated with chlorpyrifos and fed by potato leaves with L. lactis cover were studied by manipulative experiment. The microbiome was characterized by sequencing the 16S RNA gene. RESULTS: The microbiome of L. decemlineata larvae is composed of a few operational taxonomic units (OTUs) (Enterobacteriaceae, Pseudocitrobacter, Acinetobacter, Pseudomonas, L. lactis, Enterococcus, Burkholderia and Spiroplasma leptinotarsae). The microbiome varied among the samples from eight sites and showed differences in profiles between surviving and dead larvae. The survival of larvae after chlorpyrifos treatment was correlated with a higher proportion of L. lactis sequences in the microbiome. The S. leptinotarsa profile also increased in the surviving larvae, but this OTU was not present in all sampling sites. In manipulative experiments, larvae treated with L. lactis had five-fold lower mortality rates than untreated larvae. CONCLUSION: These results indicate that the microbiome of larvae is formed from a few bacterial taxa depending on the sampling site. A member of the gut microbiome, L. lactis, is believed to help overcome the toxic effects of chlorpyrifos in the larval gut. © 2023 Society of Chemical Industry.
Zobrazit více v PubMed
Weber DC and Ferro DN, Colorado potato beetle: diverse life history poses challenge to management, in Advances in Potato Pest Biology and Management, ed. by Zehnder GW, Powelson ML, Jansson RK and Raman KV. APS Press, St Paul, MN, pp. 54-70 (1994).
Whalon ME and Wingerd BA, Bt: mode of action and use. Arch Insect Biochem Physiol 54:200-211 (2003).
Alyokhin A, Colorado potato beetle management on potatoes: current challenges and future prospects. Fruit Veg Cereal Sci Biotechnol 3:10-19 (2009).
Alyokhin A, Baker M, Mota-Sanchez D, Dively G and Grafius E, Colorado potato beetle resistance to insecticides. Am J Potato Res 85:395-413 (2008).
Mota-Sanchez D, Hollingworth RM, Grafius EJ and Moyer DD, Resistance and cross-resistance to neonicotinoid insecticides and spinosad in the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). Pest Manag Sci 62:30-37 (2006).
Rahardja U and Whalon ME, Inheritance of resistance to Bacillus thuringiensis subsp. tenebrionis CryIIIA delta-endotoxin in Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol 88:21-26 (1995).
Jiang W-H, Guo W-C, Lu W-P, Shi X-Q, Xiong M-H, Wang Z-T et al., Target site insensitivity mutations in the AChE and LdVssc1 confer resistance to pyrethroids and carbamates in Leptinotarsa decemlineata in northern Xinjiang Uygur autonomous region. Pestic Biochem Physiol 100:74-81 (2011).
Shi X-q, Xiong M-H, Jiang W-H, Wang Z-T, Guo W-C, Xia Z-H et al., Efficacy of endosulfan and fipronil and joint toxic action of endosulfan mixtures against Leptinotarsa decemlineata (Say). J Pest Sci 85:519-526 (2012).
Ioannidis PM, Grafius E and Whalon ME, Patterns of insecticide resistance to azinphosmethyl, carbofuran, and permethrin in the Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol 84:417-1423 (1991).
European Commission (EC), Commission Implementing Regulation (EU) 2020/18 of 10 January 2020 concerning the non-renewal of the approval of the active substance chlorpyrifos, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011 (Text with EEA relevance). Document 32020R0018. Off J Eur Union 7:14-16 (2020) https://eur-lex.europa.eu/eli/reg_impl/2020/18/oj [accessed 7 March 2023].
Bose S, Kumar PS and Vo D-VN, A review on the microbial degradation of chlorpyrifos and its metabolite TCP. Chemosphere 283:131447 (2021).
Zichova T, Kocourek F, Salava J, Nadova K and Stara J, Detection of organophosphate and pyrethroid resistance alleles in Czech Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) populations by molecular methods. Pest Manag Sci 66:853-860 (2010).
Clark JM, Lee SH, Kim HJ, Yoon KS and Zhang A, DNA-based genotyping techniques for the detection of point mutations associated with insecticide resistance in Colorado potato beetle Leptinotarsa decemlineata. Pest Manag Sci 57:968-974 (2001).
Li X, Schuler MA and Berenbaum MR, Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52:231-253 (2007).
Scott JG, Life and death at the voltage-sensitive sodium channel: evolution in response to insecticide use. Annu Rev Entomol 64:243-257 (2019).
Pietri JE and Liang D, The links between insect symbionts and insecticide resistance: causal relationships and physiological tradeoffs. Ann Entomol Soc Am 111:92-97 (2018).
Arevalo-Cortes A, Mejia-Jaramillo AM, Granada Y, Coatsworth H, Lowenberger C and Triana-Chavez O, The the midgut microbiota of Colombian Aedes aegypti populations with different levels of resistance to the insecticide lambda-cyhalothrin. Insects 11:584 (2020).
Guo S-K, Gong Y-J, Chen J-C, Shi P, Cao L-J, Yang Q et al., Increased density of endosymbiotic Buchnera related to pesticide resistance in yellow morph of melon aphid. J Pest Sci 93:1281-1294 (2020).
Ramya SL, Venkatesan T, Murthy KS, Jalali SK and Verghese A, Detection of carboxylesterase and esterase activity in culturable gut bacterial flora isolated from diamondback moth, Plutella xylostella (Linnaeus), from India and its possible role in indoxacarb degradation. Braz J Microbiol 47:327-336 (2016).
Li C, Ma Y, Mi Z, Huo R, Zhou T, Hai H et al., Screening for Lactobacillus plantarum strains that possess organophosphorus pesticide-degrading activity and metabolomic analysis of phorate degradation. Front Microbiol 9:2048 (2018).
Yuan S, Li C, Yu H, Xie Y, Guo Y and Yao W, Screening of lactic acid bacteria for degrading organophosphorus pesticides and their potential protective effects against pesticide toxicity. LWT Food Sci Technol 147:111672 (2021).
Brune A, Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12:168-180 (2014).
Salem H, Bauer E, Strauss AS, Vogel H, Marz M and Kaltenpoth M, Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host. Proc Biol Sci 281:20141838 (2014).
Welte CU, de Graaf RM, van den Bosch TJM, Op den Camp HJM, van Dam NM and Jetten MSM, Plasmids from the gut microbiome of cabbage root fly larvae encode SaxA that catalyses the conversion of the plant toxin 2-phenylethyl isothiocyanate. Environ Microbiol 18:1379-1390 (2016).
Kang W-N, Jin L, Ma H-Y and Li G-Q, Integrated microbiome-metabolome analysis reveals stage-dependent alterations in bacterial degradation of aromatics in Leptinotarsa decemlineata. Front Physiol 12:739800 (2021).
Gressel J, Microbiome facilitated pest resistance: potential problems and uses. Pest Manag Sci 74:511-515 (2018).
Pinto GDA, Castro IM, Miguel MAL and Koblitz MGB, Lactic acid bacteria - promising technology for organophosphate degradation in food: a pilot study. LWT Food Sci Technol 110:353-359 (2019).
Madhusudhan S, Jalali SK and Sibi G, Molecular identification of insecticide degradation by gut bacteria isolated from Helicoverpa armigera of cotton plants. J Appl Nat Sci 13:641-653 (2021).
Sato Y, Jang S, Takeshita K, Itoh H, Koike H, Tago K et al., Insecticide resistance by a host-symbiont reciprocal detoxification. Nat Commun 12:6432 (2021).
Berticat C, Rousset F, Raymond M, Berthomieu A and Weill M, High Wolbachia density in insecticide-resistant mosquitoes. Proc Biol Sci 269:1413-1416 (2002).
Gracy RG, Malathi VM, Jalali SK, Jose VL and Thulasi A, Variation in larval gut bacteria between insecticide-resistant and -susceptible populations of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Phytoparasitica 44:477-490 (2016).
Xia X, Zheng D, Zhong H, Qin B, Gurr GM, Vasseur L et al., DNA sequencing reveals the midgut microbiota of diamondback moth, Plutella xylostella (L.) and a possible relationship with insecticide resistance. PloS One 8:e68852 (2013).
Cheng D, Guo Z, Riegler M, Xi Z, Liang G and Xu Y, Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome 5:13 (2017).
Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K and Fukatsu T, Symbiont-mediated insecticide resistance. Proc Natl Acad Sci U S A 109:8618-8622 (2012).
Krawczyk K, Szymanczyk M and Obrepalska-Steplowska A, Prevalence of endosymbionts in Polish populations of Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). J Insect Sci 15:106 (2015).
Wang J, Gao Z, Yang M, Xue R, Yan H, Fu K et al., Geographically isolated Colorado potato beetle mediating distinct defense responses in potato is associated with the alteration of gut microbiota. J Pest Sci 93:379-390 (2020).
Chung SH, Scully ED, Peiffer M, Geib SM, Rosa C, Hoover K et al., Host plant species determines symbiotic bacterial community mediating suppression of plant defenses. Sci Rep 7:39690 (2017).
Szendrei Z, Grafius E, Byrne A and Ziegler A, Resistance to neonicotinoid insecticides in field populations of the Colorado potato beetle (Coleoptera: Chrysomelidae). Pest Manag Sci 68:941-946 (2012).
Food and Agriculture Organization of the United Nations (FAO), Recommended methods for the detection and measurement of resistance of agricultural pests to pesticides. Tentative methods for adults of the Colorado potato beetle, Leptinotarsa decemlineata (Say) - FAO method no. 12. FAO Plant Prot Bull 22:112-116 (1974).
Hubert J, Bicianova M, Ledvinka O, Kamler M, Lester PJ, Nesvorna M et al., Changes in the bacteriome of honey bees associated with the parasite Varroa destructor, and pathogens Nosema and Lotmaria passim. Microb Ecol 73:685-698 (2017).
Naqib A, Poggi S, Wang W, Hyde M, Kunstman K and Green SJ, Making and sequencing heavily multiplexed, high-throughput 16S ribosomal RNA gene amplicon libraries using a flexible, two-stage PCR protocol, in Gene Expression Analysis: Methods and Protocols, ed. by Raghavachari N and Garcia-Reyero N. Humana Press, New York, NY, pp. 149-169 (2018).
Sakai M, Matsuka A, Komura T and Kanazawa S, Application of a new PCR primer for terminal restriction fragment length polymorphism analysis of the bacterial communities in plant roots. J Microbiol Methods 59:81-89 (2004).
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N et al., Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621-1624 (2012).
Hubert J, Nesvorna M, Green SJ and Klimov PB, Microbial communities of stored product mites: variation by species and population. Microb Ecol 81:506-522 (2021).
Schloss PD and His Research Group, MiSeq SOP, Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI (2022). https://mothur.org/wiki/miseq_sop/ accessed 7 March 2023.
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB et al., Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537-7541 (2009).
Edgar RC, UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996-998 (2013).
Kozich JJ, Westcott SL, Baxter NT, Highlander SK and Schloss PD, Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112-5120 (2013).
Cole JR, Wang Q, Fish JA, Chai BL, McGarrell DM, Sun YN et al., Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633-D642 (2014).
Altschul SF, Gish W, Miller W, Myers EW and Lipman DJ, Basic local alignment search tool. J Mol Biol 215:403-410 (1990).
Engel P, James RR, Koga R, Kwong WK, McFrederick QS and Moran NA, Standard methods for research on Apis mellifera gut symbionts. J Apic Res 52:1-24 (2013).
Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR et al., Package ‘vegan’: community ecology package, version 2.6-4. CRAN - The Comprehensive R Archive Network (2022). https://cran.r-project.org/web/packages/vegan/vegan.pdf [accessed 7 March 2023].
Zeleny D, RDA, tb-RDA, CCA & db-RDA (constrained ordination), in Analysis of Community Ecology Data in R, ed. by Zeleny D, DavidZeleny.net, Taipei (2021). https://www.davidzeleny.net/anadat-r/doku.php/en:rda_cca accessed 7 March 2023.
R Development Core Team, R: A Language and Environment for Statistical Computing, Version 4.1. R Foundation for Statistical Computing, Vienna (2021). http://www.R-project.org [accessed 7 March 2023].
White JR, Nagarajan N and Pop M, Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol 5:e1000352 (2009).
Hammer O, Harper DAT and Ryan PD, PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:4 (2001). https://palaeo-electronica.org/2001_1/past/issue1_01.htm accessed 7 March 2023.
Clarke KR, Non-parametric multivariate analyses of changes in community structure. Austral Ecol 18:117-143 (1993).
Pekar S and Brabec M, Moderni analyza biologickych dat 1: 1. dil. Zobecnene linearni modely v prostredí R [Modern Analysis of Biological Data 1: Volume 1. Generalized Linear Models in R], Masarykova univerzita, Brno (2020). (in Czech).
Chen YH, Cohen ZP, Bueno EM, Christensen BM and Schoville SD, Rapid evolution of insecticide resistance in the Colorado potato beetle, Leptinotarsa decemlineata. Curr Opin Insect Sci 55:101000 (2023).
Gomez-Gallego C, Rainio MJ, Collado MC, Mantziari A, Salminen S, Saikkonen K et al., Glyphosate-based herbicide affects the composition of microbes associated with Colorado potato beetle (Leptinotarsa decemlineata). FEMS Microbiol Lett 367:fnaa050 (2020).
Wielkopolan B, Krawczyk K, Szabelska-Beresewicz A and Obrepalska-Steplowska A, The structure of the cereal leaf beetle (Oulema melanopus) microbiome depends on the insect's developmental stage, host plant, and origin. Sci Rep 11:20496 (2021).
Muratoglu H, Demirbag Z and Sezen K, The first investigation of the diversity of bacteria associated with Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Biologia 66:288-293 (2011).
Polenogova OV, Noskov YA, Yaroslavtseva ON, Kryukova NA, Alikina T, Klementeva TN et al., Influence of Bacillus thuringiensis and avermectins on gut physiology and microbiota in Colorado potato beetle: impact of enterobacteria on susceptibility to insecticides. PloS One 16:e0248704 (2021).
Sorokan AV, Ben'kovskaya GV and Maksimov IV, The influence of potato endophytes on Leptinotarsa decemlineata endosymbionts promotes mortality of the pest. J Invertebr Pathol 136:65-67 (2016).
Sorokan AV, Benkovskaya GV, Blagova DK, Maksimova TI and Maksimov IV, Defense responses and changes in symbiotic gut microflora in the Colorado potato beetle Leptinotarsa decemlineata under the effect of endophytic bacteria from the genus Bacillus. J Evol Biochem Physiol 54:300-307 (2018).
Sudakaran S, Salem H, Kost C and Kaltenpoth M, Geographical and ecological stability of the symbiotic mid-gut microbiota in European firebugs, Pyrrhocoris apterus (Hemiptera, Pyrrhocoridae). Mol Ecol 21:6134-6151 (2012).
Molina GES, Shetty R, Xiao H, Watjen AP, Tovar M and Bang-Berthelsen CH, Development of a novel lactic acid bacteria starter culture approach: from insect microbiome to plant-based fermentations. LWT Food Sci Technol 167:113797 (2022).
Habineza P, Muhammad A, Ji T, Xiao R, Yin X, Hou Y et al., The promoting effect of gut microbiota on growth and development of red palm weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae) by modulating its nutritional metabolism. Front Microbiol 10:1212 (2019).
Tagliavia M, Messina E, Manachini B, Cappello S and Quatrini P, The gut microbiota of larvae of Rhynchophorus ferrugineus Oliver (Coleoptera: Curculionidae). BMC Microbiol 14:136 (2014).
Daisley BA, Trinder M, McDowell TW, Collins SL, Sumarah MW and Reid G, Microbiota-mediated modulation of organophosphate insecticide toxicity by species-dependent interactions with lactobacilli in a Drosophila melanogaster insect model. Appl Environ Microbiol 84:e02820-e02817 (2018).
Huang Y, Zhang W, Pang S, Chen J, Bhatt P, Mishra S et al., Insights into the microbial degradation and catalytic mechanisms of chlorpyrifos. Environ Res 194:110660 (2021).
Weeda E, de Kort CAD and Beenakkers AMT, Fuels for energy metabolism in the Colorado potato beetle, Leptinotarsa decemlineata Say. J Insect Physiol 25:951-955 (1979).
Jang S and Kikuchi Y, Impact of the insect gut microbiota on ecology, evolution, and industry. Curr Opin Insect Sci 41:33-39 (2020).
Luo C, Li Y, Chen Y, Fu C, Long W, Xiao X et al., Bamboo lignocellulose degradation by gut symbiotic microbiota of the bamboo snout beetle Cyrtotrachelus buqueti. Biotechnol Biofuels 12:70 (2019).
Casida JE, Pesticide interactions: mechanisms, benefits, and risks. J Agric Food Chem 65:4553-4561 (2017).
Francis CFS and Aneesh EM, Gut bacterium induced pesticide resistance in insects with special emphasis to mosquitoes. Int J Trop Insect Sci 42:2051-2064 (2022).