Conversion of chirality to twisting via sequential one-dimensional and two-dimensional growth of graphene spirals
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
12027804
National Natural Science Foundation of China (National Science Foundation of China)
PubMed
37537355
DOI
10.1038/s41563-023-01632-y
PII: 10.1038/s41563-023-01632-y
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The properties of two-dimensional (2D) van der Waals materials can be tuned through nanostructuring or controlled layer stacking, where interlayer hybridization induces exotic electronic states and transport phenomena. Here we describe a viable approach and underlying mechanism for the assisted self-assembly of twisted layer graphene. The process, which can be implemented in standard chemical vapour deposition growth, is best described by analogy to origami and kirigami with paper. It involves the controlled induction of wrinkle formation in single-layer graphene with subsequent wrinkle folding, tearing and re-growth. Inherent to the process is the formation of intertwined graphene spirals and conversion of the chiral angle of 1D wrinkles into a 2D twist angle of a 3D superlattice. The approach can be extended to other foldable 2D materials and facilitates the production of miniaturized electronic components, including capacitors, resistors, inductors and superconductors.
Center for Transformative Science ShanghaiTech University Shanghai China
Central European Institute of Technology Brno University of Technology Brno Czech Republic
Department of Physics University of Oxford Oxford UK
Institute of Physics Chinese Academy of Sciences Beijing China
School of Natural Sciences Technical University Munich Munich Germany
School of Physical Science and Technology ShanghaiTech University Shanghai China
School of Physical Sciences University of the Chinese Academy of Sciences Beijing China
ShanghaiTech Laboratory for Topological Physics ShanghaiTech University Shanghai China
Zobrazit více v PubMed
Xu, X. et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 62, 1074–1080 (2017).
Wang, L. et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 570, 91–95 (2019). PubMed
Trambly de Laissardière, G., Mayou, D. & Magaud, L. Localization of Dirac electrons in rotated graphene bilayers. Nano Lett. 10, 804–808 (2010). PubMed
Suárez Morell, E., Correa, J. D., Vargas, P., Pacheco, M. & Barticevic, Z. Flat bands in slightly twisted bilayer graphene: tight-binding calculations. Phys. Rev. B 82, 121407 (2010).
Kim, K. et al. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. Proc. Natl Acad. Sci. USA 114, 3364–3369 (2017). PubMed PMC
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018). PubMed
Hennig, G. R. Screw dislocations in graphite. Science 147, 733–734 (1965). PubMed
Xu, F., Yu, H., Sadrzadeh, A. & Yakobson, B. I. Riemann surfaces of carbon as graphene nanosolenoids. Nano Lett. 16, 34–39 (2016). PubMed
Patel, A. R. & Bahl, O. P. Evidence of screw dislocations in graphite. Br. J. Appl. Phys. 16, 169–171 (1965).
Sun, Y. Q., Alemany, L. B., Billups, W. E., Lu, J. X. & Yakobson, B. I. Structural dislocations in anthracite. J. Phys. Chem. Lett. 2, 2521–2524 (2011).
Allen, M. J. et al. Chemically induced folding of single and bilayer graphene. Chem. Commun. 6285–6287 (2009).
Mu, J. K. et al. Origami-inspired active graphene-based paper for programmable instant self-folding walking devices. Sci. Adv. 1, e1500533 (2015). PubMed PMC
Ebbesen, T. W. & Hiura, H. Graphene in 3-dimensions: towards graphite origami. Adv. Mater. 7, 582–586 (1995).
Blees, M. K. et al. Graphene kirigami. Nature 524, 204–207 (2015). PubMed
Miskin, M. Z. et al. Graphene-based bimorphs for micron-sized, autonomous origami machines. Proc. Natl Acad. Sci. USA 115, 466–470 (2018). PubMed PMC
Wang, Z.-J. et al. Direct observation of graphene growth and associated copper substrate dynamics by in situ scanning electron microscopy. ACS Nano 9, 1506–1519 (2015). PubMed
Hillert, M. On the theory of normal and abnormal grain growth. Acta Metall. 13, 227–238 (1965).
Wu, M. et al. Seeded growth of large single-crystal copper foils with high-index facets. Nature 581, 406–410 (2020). PubMed
Jin, S. et al. Colossal grain growth yields single-crystal metal foils by contact-free annealing. Science 362, 1021–1025 (2018). PubMed
Sutter, P. W., Flege, J.-I. & Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 7, 406–411 (2008). PubMed
Zhu, W. et al. Structure and electronic transport in graphene wrinkles. Nano Lett. 12, 3431–3436 (2012). PubMed
Wang, Z.-J. et al. Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging. Nat. Commun. 7, 13256 (2016). PubMed PMC
Yang, R. et al. An anisotropic etching effect in the graphene basal plane. Adv. Mater. 22, 4014–4019 (2010). PubMed
Chen, H. et al. Atomically precise, custom-design origami graphene nanostructures. Science 365, 1036–1040 (2019). PubMed
Zhao, Y. et al. Supertwisted spirals of layered materials enabled by growth on non-Euclidean surfaces. Science 370, 442–445 (2020). PubMed
Zhang, K. & Arroyo, M. Understanding and strain-engineering wrinkle networks in supported graphene through simulations. J. Mech. Phys. Solids 72, 61–74 (2014).
Pereira, V. M., Castro Neto, A. H., Liang, H. Y. & Mahadevan, L. Geometry, mechanics, and electronics of singular structures and wrinkles in graphene. Phys. Rev. Lett. 105, 156603 (2010). PubMed
Tay, R. Y. et al. Concentric and spiral few-layer graphene: growth driven by interfacial nucleation vs screw dislocation. Chem. Mater. 30, 6858–6866 (2018).
Rakovan, J. & Jaszczak, J. A. Multiple length scale growth spirals on metamorphic graphite {001} surfaces studied by atomic force microscopy. Am. Mineral. 87, 17–24 (2002).
Frank, F. C. & Read, W. T. Multiplication processes for slow moving dislocations. Phys. Rev. 79, 722–723 (1950).
Wang, Z. J. et al. The coalescence behavior of two-dimensional materials revealed by multiscale in situ imaging during chemical vapor deposition growth. ACS Nano 14, 1902–1918 (2020). PubMed
Nabarro, F. R. N. The force between two screw dislocations. Philos. Mag. A 54, 577–582 (1986).
Karamat, S. et al. Coalescence of few layer graphene grains grown by chemical vapor deposition and their stacking sequence. J. Mater. Res. 31, 46–54 (2016).
Sun, J. et al. Growth mechanism of graphene on platinum: surface catalysis and carbon segregation. Appl. Phys. Lett. 104, 152107 (2014).
Liu, Y. et al. Helical van der Waals crystals with discretized Eshelby twist. Nature 570, 358–362 (2019). PubMed
Sutter, P., Wimer, S. & Sutter, E. Chiral twisted van der Waals nanowires. Nature 570, 354–357 (2019). PubMed
Guo, W. et al. Governing rule for dynamic formation of grain boundaries in grown graphene. ACS Nano 9, 5792–5798 (2015). PubMed
Niyogi, S. et al. Covalent chemistry for graphene electronics. J. Phys. Chem. Lett. 2, 2487–2498 (2011).
Schweizer, P. et al. Mechanical cleaning of graphene using in situ electron microscopy. Nat. Commun. 11, 1743 (2020). PubMed PMC
Rogge, P. C. et al. Real-time observation of epitaxial graphene domain reorientation. Nat. Commun. 6, 6880 (2015). PubMed
Tyurnina, A. V., Okuno, H., Pochet, P. & Dijon, J. CVD graphene recrystallization as a new route to tune graphene structure and properties. Carbon 102, 499–505 (2016).
Wang, Z. J. et al. Formation mechanism, growth kinetics, and stability limits of graphene adlayers in metal‐catalyzed CVD growth. Adv. Mater. Interfaces 5, 1800255 (2018).
Zhu, Y. et al. Unravelling surface and interfacial structures of a metal–organic framework by transmission electron microscopy. Nat. Mater. 16, 532–536 (2017). PubMed
Pirart, J. et al. Reversed size-dependent stabilization of ordered nanophases. Nat. Commun. 10, 1982 (2019). PubMed PMC
Duerrschnabel, M. et al. Atomic structure and domain wall pinning in samarium-cobalt-based permanent magnets. Nat. Commun. 8, 54 (2017). PubMed PMC