Conversion of chirality to twisting via sequential one-dimensional and two-dimensional growth of graphene spirals

. 2024 Mar ; 23 (3) : 331-338. [epub] 20230803

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37537355

Grantová podpora
12027804 National Natural Science Foundation of China (National Science Foundation of China)

Odkazy

PubMed 37537355
DOI 10.1038/s41563-023-01632-y
PII: 10.1038/s41563-023-01632-y
Knihovny.cz E-zdroje

The properties of two-dimensional (2D) van der Waals materials can be tuned through nanostructuring or controlled layer stacking, where interlayer hybridization induces exotic electronic states and transport phenomena. Here we describe a viable approach and underlying mechanism for the assisted self-assembly of twisted layer graphene. The process, which can be implemented in standard chemical vapour deposition growth, is best described by analogy to origami and kirigami with paper. It involves the controlled induction of wrinkle formation in single-layer graphene with subsequent wrinkle folding, tearing and re-growth. Inherent to the process is the formation of intertwined graphene spirals and conversion of the chiral angle of 1D wrinkles into a 2D twist angle of a 3D superlattice. The approach can be extended to other foldable 2D materials and facilitates the production of miniaturized electronic components, including capacitors, resistors, inductors and superconductors.

Advanced Research Institute of Multidisciplinary Science Beijing Institute of Technology Beijing China

Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing China

Beijing Key Laboratory of Optoelectronic Functional Materials and Micro Nano Devices Department of Physics Renmin University of China Beijing China

CAS Center for Excellence in Topological Quantum Computation University of the Chinese Academy of Sciences Beijing China

Center for Transformative Science ShanghaiTech University Shanghai China

Central European Institute of Technology Brno University of Technology Brno Czech Republic

Department of Physics University of Oxford Oxford UK

Institute of Physical Engineering Faculty of Mechanical Engineering Brno University of Technology Brno Czech Republic

Institute of Physics Chinese Academy of Sciences Beijing China

Institute of Technology for Carbon Neutrality Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China

International Center for Quantum Materials Collaborative Innovation Center of Quantum Matter Peking University Beijing China

School of Natural Sciences Technical University Munich Munich Germany

School of Physical Science and Technology ShanghaiTech University Shanghai China

School of Physical Sciences University of the Chinese Academy of Sciences Beijing China

Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai China

ShanghaiTech Laboratory for Topological Physics ShanghaiTech University Shanghai China

State Key Laboratory for Mesoscopic Physics Frontiers Science Center for Nano optoelectronics School of Physics Peking University Beijing China

State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China

State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics Tsinghua University Beijing China

Vacuum Interconnected Nanotech Workstation Suzhou Institute of Nano Tech and Nano Bionics Chinese Academy of Sciences Suzhou China

Zobrazit více v PubMed

Xu, X. et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 62, 1074–1080 (2017).

Wang, L. et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 570, 91–95 (2019). PubMed

Trambly de Laissardière, G., Mayou, D. & Magaud, L. Localization of Dirac electrons in rotated graphene bilayers. Nano Lett. 10, 804–808 (2010). PubMed

Suárez Morell, E., Correa, J. D., Vargas, P., Pacheco, M. & Barticevic, Z. Flat bands in slightly twisted bilayer graphene: tight-binding calculations. Phys. Rev. B 82, 121407 (2010).

Kim, K. et al. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. Proc. Natl Acad. Sci. USA 114, 3364–3369 (2017). PubMed PMC

Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018). PubMed

Hennig, G. R. Screw dislocations in graphite. Science 147, 733–734 (1965). PubMed

Xu, F., Yu, H., Sadrzadeh, A. & Yakobson, B. I. Riemann surfaces of carbon as graphene nanosolenoids. Nano Lett. 16, 34–39 (2016). PubMed

Patel, A. R. & Bahl, O. P. Evidence of screw dislocations in graphite. Br. J. Appl. Phys. 16, 169–171 (1965).

Sun, Y. Q., Alemany, L. B., Billups, W. E., Lu, J. X. & Yakobson, B. I. Structural dislocations in anthracite. J. Phys. Chem. Lett. 2, 2521–2524 (2011).

Allen, M. J. et al. Chemically induced folding of single and bilayer graphene. Chem. Commun. 6285–6287 (2009).

Mu, J. K. et al. Origami-inspired active graphene-based paper for programmable instant self-folding walking devices. Sci. Adv. 1, e1500533 (2015). PubMed PMC

Ebbesen, T. W. & Hiura, H. Graphene in 3-dimensions: towards graphite origami. Adv. Mater. 7, 582–586 (1995).

Blees, M. K. et al. Graphene kirigami. Nature 524, 204–207 (2015). PubMed

Miskin, M. Z. et al. Graphene-based bimorphs for micron-sized, autonomous origami machines. Proc. Natl Acad. Sci. USA 115, 466–470 (2018). PubMed PMC

Wang, Z.-J. et al. Direct observation of graphene growth and associated copper substrate dynamics by in situ scanning electron microscopy. ACS Nano 9, 1506–1519 (2015). PubMed

Hillert, M. On the theory of normal and abnormal grain growth. Acta Metall. 13, 227–238 (1965).

Wu, M. et al. Seeded growth of large single-crystal copper foils with high-index facets. Nature 581, 406–410 (2020). PubMed

Jin, S. et al. Colossal grain growth yields single-crystal metal foils by contact-free annealing. Science 362, 1021–1025 (2018). PubMed

Sutter, P. W., Flege, J.-I. & Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 7, 406–411 (2008). PubMed

Zhu, W. et al. Structure and electronic transport in graphene wrinkles. Nano Lett. 12, 3431–3436 (2012). PubMed

Wang, Z.-J. et al. Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging. Nat. Commun. 7, 13256 (2016). PubMed PMC

Yang, R. et al. An anisotropic etching effect in the graphene basal plane. Adv. Mater. 22, 4014–4019 (2010). PubMed

Chen, H. et al. Atomically precise, custom-design origami graphene nanostructures. Science 365, 1036–1040 (2019). PubMed

Zhao, Y. et al. Supertwisted spirals of layered materials enabled by growth on non-Euclidean surfaces. Science 370, 442–445 (2020). PubMed

Zhang, K. & Arroyo, M. Understanding and strain-engineering wrinkle networks in supported graphene through simulations. J. Mech. Phys. Solids 72, 61–74 (2014).

Pereira, V. M., Castro Neto, A. H., Liang, H. Y. & Mahadevan, L. Geometry, mechanics, and electronics of singular structures and wrinkles in graphene. Phys. Rev. Lett. 105, 156603 (2010). PubMed

Tay, R. Y. et al. Concentric and spiral few-layer graphene: growth driven by interfacial nucleation vs screw dislocation. Chem. Mater. 30, 6858–6866 (2018).

Rakovan, J. & Jaszczak, J. A. Multiple length scale growth spirals on metamorphic graphite {001} surfaces studied by atomic force microscopy. Am. Mineral. 87, 17–24 (2002).

Frank, F. C. & Read, W. T. Multiplication processes for slow moving dislocations. Phys. Rev. 79, 722–723 (1950).

Wang, Z. J. et al. The coalescence behavior of two-dimensional materials revealed by multiscale in situ imaging during chemical vapor deposition growth. ACS Nano 14, 1902–1918 (2020). PubMed

Nabarro, F. R. N. The force between two screw dislocations. Philos. Mag. A 54, 577–582 (1986).

Karamat, S. et al. Coalescence of few layer graphene grains grown by chemical vapor deposition and their stacking sequence. J. Mater. Res. 31, 46–54 (2016).

Sun, J. et al. Growth mechanism of graphene on platinum: surface catalysis and carbon segregation. Appl. Phys. Lett. 104, 152107 (2014).

Liu, Y. et al. Helical van der Waals crystals with discretized Eshelby twist. Nature 570, 358–362 (2019). PubMed

Sutter, P., Wimer, S. & Sutter, E. Chiral twisted van der Waals nanowires. Nature 570, 354–357 (2019). PubMed

Guo, W. et al. Governing rule for dynamic formation of grain boundaries in grown graphene. ACS Nano 9, 5792–5798 (2015). PubMed

Niyogi, S. et al. Covalent chemistry for graphene electronics. J. Phys. Chem. Lett. 2, 2487–2498 (2011).

Schweizer, P. et al. Mechanical cleaning of graphene using in situ electron microscopy. Nat. Commun. 11, 1743 (2020). PubMed PMC

Rogge, P. C. et al. Real-time observation of epitaxial graphene domain reorientation. Nat. Commun. 6, 6880 (2015). PubMed

Tyurnina, A. V., Okuno, H., Pochet, P. & Dijon, J. CVD graphene recrystallization as a new route to tune graphene structure and properties. Carbon 102, 499–505 (2016).

Wang, Z. J. et al. Formation mechanism, growth kinetics, and stability limits of graphene adlayers in metal‐catalyzed CVD growth. Adv. Mater. Interfaces 5, 1800255 (2018).

Zhu, Y. et al. Unravelling surface and interfacial structures of a metal–organic framework by transmission electron microscopy. Nat. Mater. 16, 532–536 (2017). PubMed

Pirart, J. et al. Reversed size-dependent stabilization of ordered nanophases. Nat. Commun. 10, 1982 (2019). PubMed PMC

Duerrschnabel, M. et al. Atomic structure and domain wall pinning in samarium-cobalt-based permanent magnets. Nat. Commun. 8, 54 (2017). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...