AAK1-like: A putative pseudokinase with potential roles in cargo uptake in bloodstream form Trypanosoma brucei parasites
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/W001101/1
Biotechnology and Biological Sciences Research Council - United Kingdom
MR/S019472/1
Medical Research Council - United Kingdom
BB/N016165/1
Biotechnology and Biological Sciences Research Council - United Kingdom
224501/Z/21/Z
Wellcome Trust - United Kingdom
BB/K006495/1
Biotechnology and Biological Sciences Research Council - United Kingdom
104111
Wellcome Trust - United Kingdom
Wellcome Trust - United Kingdom
BB/M028909/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
37548427
PubMed Central
PMC10952953
DOI
10.1111/jeu.12994
Knihovny.cz E-zdroje
- Klíčová slova
- AAK1, AP-2 complex, African trypanosomes, endocytosis,
- MeSH
- buněčná membrána MeSH
- endocytóza fyziologie MeSH
- klathrin metabolismus MeSH
- paraziti * metabolismus MeSH
- Trypanosoma brucei brucei * genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- klathrin MeSH
Selection and internalization of cargo via clathrin-mediated endocytosis requires adaptor protein complexes. One complex, AP-2, acts during cargo selection at the plasma membrane. African trypanosomes lack all components of the AP-2 complex, except for a recently identified orthologue of the AP-2-associated protein kinase 1, AAK1. In characterized eukaryotes, AAK1 phosphorylates the μ2 subunit of the AP-2 complex to enhance cargo recognition and uptake into clathrin-coated vesicles. Here, we show that kinetoplastids encode not one, but two AAK1 orthologues: one (AAK1L2) is absent from salivarian trypanosomes, while the other (AAK1L1) lacks important kinase-specific residues in a range of trypanosomes. These AAK1L1 and AAK1L2 novelties reinforce suggestions of functional divergence in endocytic uptake within salivarian trypanosomes. Despite this, we show that AAK1L1 null mutant Trypanosoma brucei, while viable, display slowed proliferation, morphological abnormalities including swelling of the flagellar pocket, and altered cargo uptake. In summary, our data suggest an unconventional role for a putative pseudokinase during endocytosis and/or vesicular trafficking in T. brucei, independent of AP-2.
Glasgow Imaging Facility School of Infection and Immunity University of Glasgow Glasgow UK
Institute of Parasitology Biology Centre Czech Academy of Sciences Ceske Budejovice Czech Republic
York Biomedical Research Institute and Department of Biology University of York York UK
Zobrazit více v PubMed
Abascal, F. , Zardoya, R. & Telford, M.J. (2010) TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Research, 38, W7–W13. Available from: 10.1093/nar/gkq291 PubMed DOI PMC
Allen, C.L. , Goulding, D. & Field, M.C. (2003) Clathrin‐mediated endocytosis is essential in Trypanosoma brucei . The EMBO Journal, 22, 4991–5002. Available from: 10.1093/emboj/cdg481 PubMed DOI PMC
Alsford, S. & Horn, D. (2008) Single‐locus targeting constructs for reliable regulated RNAi and transgene expression in Trypanosoma brucei . Molecular and Biochemical Parasitology, 161, 76–79. Available from: 10.1016/j.molbiopara.2008.05.006 PubMed DOI PMC
Altschul, S.F. , Madden, T.L. , Schäffer, A.A. , Zhang, J. , Zhang, Z. , Miller, W. et al. (1997) Gapped BLAST and PSI‐BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402. Available from: 10.1093/nar/25.17.3389 PubMed DOI PMC
Barlow, L.D. , Dacks, J.B. & Wideman, J.G. (2014) From all to (nearly) none. Cellular Logistics, 4, e28114. Available from: 10.4161/cl.28114 PubMed DOI PMC
Beacham, G.M. , Partlow, E.A. & Hollopeter, G. (2019) Conformational regulation of AP1 and AP2 clathrin adaptor complexes. Traffic, 20, 741–751. Available from: 10.1111/tra.12677 PubMed DOI PMC
Broster Reix, C.E. , Florimond, C. , Cayrel, A. , Mailhé, A. , Agnero‐Rigot, C. , Landrein, N. et al. (2021) Bhalin, an essential cytoskeleton‐associated protein of Trypanosoma brucei linking TbBILBO1 of the flagellar pocket collar with the hook complex. Microorganisms, 9, 2334. Available from: 10.3390/microorganisms9112334 PubMed DOI PMC
Büscher, P. , Cecchi, G. , Jamonneau, V. & Priotto, G. (2017) Human African trypanosomiasis. The Lancet, 390, 2397–2409. Available from: 10.1016/S0140-6736(17)31510-6 PubMed DOI
Capewell, P. , Cren‐Travaillé, C. , Marchesi, F. , Johnston, P. , Clucas, C. , Benson, R.A. et al. (2016) The skin is a significant but overlooked anatomical reservoir for vector‐borne African trypanosomes. eLife, 5, e17716. Available from: 10.7554/eLife.17716 PubMed DOI PMC
Cocucci, E. , Gaudin, R. & Kirchhausen, T. (2014) Dynamin recruitment and membrane scission at the neck of a clathrin‐coated pit. Molecular Biology of the Cell, 25, 3595–3609. Available from: 10.1091/mbc.e14-07-1240 PubMed DOI PMC
Collins, B.M. , McCoy, A.J. , Kent, H.M. , Evans, P.R. & Owen, D.J. (2002) Molecular architecture and functional model of the endocytic AP2 complex. Cell, 109, 523–535. Available from: 10.1016/S0092-8674(02)00735-3 PubMed DOI
Conner, S.D. & Schmid, S.L. (2002) Identification of an adaptor‐associated kinase, AAK1, as a regulator of clathrin‐mediated endocytosis. Journal of Cell Biology, 156, 921–929. Available from: 10.1083/jcb.200108123 PubMed DOI PMC
Conner, S.D. & Schmid, S.L. (2003) Differential requirements for AP‐2 in clathrin‐mediated endocytosis. Journal of Cell Biology, 162, 773–780. Available from: 10.1083/jcb.200304069 PubMed DOI PMC
Crooks, G.E. , Hon, G. , Chandonia, J.‐M. & Brenner, S.E. (2004) WebLogo: a sequence logo generator. Genome Research, 14, 1188–1190. Available from: 10.1101/gr.849004 PubMed DOI PMC
Dacks, J.B. & Robinson, M.S. (2017) Outerwear through the ages: evolutionary cell biology of vesicle coats. Current Opinion in Cell Biology, 47, 108–116. Available from: 10.1016/j.ceb.2017.04.001 PubMed DOI
Darriba, D. , Taboada, G.L. , Doallo, R. & Posada, D. (2011) ProtTest 3: fast selection of best‐fit models of protein evolution. Bioinformatics, 27, 1164–1165. Available from: 10.1093/bioinformatics/btr088 PubMed DOI PMC
Delport, W. , Poon, A.F.Y. , Frost, S.D.W. & Kosakovsky Pond, S.L. (2010) Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics, 26, 2455–2457. Available from: 10.1093/bioinformatics/btq429 PubMed DOI PMC
Devlin, R. , Marques, C.A. , Paape, D. , Prorocic, M. , Zurita‐Leal, A.C. , Campbell, S.J. et al. (2016) Mapping replication dynamics in Trypanosoma brucei reveals a link with telomere transcription and antigenic variation. eLife, 5, e12765. Available from: 10.7554/eLife.12765 PubMed DOI PMC
Doray, B. , Lee, I. , Knisely, J. , Bu, G. & Kornfeld, S. (2007) The γ/σ1 and α/σ2 hemicomplexes of clathrin adaptors AP‐1 and AP‐2 harbor the dileucine recognition site. Molecular Biology of the Cell, 18, 1887–1896. Available from: 10.1091/mbc.e07-01-0012 PubMed DOI PMC
Engstler, M. , Pfohl, T. , Herminghaus, S. , Boshart, M. , Wiegertjes, G. , Heddergott, N. et al. (2007) Hydrodynamic flow‐mediated protein sorting on the cell surface of trypanosomes. Cell, 131, 505–515. Available from: 10.1016/j.cell.2007.08.046 PubMed DOI
Field, M.C. & Carrington, M. (2009) The trypanosome flagellar pocket. Nature Reviews Microbiology, 7, 775–786. Available from: 10.1038/nrmicro2221 PubMed DOI
Florimond, C. , Sahin, A. , Vidilaseris, K. , Dong, G. , Landrein, N. , Dacheux, D. et al. (2015) BILBO1 is a scaffold protein of the flagellar pocket collar in the pathogen Trypanosoma brucei . PLoS Pathogens, 11, e1004654. Available from: 10.1371/journal.ppat.1004654 PubMed DOI PMC
Fritz, M. , Vanselow, J. , Sauer, N. , Lamer, S. , Goos, C. , Siegel, T.N. et al. (2015) Novel insights into RNP granules by employing the trypanosome's microtubule skeleton as a molecular sieve. Nucleic Acids Research, 43, 8013–8032. Available from: 10.1093/nar/gkv731 PubMed DOI PMC
Giordani, F. , Morrison, L.J. , Rowan, T.I.M.G. , De Koning, H.P. & And Barrett, M.P. (2016) The animal trypanosomiases and their chemotherapy: a review. Parasitology, 143, 1862–1889. Available from: 10.1017/S0031182016001268 PubMed DOI PMC
Gu, M. , Schuske, K. , Watanabe, S. , Liu, Q. , Baum, P. , Garriga, G. et al. (2008) μ2 adaptin facilitates but is not essential for synaptic vesicle recycling in Caenorhabditis elegans . Journal of Cell Biology, 183, 881–892. Available from: 10.1083/jcb.200806088 PubMed DOI PMC
Halliday, C. , de Castro‐Neto, A. , Alcantara, C.L. , Cunha‐e‐Silva, N.L. , Vaughan, S. & Sunter, J.D. (2021) Trypanosomatid flagellar pocket from structure to function. Trends in Parasitology, 37, 317–329. Available from: 10.1016/j.pt.2020.11.005 PubMed DOI
Henne, W.M. , Boucrot, E. , Meinecke, M. , Evergren, E. , Vallis, Y. , Mittal, R. et al. (2010) FCHo proteins are nucleators of Clathrin‐mediated endocytosis. Science, 1979(328), 1281–1284. Available from: 10.1126/science.1188462 PubMed DOI PMC
Hilton, N.A. , Sladewski, T.E. , Perry, J.A. , Pataki, Z. , Sinclair‐Davis, A.N. , Muniz, R.S. et al. (2018) Identification of TOEFAZ1‐interacting proteins reveals key regulators of Trypanosoma brucei cytokinesis. Molecular Microbiology, 109, 306–326. Available from: 10.1111/mmi.13986 PubMed DOI PMC
Hirumi, H. & Hirumi, K. (1989) Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. The Journal of Parasitology, 75, 985–989. Available from: 10.2307/3282883 PubMed DOI
Höning, S. , Ricotta, D. , Krauss, M. , Späte, K. , Spolaore, B. , Motley, A. et al. (2005) Phosphatidylinositol‐(4,5)‐bisphosphate regulates sorting signal recognition by the Clathrin‐associated adaptor complex AP2. Molecular Cell, 18, 519–531. Available from: 10.1016/j.molcel.2005.04.019 PubMed DOI
Hung, C.‐H. , Qiao, X. , Lee, P.‐T. & Lee, M.G.‐S. (2004) Clathrin‐dependent targeting of receptors to the flagellar pocket of Procyclic‐form Trypanosoma brucei . Eukaryotic Cell, 3, 1004–1014. Available from: 10.1128/EC.3.4.1004-1014.2004 PubMed DOI PMC
Jackson, A.P. , Flett, A. , Smythe, C. , Hufton, L. , Wettey, F.R. & Smythe, E. (2003) Clathrin promotes incorporation of cargo into coated pits by activation of the AP2 adaptor μ2 kinase. Journal of Cell Biology, 163, 231–236. Available from: 10.1083/jcb.200304079 PubMed DOI PMC
Jackson, L.P. , Kelly, B.T. , McCoy, A.J. , Gaffry, T. , James, L.C. , Collins, B.M. et al. (2010) A large‐scale conformational change couples membrane recruitment to cargo binding in the AP2 Clathrin adaptor complex. Cell, 141, 1220–1229. Available from: 10.1016/j.cell.2010.05.006 PubMed DOI PMC
Jha, A. , Agostinelli, N.R. , Mishra, S.K. , Keyel, P.A. , Hawryluk, M.J. & Traub, L.M. (2004) A novel AP‐2 adaptor interaction motif initially identified in the long‐splice isoform of Synaptojanin 1, SJ170*. Journal of Biological Chemistry, 279, 2281–2290. Available from: 10.1074/jbc.M305644200 PubMed DOI
Jones, N.G. , Thomas, E.B. , Brown, E. , Dickens, N.J. , Hammarton, T.C. & Mottram, J.C. (2014) Regulators of Trypanosoma brucei cell cycle progression and differentiation identified using a Kinome‐wide RNAi screen. PLoS Pathogens, 10, e1003886. Available from: 10.1371/journal.ppat.1003886 PubMed DOI PMC
Kadlecova, Z. , Spielman, S.J. , Loerke, D. , Mohanakrishnan, A. , Reed, D.K. & Schmid, S.L. (2016) Regulation of clathrin‐mediated endocytosis by hierarchical allosteric activation of AP2. Journal of Cell Biology, 216, 167–179. Available from: 10.1083/jcb.201608071 PubMed DOI PMC
Kaksonen, M. & Roux, A. (2018) Mechanisms of clathrin‐mediated endocytosis. Nature Reviews Molecular Cell Biology, 19, 313–326. Available from: 10.1038/nrm.2017.132 PubMed DOI
Kanev, G.K. , de Graaf, C. , de Esch, I.J.P. , Leurs, R. , Würdinger, T. , Westerman, B.A. et al. (2019) The landscape of atypical and eukaryotic protein kinases. Trends in Pharmacological Sciences, 40, 818–832. Available from: 10.1016/j.tips.2019.09.002 PubMed DOI
Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780. Available from: 10.1093/molbev/mst010 PubMed DOI PMC
Kelley, L.A. , Mezulis, S. , Yates, C.M. , Wass, M.N. & Sternberg, M.J.E. (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10, 845–858. Available from: 10.1038/nprot.2015.053 PubMed DOI PMC
Kelly, B.T. , Graham, S.C. , Liska, N. , Dannhauser, P.N. , Höning, S. , Ungewickell, E.J. et al. (2014) AP2 controls clathrin polymerization with a membrane‐activated switch. Science, 1979(345), 459–463. Available from: 10.1126/science.1254836 PubMed DOI PMC
Kirchhausen, T. , Owen, D. & Harrison, S.C. (2014) Molecular structure, function, and dynamics of Clathrin‐mediated membrane traffic. Cold Spring Harbor Perspectives in Biology, 6, a016725. Available from: 10.1101/cshperspect.a016725 PubMed DOI PMC
Klinger, C.M. , Ramirez‐Macias, I. , Herman, E.K. , Turkewitz, A.P. , Field, M.C. & Dacks, J.B. (2016) Resolving the homology—function relationship through comparative genomics of membrane‐trafficking machinery and parasite cell biology. Molecular and Biochemical Parasitology, 209, 88–103. Available from: 10.1016/j.molbiopara.2016.07.003 PubMed DOI PMC
Kosakovsky Pond, S.L. & Frost, S.D.W. (2005) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Molecular Biology and Evolution, 22, 1208–1222. Available from: 10.1093/molbev/msi105 PubMed DOI
Koumandou, V.L. , Boehm, C. , Horder, K.A. & Field, M.C. (2013) Evidence for recycling of invariant surface transmembrane domain proteins in African trypanosomes. Eukaryotic Cell, 12, 330–342. Available from: 10.1128/EC.00273-12 PubMed DOI PMC
Kovtun, O. , Dickson, V.K. , Kelly, B.T. , Owen, D.J. & Briggs, J.A.G. (2022) Architecture of the AP2/clathrin coat on the membranes of clathrin‐coated vesicles. Science Advances, 6, eaba8381. Available from: 10.1126/sciadv.aba8381 PubMed DOI PMC
Kwon, A. , Scott, S. , Taujale, R. , Yeung, W. , Kochut, K.J. , Eyers, P.A. et al. (2019) Tracing the origin and evolution of pseudokinases across the tree of life. Science Signaling, 12, eaav3810. Available from: 10.1126/scisignal.aav3810 PubMed DOI PMC
Lamaze, C. , Dujeancourt, A. , Baba, T. , Lo, C.G. , Benmerah, A. & Dautry‐Varsat, A. (2001) Interleukin 2 receptors and detergent‐resistant membrane domains define a Clathrin‐independent endocytic pathway. Molecular Cell, 7, 661–671. Available from: 10.1016/S1097-2765(01)00212-X PubMed DOI
Lee, L.J.Y. , Klute, M.J. , Herman, E.K. , Read, B. & Dacks, J.B. (2015) Losses, expansions, and novel subunit discovery of adaptor protein complexes in haptophyte algae. Protist, 166, 585–597. Available from: 10.1016/j.protis.2015.07.004 PubMed DOI
Link, F. , Borges, A.R. , Jones, N.G. & Engstler, M. (2021) To the surface and back: Exo‐ and endocytic pathways in Trypanosoma brucei . Frontiers in Cell and Development Biology, 9, 720521. Available from: https://www.frontiersin.org/articles/10.3389/fcell.2021.720521 PubMed DOI PMC
Mace, P.D. & Murphy, J.M. (2021) There's more to death than life: noncatalytic functions in kinase and pseudokinase signaling. Journal of Biological Chemistry, 296, 100705. Available from: 10.1016/j.jbc.2021.100705 PubMed DOI PMC
Manna, P.T. , Kelly, S. & Field, M.C. (2013) Adaptin evolution in kinetoplastids and emergence of the variant surface glycoprotein coat in African trypanosomatids. Molecular Phylogenetics and Evolution, 67, 123–128. Available from: 10.1016/j.ympev.2013.01.002 PubMed DOI PMC
Manna, P.T. , Obado, S.O. , Boehm, C. , Gadelha, C. , Sali, A. , Chait, B.T. et al. (2017) Lineage‐specific proteins essential for endocytosis in trypanosomes. Journal of Cell Science, 130, 1379–1392. Available from: 10.1242/jcs.191478 PubMed DOI PMC
Mészáros, B. , Erdős, G. & Dosztányi, Z. (2018) IUPred2A: context‐dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Research, 46, W329–W337. Available from: 10.1093/nar/gky384 PubMed DOI PMC
Mettlen, M. , Chen, P.‐H. , Srinivasan, S. , Danuser, G. & Schmid, S.L. (2018) Regulation of Clathrin‐mediated endocytosis. Annual Review of Biochemistry, 87, 871–896. Available from: 10.1146/annurev-biochem-062917-012644 PubMed DOI PMC
Miller, M.A. , Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In 2010 Gateway Computing Environments Workshop (GCE), 1–8. 10.1109/GCE.2010.5676129 DOI
Mishra, S.K. , Hawryluk, M.J. , Brett, T.J. , Keyel, P.A. , Dupin, A.L. , Jha, A. et al. (2004) Dual engagement regulation of protein interactions with the AP‐2 adaptor α appendage*. Journal of Biological Chemistry, 279, 46191–46203. Available from: 10.1074/jbc.M408095200 PubMed DOI
Morillon, A. , Karabetsou, N. , Nair, A. & Mellor, J. (2005) Dynamic lysine methylation on histone H3 defines the regulatory phase of gene transcription. Molecular Cell, 18, 723–734. Available from: 10.1016/j.molcel.2005.05.009 PubMed DOI
Morriswood, B. & Schmidt, K. (2015) A MORN repeat protein facilitates protein entry into the flagellar pocket of Trypanosoma brucei . Eukaryotic Cell, 14, 1081–1093. Available from: 10.1128/EC.00094-15 PubMed DOI PMC
Murrell, B. , Weaver, S. , Smith, M.D. , Wertheim, J.O. , Murrell, S. , Aylward, A. et al. (2015) Gene‐wide identification of episodic selection. Molecular Biology and Evolution, 32, 1365–1371. Available from: 10.1093/molbev/msv035 PubMed DOI PMC
Neveu, G. , Ziv‐Av, A. , Barouch‐Bentov, R. , Berkerman, E. , Mulholland, J. & Einav, S. (2015) AP‐2‐associated protein kinase 1 and cyclin G‐associated kinase regulate hepatitis C virus entry and are potential drug targets. Journal of Virology, 89, 4387–4404. Available from: 10.1128/JVI.02705-14 PubMed DOI PMC
Nolan, D.P. , Geuskens, M. & Pays, E. (1999) N‐linked glycans containing linear poly‐N‐acetyllactosamine as sorting signals in endocytosis in Trypanosoma brucei . Current Biology, 9, S1. Available from: 10.1016/S0960-9822(00)80018-4 PubMed DOI
Olusanya, O. , Andrews, P.D. , Swedlow, J.R. & Smythe, E. (2001) Phosphorylation of threonine 156 of the μ2 subunit of the AP2 complex is essential for endocytosis in vitro and in vivo. Current Biology, 11, 896–900. Available from: 10.1016/S0960-9822(01)00240-8 PubMed DOI
Owen, D.J. & Evans, P.R. (1998) A structural explanation for the recognition of tyrosine‐based Endocytotic signals. Science, 1979(282), 1327–1332. Available from: 10.1126/science.282.5392.1327 PubMed DOI PMC
Owen, D.J. , Vallis, Y. , Noble, M.E.M. , Hunter, J.B. , Dafforn, T.R. , Evans, P.R. et al. (1999) A structural explanation for the binding of multiple ligands by the α‐Adaptin appendage domain. Cell, 97, 805–815. Available from: 10.1016/S0092-8674(00)80791-6 PubMed DOI
Pal, A. , Hall, B.S. , Jeffries, T.R. & Field, M.C. (2003) Rab5 and Rab11 mediate transferrin and anti‐variant surface glycoprotein antibody recycling in Trypanosoma brucei . Biochemical Journal, 374, 443–451. Available from: 10.1042/bj20030469 PubMed DOI PMC
Partlow, E.A. , Baker, R.W. , Beacham, G.M. , Chappie, J.S. , Leschziner, A.E. & Hollopeter, G. (2019) A structural mechanism for phosphorylation‐dependent inactivation of the AP2 complex. eLife, 8, e50003. Available from: 10.7554/eLife.50003 PubMed DOI PMC
Perdomo, D. , Berdance, E. , Lallinger‐Kube, G. , Sahin, A. , Dacheux, D. , Landrein, N. et al. (2022) TbKINX1B: a novel BILBO1 partner and an essential protein in bloodstream form Trypanosoma brucei . Parasite, 29, 14. Available from: 10.1051/parasite/2022015 PubMed DOI PMC
Praefcke, G.J.K. & McMahon, H.T. (2004) The dynamin superfamily: universal membrane tubulation and fission molecules? Nature Reviews Molecular Cell Biology, 5, 133–147. Available from: 10.1038/nrm1313 PubMed DOI
Putters, J. , da Silva Almeida, A.C. , van Kerkhof, P. , van Rossum, A.G.S.H. , Gracanin, A. & Strous, G.J. (2011) Jak2 is a negative regulator of ubiquitin‐dependent endocytosis of the growth hormone receptor. PLoS One, 6, e14676. Available from: 10.1371/journal.pone.0014676 PubMed DOI PMC
Ricotta, D. , Conner, S.D. , Schmid, S.L. , von Figura, K. & Höning, S. (2002) Phosphorylation of the AP2 μ subunit by AAK1 mediates high affinity binding to membrane protein sorting signals. Journal of Cell Biology, 156, 791–795. Available from: 10.1083/jcb.200111068 PubMed DOI PMC
Ronquist, F. , Teslenko, M. , van der Mark, P. , Ayres, D.L. , Darling, A. , Höhna, S. et al. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542. Available from: 10.1093/sysbio/sys029 PubMed DOI PMC
Sandvig, K. , Kavaliauskiene, S. & Skotland, T. (2018) Clathrin‐independent endocytosis: an increasing degree of complexity. Histochemistry and Cell Biology, 150, 107–118. Available from: 10.1007/s00418-018-1678-5 PubMed DOI PMC
Schichler, D. , Spath, E.‐M. , Konle, A. , Riegler, S. , Klein, A. , Seleznev, A. et al. (2022) Endocytosis is required for access of surface‐bound cargo to the flagellar pocket of trypanosomes. bioRxiv, 2022.03.15.484455 10.1101/2022.03.15.484455 DOI
Schindelin, J. , Arganda‐Carreras, I. , Frise, E. , Kaynig, V. , Longair, M. , Pietzsch, T. et al. (2012) Fiji: an open‐source platform for biological‐image analysis. Nature Methods, 9, 676–682. Available from: 10.1038/nmeth.2019 PubMed DOI PMC
Schmid, E.M. , Ford, M.G.J. , Burtey, A. , Praefcke, G.J.K. , Peak‐Chew, S.‐Y. , Mills, I.G. et al. (2006) Role of the AP2 β‐appendage hub in recruiting partners for clathrin‐coated vesicle assembly. PLoS Biology, 4, e262. Available from: 10.1371/journal.pbio.0040262 PubMed DOI PMC
Silva Pereira, S. , Jackson, A.P. & Figueiredo, L.M. (2022) Evolution of the variant surface glycoprotein family in African trypanosomes. Trends in Parasitology, 38, 23–36. Available from: 10.1016/j.pt.2021.07.012 PubMed DOI
Sima, N. , McLaughlin, E.J. , Hutchinson, S. & Glover, L. (2022) Escaping the immune system by DNA repair and recombination in African trypanosomes. Open Biology, 9, 190182. Available from: 10.1098/rsob.190182 PubMed DOI PMC
Sinclair‐Davis, A.N. , McAllaster, M.R. & de Graffenried, C.L. (2017) A functional analysis of TOEFAZ1 uncovers protein domains essential for cytokinesis in Trypanosoma brucei . Journal of Cell Science, 130, 3918–3932. Available from: 10.1242/jcs.207209 PubMed DOI PMC
Sorrell, F.J. , Szklarz, M. , Abdul Azeez, K.R. , Elkins, J.M. & Knapp, S. (2016) Family‐wide structural analysis of human numb‐associated protein kinases. Structure, 24, 401–411. Available from: 10.1016/j.str.2015.12.015 PubMed DOI PMC
Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post‐analysis of large phylogenies. Bioinformatics, 30, 1312–1313. Available from: 10.1093/bioinformatics/btu033 PubMed DOI PMC
Stortz, J.A. , Serafim, T.D. , Alsford, S. , Wilkes, J. , Fernandez‐Cortes, F. , Hamilton, G. et al. (2017) Genome‐wide and protein kinase‐focused RNAi screens reveal conserved and novel damage response pathways in Trypanosoma brucei . PLoS Pathogens, 13, e1006477. Available from: 10.1371/journal.ppat.1006477 PubMed DOI PMC
Sukumaran, J. & Holder, M.T. (2010) DendroPy: a python library for phylogenetic computing. Bioinformatics, 26, 1569–1571. Available from: 10.1093/bioinformatics/btq228 PubMed DOI
Taylor, S.S. & Kornev, A.P. (2011) Protein kinases: evolution of dynamic regulatory proteins. Trends in Biochemical Sciences, 36, 65–77. Available from: 10.1016/j.tibs.2010.09.006 PubMed DOI PMC
Tomoni, A. , Lees, J. , Santana, A.G. , Bolanos‐Garcia, V.M. & Bastida, A. (2019) Pseudokinases: from allosteric regulation of catalytic domains and the formation of macromolecular assemblies to emerging drug targets. Catalysts, 9, 778. Available from: 10.3390/catal9090778 DOI
Trindade, S. , Rijo‐Ferreira, F. , Carvalho, T. , Pinto‐Neves, D. , Guegan, F. , Aresta‐Branco, F. et al. (2016) Trypanosoma brucei parasites occupy and functionally adapt to the adipose tissue in mice. Cell Host & Microbe, 19, 837–848. Available from: 10.1016/j.chom.2016.05.002 PubMed DOI PMC
Umeda, A. , Meyerholz, A. & Ungewickell, E. (2000) Identification of the universal cofactor (auxilin 2) in clathrin coat dissociation. European Journal of Cell Biology, 79, 336–342. Available from: 10.1078/S0171-9335(04)70037-0 PubMed DOI
Wertheim, J.O. , Murrell, B. , Smith, M.D. , Kosakovsky Pond, S.L. & Scheffler, K. (2015) RELAX: detecting relaxed selection in a phylogenetic framework. Molecular Biology and Evolution, 32, 820–832. Available from: 10.1093/molbev/msu400 PubMed DOI PMC
Wheeler, R.J. , Gull, K. & Sunter, J.D. (2019) Coordination of the cell cycle in trypanosomes. Annual Review of Microbiology, 73, 133–154. Available from: 10.1146/annurev-micro-020518-115617 PubMed DOI
Woo, Y.H. , Ansari, H. , Otto, T.D. , Klinger, C.M. , Kolisko, M. , Michálek, J. et al. (2015) Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. eLife, 4, e06974. Available from: 10.7554/eLife.06974 PubMed DOI PMC
Zhou, Q. , An, T. , Pham, K.T.M. , Hu, H. & Li, Z. (2018) The CIF1 protein is a master orchestrator of trypanosome cytokinesis that recruits several cytokinesis regulators to the cytokinesis initiation site. Journal of Biological Chemistry, 293, 16177–16192. Available from: 10.1074/jbc.RA118.004888 PubMed DOI PMC
Zhou, Q. , Gu, J. , Lun, Z.‐R. , Ayala, F.J. & Li, Z. (2016) Two distinct cytokinesis pathways drive trypanosome cell division initiation from opposite cell ends. Proceedings of the National Academy of Sciences, 113, 3287–3292. Available from: 10.1073/pnas.1601596113 PubMed DOI PMC