High-quality haploid genomes corroborate 29 chromosomes and highly conserved synteny of genes in Hyles hawkmoths (Lepidoptera: Sphingidae)
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Wellcome Trust - United Kingdom
206194 and 218328
Wellcome Trust - United Kingdom
PubMed
37550607
PubMed Central
PMC10405479
DOI
10.1186/s12864-023-09506-y
PII: 10.1186/s12864-023-09506-y
Knihovny.cz E-zdroje
- Klíčová slova
- Aristaless, Chromosome-level scaffolding, Cortex, Distal-less, Karyotype, Optix, P supergene, Wing pattern genes, Wnt,
- MeSH
- chromozomy * MeSH
- fylogeneze MeSH
- haploidie MeSH
- karyotyp MeSH
- můry * genetika MeSH
- syntenie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Morphological and traditional genetic studies of the young Pliocene genus Hyles have led to the understanding that despite its importance for taxonomy, phenotypic similarity of wing patterns does not correlate with phylogenetic relationship. To gain insights into various aspects of speciation in the Spurge Hawkmoth (Hyles euphorbiae), we assembled a chromosome-level genome and investigated some of its characteristics. RESULTS: The genome of a male H. euphorbiae was sequenced using PacBio and Hi-C data, yielding a 504 Mb assembly (scaffold N50 of 18.2 Mb) with 99.9% of data represented by the 29 largest scaffolds forming the haploid chromosome set. Consistent with this, FISH analysis of the karyotype revealed n = 29 chromosomes and a WZ/ZZ (female/male) sex chromosome system. Estimates of chromosome length based on the karyotype image provided an additional quality metric of assembled chromosome size. Rescaffolding the published male H. vespertilio genome resulted in a high-quality assembly (651 Mb, scaffold N50 of 22 Mb) with 98% of sequence data in the 29 chromosomes. The larger genome size of H. vespertilio (average 1C DNA value of 562 Mb) was accompanied by a proportional increase in repeats from 45% in H. euphorbiae (measured as 472 Mb) to almost 55% in H. vespertilio. Several wing pattern genes were found on the same chromosomes in the two species, with varying amounts and positions of repetitive elements and inversions possibly corrupting their function. CONCLUSIONS: Our two-fold comparative genomics approach revealed high gene synteny of the Hyles genomes to other Sphingidae and high correspondence to intact Merian elements, the ancestral linkage groups of Lepidoptera, with the exception of three simple fusion events. We propose a standardized approach for genome taxonomy using nucleotide homology via scaffold chaining as the primary tool combined with Oxford plots based on Merian elements to infer and visualize directionality of chromosomal rearrangements. The identification of wing pattern genes promises future understanding of the evolution of forewing patterns in the genus Hyles, although further sequencing data from more individuals are needed. The genomic data obtained provide additional reliable references for further comparative studies in hawkmoths (Sphingidae).
Center for Systems Biology Dresden Pfotenhauerstr 108 01307 Dresden Germany
Department of Cell and Molecular Biology Uppsala University Husargatan 3 Uppsala 751 23 Sweden
LOEWE Centre for Translational Biodiversity Genomics Frankfurt Am Main Germany
Senckenberg Natural History Collections Dresden Königsbrücker Landstr 159 01109 Dresden Germany
Tree of Life Wellcome Sanger Institute Cambridge CB10 1SA UK
Zobrazit více v PubMed
Hundsdoerfer AK, Päckert M, Kehlmaier C, Strutzenberger P, Kitching IJ. Museum archives revisited: Central Asiatic hawkmoths reveal exceptionally high late Pliocene species diversification (Lepidoptera, Sphingidae) Zoolog Scr. 2017;46(5):552–570. doi: 10.1111/zsc.12235. DOI
Hundsdoerfer AK, Kitching IJ, Wink M. A molecular phylogeny of the hawkmoth genus Hyles (Lepidoptera: Sphingidae, Macroglossinae) Mol Phylogenet Evol. 2005;35:442–458. doi: 10.1016/j.ympev.2005.02.004. PubMed DOI
Hundsdoerfer AK, Lee KM, Kitching IJ, Mutanen M. Genome-wide SNP data reveal an overestimation of species diversity in a group of hawkmoths. Genome Biol Evol. 2019;11(8):2136–2150. doi: 10.1093/gbe/evz113. PubMed DOI PMC
Hundsdoerfer AK, Tshibangu JN, Wetterauer B, Wink M. Sequestration of phorbol esters by aposematic larvae of Hyles euphorbiae (Lepidoptera: Sphingidae)? Chemoecology. 2005;15(4):261–267. doi: 10.1007/s00049-005-0321-9. DOI
Hundsdoerfer AK, Rubinoff D, Attié M, Kitching IJ, Wink M. A revised molecular phylogeny of the globally distributed hawkmoth genus Hyles (Lepidoptera: Sphingidae), based on mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol. 2009;52:852–865. doi: 10.1016/j.ympev.2009.05.023. PubMed DOI
Hundsdoerfer AK, Buchwalder K, O’Neill MA, Dobler S. Chemical ecology traits in an adaptive radiation: TPA-sensitivity and detoxification in Hyles and Hippotion (Sphingidae, Lepidoptera) larvae. Chemoecology. 2019;29(1):35–47. doi: 10.1007/s00049-018-0274-4. DOI
Mende MB, Bartel M, Hundsdoerfer AK. A comprehensive phylogeography of the Hyles euphorbiae complex (Lepidoptera: Sphingidae) indicates a 'glacial refuge belt'. Sci Rep. 2016;6:29527. doi: 10.1038/srep29527. PubMed DOI PMC
Les Sphingidae de France [http://sphingidae-haxaire.com/index.php/macroglossinae-2/hyles-vespertilio/].
Hundsdoerfer AK, Kitching IJ. Morphological evolution in Hyles Hübner, 1819 hawkmoths (Lepidoptera, Sphingidae): reconstructing the ancestral Hyles habitus. Nota Lepidopterologica. 2020;43:181. doi: 10.3897/nl.43.49512. DOI
Danner F, Eitschberger U, Surholt B. Die Schwärmer der westlichen Palaearktis. Bausteine zu einer Revision (Lepidoptera: Sphingidae) Herbipoliana. 1998;4:1–368.
Hundsdoerfer AK, Kitching IJ. Ancient incomplete lineage sorting of Hyles and Rhodafra (Lepidoptera: Sphingidae) Org Divers Evol. 2020;20(3):527–536. doi: 10.1007/s13127-020-00445-0. DOI
Pippel M, Jebb D, Patzold F, Winkler S, Vogel H, Myers G, Hiller M, Hundsdoerfer AK. A highly contiguous genome assembly of the bat hawkmoth Hyles vespertilio (Lepidoptera: Sphingidae) GigaScience. 2020;9(1):giaa001. doi: 10.1093/gigascience/giaa001. PubMed DOI PMC
Patzold F, Zilli A, Hundsdoerfer AK. Advantages of an easy-to-use DNA extraction method for minimal-destructive analysis of collection specimens. PLoS ONE. 2020;15(7):e0235222. doi: 10.1371/journal.pone.0235222. PubMed DOI PMC
Boyes D, Holland P, University of Oxford and Wytham Woods Genome Acquisition Lab et al. The genome sequence of the lime hawk-moth, Mimas tiliae (Linnaeus, 1758) Wellcome Open Res. 2021;6:357. doi: 10.12688/wellcomeopenres.17485.1. PubMed DOI PMC
Boyes D, Holland PW, Consortium DToL The genome sequence of the poplar hawk-moth, Laothoe populi (Linnaeus, 1758) Wellcome Open Res. 2021;6:237. doi: 10.12688/wellcomeopenres.17191.1. PubMed DOI PMC
Beldade P, Brakefield PM. The genetics and evo-devo of butterfly wing patterns. Nat Rev Genet. 2002;3(6):442–452. doi: 10.1038/nrg818. PubMed DOI
Nijhout HF. Elements of butterfly wing patterns. J Exp Zool. 2001;291(3):213–225. doi: 10.1002/jez.1099. PubMed DOI
Beldade P, Monteiro A. Eco-evo-devo advances with butterfly eyespots. Curr Opin Genet Dev. 2021;69:6–13. doi: 10.1016/j.gde.2020.12.011. PubMed DOI
Monteiro A, Glaser G, Stockslager S, Glansdorp N, Ramos D. Comparative insights into questions of lepidopteran wing pattern homology. BMC Dev Biol. 2006;6:52. PubMed PMC
Van Belleghem SM, Rastas P, Papanicolaou A, Martin SH, Arias CF, Supple MA, Hanly JJ, Mallet J, Lewis JJ, Hines HM, et al. Complex modular architecture around a simple toolkit of wing pattern genes. Nat Ecol Evol. 2017;1(3):52. doi: 10.1038/s41559-016-0052. PubMed DOI PMC
Dhungel B, Ohno Y, Matayoshi R, Iwasaki M, Taira W, Adhikari K, Gurung R, Otaki JM. distal-less induces elemental color patterns in Junonia butterfly wings. Zool Lett. 2016;2:4. doi: 10.1186/s40851-016-0040-9. PubMed DOI PMC
Connahs H, Rhen T, Simmons RB. Transcriptome analysis of the painted lady butterfly, Vanessa cardui during wing color pattern development. BMC Genomics. 2016;17:270. PubMed PMC
Martin A, Reed RD. wingless and aristaless2 define a developmental ground plan for moth and butterfly wing pattern evolution. Mol Biol Evol. 2010;27(12):2864–2878. doi: 10.1093/molbev/msq173. PubMed DOI
Stevens M, Merilaita S. Animal camouflage: current issues and new perspectives. Philos Trans R Soc B Biol Sci. 2009;364(1516):423–7. PubMed PMC
Hiyama A, Taira W, Otaki JM. Color-pattern evolution in response to environmental stress in butterflies. Front Genet. 2012;3:15. PubMed PMC
Bastide H, Saenko SV, Chouteau M, Joron M, Llaurens V. Dominance mechanisms in supergene alleles controlling butterfly wing pattern variation: insights from gene expression in Heliconius numata. Heredity. 2023;130(2):92–98. doi: 10.1038/s41437-022-00583-5. PubMed DOI PMC
Jay P, Leroy M, Le Poul Y, Whibley A, Arias M, Chouteau M, Joron M. Association mapping of colour variation in a butterfly provides evidence that a supergene locks together a cluster of adaptive loci. Philos Trans R Soc Biol Sci. 1856;2022:377. PubMed PMC
Zhang L, Mazo-Vargas A, Reed RD. Single master regulatory gene coordinates the evolution and development of butterfly color and iridescence. Proc Natl Acad Sci U S A. 2017;114(40):10707–10712. doi: 10.1073/pnas.1709058114. PubMed DOI PMC
Livraghi L, Martin A, Gibbs M, Braak N, Arif S, Breuker CJ. CRISPR/Cas9 as the key to unlocking the secrets of butterfly wing pattern development and its evolution. Adv Insect Physiol. 2018;54:85–115. doi: 10.1016/bs.aiip.2017.11.001. DOI
Jiggins CD, Wallbank RW, Hanly JJ. Waiting in the wings: what can we learn about gene co-option from the diversification of butterfly wing patterns? Philos Trans R Soc B Biol Sci. 2017;372(1713):20150485. PubMed PMC
Nadeau NJ, Pardo-Diaz C, Whibley A, Supple MA, Saenko SV, Wallbank RW, Wu GC, Maroja L, Ferguson L, Hanly JJ, et al. The gene cortex controls mimicry and crypsis in butterflies and moths. Nature. 2016;534(7605):106–110. doi: 10.1038/nature17961. PubMed DOI PMC
van’t Hof AE, Campagne P, Rigden DJ, Yung CJ, Lingley J, Quail MA, Hall N, Darby AC, Saccheri IJ. The industrial melanism mutation in British peppered moths is a transposable element. Nature. 2016;534(7605):102–5. PubMed
Brunetti CR, Selegue JE, Monteiro A, French V, Brakefield PM, Carroll SB. The generation and diversification of butterfly eyespot color patterns. Curr Biol. 2001;11(20):1578–1585. doi: 10.1016/S0960-9822(01)00502-4. PubMed DOI
Westerman EL, VanKuren NW, Massardo D, Tenger-Trolander A, Zhang W, Hill RI, Perry M, Bayala E, Barr K, Chamberlain N, et al. aristaless controls butterfly wing color variation used in mimicry and mate choice. Curr Biol. 2018;28(21):3469. doi: 10.1016/j.cub.2018.08.051. PubMed DOI PMC
Bayala EX, VanKuren N, Massardo D, Kronforst MR. aristaless1 has a dual role in appendage formation and wing color specification during butterfly development. BMC Biol. 2023;21:1–19. PubMed PMC
Cheng H, Concepcion GT, Feng X, Zhang H, Li H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods. 2021;18(2):170–175. doi: 10.1038/s41592-020-01056-5. PubMed DOI PMC
Gershman A, Romer TG, Fan Y, Razaghi R, Smith WA, Timp W. De novo genome assembly of the tobacco hornworm moth (Manduca sexta) G3. 2021;11(1):1–9. doi: 10.1093/g3journal/jkaa047. PubMed DOI PMC
Mulhair PO, Holland PW. Evolution of the insect Hox gene cluster: Comparative analysis across 243 species. Semin Cell Dev Biol. 2022 doi: 10.1016/j.semcdb.2022.11.010. PubMed DOI
Boyes D, University of Oxford and Wytham Woods Genome Acquisition Lab LDarwin Tree of Life Barcoding collective et al. The genome sequence of the small elephant hawk moth, Deilephila porcellus (Linnaeus, 1758) Wellcome Open Res. 2022;7:80. doi: 10.12688/wellcomeopenres.17740.1. PubMed DOI PMC
Putnam NH, O'Connell BL, Stites JC, Rice BJ, Blanchette M, Calef R, Troll CJ, Fields A, Hartley PD, Sugnet CW. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 2016;26(3):342–350. doi: 10.1101/gr.193474.115. PubMed DOI PMC
Kawamoto M, Jouraku A, Toyoda A, Yokoi K, Minakuchi Y, Katsuma S, Fujiyama A, Kiuchi T, Yamamoto K, Shimada T. High-quality genome assembly of the silkworm, Bombyx mori. Insect Biochem Mol Biol. 2019;107:53–62. doi: 10.1016/j.ibmb.2019.02.002. PubMed DOI
Wright CJ, Stevens L, Mackintosh A, Lawniczack M, Blaxter M. Chromosome evolution in Lepidoptera. bioRxiv. 2023. 10.1101/2023.05.12.540473. PubMed PMC
Yasukochi Y, Tanaka-Okuyama M, Shibata F, Yoshido A, Marec F, Wu C, Zhang H, Goldsmith MR, Sahara K. Extensive conserved synteny of genes between the karyotypes of Manduca sexta and Bombyx mori revealed by BAC-FISH mapping. PLoS ONE. 2009;4(10):e7465. doi: 10.1371/journal.pone.0007465. PubMed DOI PMC
Kawahara AY, Barber JR. Tempo and mode of antibat ultrasound production and sonar jamming in the diverse hawkmoth radiation. Proc Natl Acad Sci USA. 2015;112(20):6407–12. PubMed PMC
Allio R, Schomaker-Bastos A, Romiguier J, Prosdocimi F, Nabholz B, Delsuc F. MitoFinder: Efficient automated large-scale extraction of mitogenomic data in target enrichment phylogenomics. Mol Ecol Resour. 2020;20(4):892–905. https://github.com/marcelauliano/MitoHiFi. PubMed PMC
Uliano-Silva M, Gabriel JR, Ferreira N, Krasheninnikova K. Darwin Tree of Life Consortium, Giulio Formenti, Linelle Abueg, James Torrance, Eugene W. Myers, Richard Durbin, Mark Blaxter, Shane A. McCarthy bioRxiv. 2022.12.23.521667. 10.1101/2022.12.23.521667. Accessed 1 Feb 2023.
Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci USA. 2003;100(20):11484–11489. doi: 10.1073/pnas.1932072100. PubMed DOI PMC
Lee BT, Barber GP, Benet-Pages A, Casper J, Clawson H, Diekhans M, Fischer C, Gonzalez JN, Hinrichs AS, Lee CM, et al. The UCSC Genome Browser database: 2022 update. Nucleic Acids Res. 2022;50(D1):D1115–D1122. doi: 10.1093/nar/gkab959. PubMed DOI PMC
Sofroniew N, Lambert T, Evans K, Nunez-Iglesias J, Bokota G, Winston P, Bragantini J. napari: a multi-dimensional image viewer for Python. Zenodo. 2022. 10.5281/zenodo. 3555620. DOI
Hundsdoerfer AK, Kitching IJ, Wink M. The phylogeny of the Hyles euphorbiae-complex (Lepidoptera: Sphingidae): molecular evidence from sequence data and ISSR-PCR fingerprints. Org Divers Evol. 2005;5:173–198. doi: 10.1016/j.ode.2004.11.012. DOI
Hanrahan SJ, Johnston JS. New genome size estimates of 134 species of arthropods. Chromosome Res. 2011;19(6):809–823. doi: 10.1007/s10577-011-9231-6. PubMed DOI
d'Alencon E, Sezutsu H, Legeai F, Permal E, Bernard-Samain S, Gimenez S, Gagneur C, Cousserans F, Shimomura M, Brun-Barale A, et al. Extensive synteny conservation of holocentric chromosomes in Lepidoptera despite high rates of local genome rearrangements. Proc Natl Acad Sci U S A. 2010;107(17):7680–7685. doi: 10.1073/pnas.0910413107. PubMed DOI PMC
Lavoie CA, Platt RN, Novick PA, Counterman BA, Ray DA. Transposable element evolution in Heliconius suggests genome diversity within Lepidoptera. Mob DNA. 2013;4(1):21. doi: 10.1186/1759-8753-4-21. PubMed DOI PMC
Lynch M, Walsh B. The origins of genome architecture. Sunderland, MA: Sinauer Associates; 2007.
Shah A, Hoffman JI, Schielzeth H. Comparative analysis of genomic repeat content in Gomphocerine grasshoppers reveals expansion of satellite DNA and helitrons in species with unusually large genomes. Genome Biol Evol. 2020;12(7):1180–1193. doi: 10.1093/gbe/evaa119. PubMed DOI PMC
Hollister JD, Gaut BS. Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res. 2009;19(8):1419–1428. doi: 10.1101/gr.091678.109. PubMed DOI PMC
Charlesworth B, Sniegowski P, Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994;371(6494):215–220. doi: 10.1038/371215a0. PubMed DOI
Talla V, Suh A, Kalsoom F, Dinca V, Vila R, Friberg M, Wiklund C, Backstrom N. Rapid increase in genome size as a consequence of transposable element hyperactivity in Wood-White (Leptidea) Butterflies. Genome Biol Evol. 2017;9(10):2491–2505. doi: 10.1093/gbe/evx163. PubMed DOI PMC
Ellegren H, Smeds L, Burri R, Olason PI, Backstrom N, Kawakami T, Kunstner A, Makinen H, Nadachowska-Brzyska K, Qvarnstrom A, et al. The genomic landscape of species divergence in Ficedula flycatchers. Nature. 2012;491(7426):756–760. doi: 10.1038/nature11584. PubMed DOI
Feliciello I, Akrap I, Brajkovic J, Zlatar I, Ugarkovic D. Satellite DNA as a driver of population divergence in the red flour beetle Tribolium castaneum. Genome Biol Evol. 2014;7(1):228–239. doi: 10.1093/gbe/evu280. PubMed DOI PMC
Maumus F, Fiston-Lavier AS, Quesneville H. Impact of transposable elements on insect genomes and biology. Curr Opin Insect Sci. 2015;7:30–36. doi: 10.1016/j.cois.2015.01.001. PubMed DOI
Pittaway AR. The hawkmoths of the Western Palaearctic. Colchester: Harley Books; 1993.
Brower AVZ. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc Natl Acad Sci U S A. 1994;91:6491–6495. doi: 10.1073/pnas.91.14.6491. PubMed DOI PMC
Pringle EG, Baxter SW, Webster CL, Papanicolaou A, Lee SF, Jiggins CD. Synteny and chromosome evolution in the Lepidoptera: evidence from mapping in Heliconius melpomene. Genetics. 2007;177(1):417–26. PubMed PMC
Yasukochi Y, Ashakumary LA, Baba K, Yoshido A, Sahara K. A second-generation integrated map of the silkworm reveals synteny and conserved gene order between lepidopteran insects. Genetics. 2006;173(3):1319–1328. doi: 10.1534/genetics.106.055541. PubMed DOI PMC
Ahola VLR, Somervuo P, Salmela L, Koskinen P, Rastas P, et al. The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. Nat Commun. 2014;5:4737. doi: 10.1038/ncomms5737. PubMed DOI PMC
Sahara K, Yoshido A, Shibata F, Fujikawa-Kojima N, Okabe T, Tanaka-Okuyama M, Yasukochi Y. FISH identification of Helicoverpa armigera and Mamestra brassicae chromosomes by BAC and fosmid probes. Insect Biochem Mol Biol. 2013;43(8):644–653. doi: 10.1016/j.ibmb.2013.04.003. PubMed DOI
van’t Hof AE, Nguyen P, Dalíková M, Edmonds N, Marec F, Saccheri IJ. Linkage map of the peppered moth, Biston betularia (Lepidoptera, Geometridae): a model of industrial melanism. Heredity. 2013;110(3):283–95. PubMed PMC
Yoshido A, Bando H, Yasukochi Y, Sahara K. The Bombyx mori karyotype and the assignment of linkage group. Genetics. 2005;170:675–85. PubMed PMC
Jiggins CD. What can we learn about adaptation from the wing pattern genetics of Heliconius butterflies? In: Diversity and evolution of butterfly wing patterns. Singapore: Springer; 2017. pp. 173–188.
Reed RD, Papa R, Martin A, Hines HM, Counterman BA, Pardo-Diaz C, Jiggins CD, Chamberlain NL, Kronforst MR, Chen R, et al. optix drives the repeated convergent evolution of butterfly wing pattern mimicry. Science. 2011;333(6046):1137–1141. doi: 10.1126/science.1208227. PubMed DOI
Maddison WP. Gene trees in species trees. Syst Biol. 1997;46(3):523–536. doi: 10.1093/sysbio/46.3.523. DOI
Yoshido A, Sahara K, Yasukochi Y. Silk moths (Lepidoptera). In: Sharakhov IV, editor. Protocols for cytogenetic mapping of arthropod genomes. Boca Ranton, FL, USA: CRC Press; 2015. p. 219–56.
Yoshido A, Marec F, Sahara K. Resolution of sex chromosome constitution by genomic in situ hybridization and fluorescence in situ hybridization with (TTAGG)( n ) telomeric probe in some species of Lepidoptera. Chromosoma. 2005;114(3):193–202. doi: 10.1007/s00412-005-0013-9. PubMed DOI
Sahara K, Marec F, Traut W. TTAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosome Res. 1999;7(6):449–460. doi: 10.1023/A:1009297729547. PubMed DOI
Team TGD: GIMP. Retrieved from https://www.gimp.org. In.; 2019.
Hare EE, Johnston JS. Genome size determination using flow cytometry of propidium iodide-stained nuclei. In: Molecular methods for evolutionary genetics. Springer; 2012. pp. 3–12. PubMed
Miller S, Dykes D, Polesky H. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16(3):1215. doi: 10.1093/nar/16.3.1215. PubMed DOI PMC
Align subreads to ccs reads [https://github.com/PacificBiosciences/actc].
Baid G, Cook DE, Shafin K, Yun T, Llinares-Lopez F, Berthet Q, Wenger AM, Rowell WJ, Nattestad M, Yang H. DeepConsensus: gap- aware sequence transformers for sequence correction. bioRxiv. 2021;41:232. PubMed
Guan D, McCarthy SA, Wood J, Howe K, Wang Y, Durbin R. Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics. 2020;36(9):2896–2898. doi: 10.1093/bioinformatics/btaa025. PubMed DOI PMC
Haplotypic duplication identification tool [https://github.com/dfguan/purge_dups#step-1-run-minimap2-to-align-pacbio-data-and-generate-paf-files-then-calculate-read-depth-histogram-and-base-level-read-depth-commands-are-as-follows].
Zhou C, McCarthy SA, Durbin R. YaHS: yet another Hi-C scaffolding tool. bioRxiv. 2022;39:btac808. PubMed PMC
Kerpedjiev P, Abdennur N. Lekschas Fea: HiGlass: web-based visual exploration and analysis of genome interaction maps. Genome Biol. 2018;19:125. doi: 10.1186/s13059-018-1486-1. PubMed DOI PMC
A minimap2 frontend for PacBio native data formats [https://github.com/PacificBiosciences/pbmm2].
GCpp Generate Highly Accurate Reference Contigs.
Poplin R, Chang P-C, Alexander D, Schwartz S, Colthurst T, Ku A, Newburger D, Dijamco J, Nguyen N, Afshar PT. A universal SNP and small-indel variant caller using deep neural networks. Nat Biotechnol. 2018;36(10):983–987. doi: 10.1038/nbt.4235. PubMed DOI
bcftools - utilities for variant calling and manipulating VCFs and BCFs [https://samtools.github.io/bcftools/bcftools.html].
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Challis R, Richards E, Rajan J, Cochrane G, Blaxter M. BlobToolKit-interactive quality assessment of genome assemblies. G3 Genes Genomes Genet. 2020;10:1361–1374. doi: 10.1534/g3.119.400908. PubMed DOI PMC
Manni M, Berkeley MR, Seppey M, Simao FA, Zdobnov EM. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol. 2021;38(10):4647–54. PubMed PMC
Rhie A, Walenz BP, Koren S, Phillippy AM. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 2020;21(1):1–27. doi: 10.1186/s13059-020-02134-9. PubMed DOI PMC
Kirilenko B, Munegowda C, Osipova E, Jebb D, Sharma V, Blumer M, Morales A, Ahmed A, Kontopoulos D, Hilgers L, et al. Integrating gene annotation with orthology inference at scale. Science. 2023;380(6643):eabn3107. PubMed PMC
Sharma V, Schwede P, Hiller M. CESAR 2.0 substantially improves speed and accuracy of comparative gene annotation. Bioinformatics. 2017;33(24):3985–3987. doi: 10.1093/bioinformatics/btx527. PubMed DOI
Sharma V, Elghafari A, Hiller M. Coding exon-structure aware realigner (CESAR) utilizes genome alignments for accurate comparative gene annotation. Nucleic Acids Res. 2016;44(11):e103. doi: 10.1093/nar/gkw210. PubMed DOI PMC
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29(8):1072–1075. doi: 10.1093/bioinformatics/btt086. PubMed DOI PMC
Harris RS. Improved pairwise alignment of genomic DNA. A thesis in computer science and engineering. The Pennsylvania State University; 2007.
Osipova E, Hecker N, Hiller M. RepeatFiller newly identifies megabases of aligning repetitive sequences and improves annotations of conserved non-exonic elements. bioRxiv. 2019;8:132. PubMed PMC
Suarez HG, Langer BE, Ladde P, Hiller M. chainCleaner improves genome alignment specificity and sensitivity. Bioinformatics. 2017;33(11):1596–1603. doi: 10.1093/bioinformatics/btx024. PubMed DOI
Bernt M, Donath A, Juhling F, Externbrink F, Florentz C, Fritzsch G, Putz J, Middendorf M, Stadler PF. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 2013;69(2):313–319. doi: 10.1016/j.ympev.2012.08.023. PubMed DOI
Yu Y, Ouyang Y, Yao W. shinyCircos: an R/Shiny application for interactive creation of Circos plot. Bioinformatics. 2018;34(7):1229–1231. doi: 10.1093/bioinformatics/btx763. PubMed DOI
Smit A, Hubley R, Green P: RepeatModeler Open-1.0. 2008–2015. Institute for Systems Biology, Seattle, USA Available from: http://www.repeatmaskerorg 2015.
Smit A, Hubley R, Green P: RepeatMasker Open-4.0. 2013–2015. Available from: http://www.repeatmasker.org. In.; 2015.
TETools [https://github.com/Dfam-consortium/TETools].
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150–3152. doi: 10.1093/bioinformatics/bts565. PubMed DOI PMC
Goubert C, Craig RJ, Bilat AF, Peona V, Vogan AA, Protasio AV. A beginner’s guide to manual curation of transposable elements. Mob DNA. 2022;13(1):7. PubMed PMC
pb-CpG-tools [https://github.com/PacificBiosciences/pb-CpG-tools].
Simao Neto F, Waterhouse R, Ioannidis P, Kriventseva E, Zdobnov E. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI
Scripts associated with Hundsdoerfer et al, 2023 [https://github.com/charlottewright/hyles_manuscript].
Cook LM. The rise and fall of the Carbonaria form of the peppered moth. Q Rev Biol. 2003;78(4):399–417. PubMed
van’t Hof AE, Edmonds N, Dalíková M, Marec F, Saccheri IJ. Industrial melanism in British peppered moths has a singular and recent mutational origin. Science. 2011;332(6032):958–60. PubMed