Methadone administered to rat dams during pregnancy and lactation affects the circadian rhythms of their pups
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
37551165
DOI
10.1002/jnr.25236
Knihovny.cz E-resources
- Keywords
- circadian clock, development, liver, methadone, pineal gland,
- MeSH
- Circadian Rhythm physiology MeSH
- Pineal Gland * metabolism MeSH
- Rats MeSH
- Lactation MeSH
- Melatonin * pharmacology MeSH
- Methadone metabolism pharmacology MeSH
- Suprachiasmatic Nucleus physiology MeSH
- Pregnancy MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Pregnancy MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Melatonin * MeSH
- Methadone MeSH
The circadian clock is one of the most important homeostatic systems regulating the majority of physiological functions. Its proper development contributes significantly to the maintenance of health in adulthood. Methadone is recommended for the treatment of opioid use disorders during pregnancy, increasing the number of children prenatally exposed to long-acting opioids. Although early-life opioid exposure has been studied for a number of behavioral and physiological changes observed later in life, information on the relationship between the effects of methadone exposure and circadian system development is lacking. Using a rat model, we investigated the effects of prenatal and early postnatal methadone administration on the maturation of the circadian clockwork in the suprachiasmatic nucleus (SCN) and liver, the rhythm of aralkylamine N-acetyltransferase (AA-NAT) activity in the pineal gland, and gene expression in the livers of 20-day-old rats. Our data show that repeated administration of methadone to pregnant and lactating mothers has significant effect on rhythmic gene expression in the SCN and livers and on the rhythm of AA-NAT in the offspring. Similar to previous studies with morphine, the rhythm amplitudes of the clock genes in the SCN and liver were unchanged or enhanced. However, six of seven specific genes in the liver showed significant downregulation of their expression, compared to the controls in at least one experimental group. Importantly, the amplitude of the AA-NAT rhythm was significantly reduced in all methadone-treated groups. As there is a strong correlation with melatonin levels, this result could be of importance for clinical practice.
See more in PubMed
Abeysena, C., Jayawardana, P., & DE A Seneviratne, R. (2009). Maternal sleep deprivation is a risk factor for small for gestational age: A cohort study. The Australian & New Zealand Journal of Obstetrics & Gynaecology, 49(4), 382-387. https://doi.org/10.1111/j.1479-828X.2009.01010.x
Albrecht, U. (2012). Circadian rhythms and sleep-The metabolic connection. Pflugers Archiv: European Journal of Physiology, 463(1), 23-30. https://doi.org/10.1007/s00424-011-0986-6
Albrecht, U., Sun, Z. S., Eichele, G., & Lee, C. C. (1997). A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell, 91(7), 1055-1064. https://doi.org/10.1016/S0092-8674(00)80495-X
Albus, H., Vansteensel, M. J., Michel, S., Block, G. D., & Meijer, J. H. (2005). A GABAergic mechanism is necessary for coupling dissociable ventral and dorsal regional oscillators within the circadian clock. Current Biology: CB, 15(10), 886-893. https://doi.org/10.1016/j.cub.2005.03.051
Andersen, C. L., Jensen, J. L., & Ørntoft, T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64(15), 5245-5250. https://doi.org/10.1158/0008-5472.CAN-04-0496
Aton, S. J., Colwell, C. S., Harmar, A. J., Waschek, J., & Herzog, E. D. (2005). Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nature Neuroscience, 8(4), 476-483. https://doi.org/10.1038/nn1419
Bagley, S. M., Wachman, E. M., Holland, E., & Brogly, S. B. (2014). Review of the assessment and management of neonatal abstinence syndrome. Addiction Science & Clinical Practice, 9(1), 19. https://doi.org/10.1186/1940-0640-9-19
Baler, R., Covington, S., & Klein, D. C. (1997). The rat arylalkylamine N-acetyltransferase gene promoter. CAMP activation via a cAMP-responsive element-CCAAT complex. The Journal of Biological Chemistry, 272(11), 6979-6985. https://doi.org/10.1074/jbc.272.11.6979
Bendová, Z., Pačesová, D., & Novotný, J. (2020). The day-night differences in ERK1/2, GSK3β activity and c-Fos levels in the brain, and the responsiveness of various brain structures to morphine. The Journal of Comparative Neurology, 528(14), 2471-2495. https://doi.org/10.1002/cne.24906
Bier, J. B., Finger, A. S., Bier, B. A., Johnson, T. A., & Coyle, M. G. (2015). Growth and developmental outcome of infants with in-utero exposure to methadone vs buprenorphine. Journal of Perinatology, 35(8), 656-659. https://doi.org/10.1038/jp.2015.22
Byku, M., & Gannon, R. L. (2000). SNC 80, a delta-opioid agonist, elicits phase advances in hamster circadian activity rhythms. Neuroreport, 11(7), 1449-1452. https://doi.org/10.1097/00001756-200005150-00019
Canal-Corretger, M. M., Vilaplana, J., Cambras, T., & Díez-Noguera, A. (2001). Functioning of the rat circadian system is modified by light applied in critical postnatal days. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 280(4), R1023-R1030. https://doi.org/10.1152/ajpregu.2001.280.4.R1023
Carmona-Alcocer, V., Abel, J. H., Sun, T. C., Petzold, L. R., Doyle, F. J., Simms, C. L., & Herzog, E. D. (2018). Ontogeny of circadian rhythms and synchrony in the suprachiasmatic nucleus. The Journal of Neuroscience, 38(6), 1326-1334. https://doi.org/10.1523/JNEUROSCI.2006-17.2017
Chen, H.-H., Chiang, Y.-C., Yuan, Z. F., Kuo, C.-C., Lai, M.-D., Hung, T.-W., Ho, I. K., & Chen, S.-T. (2015). Buprenorphine, methadone, and morphine treatment during pregnancy: Behavioral effects on the offspring in rats. Neuropsychiatric Disease and Treatment, 11, 609-618. https://doi.org/10.2147/NDT.S70585
Chen, M., Zhou, C., Zhang, T., & Wu, B. (2020). Identification of rhythmic human CYPs and their circadian regulators using synchronized hepatoma cells. Xenobiotica; the Fate of Foreign Compounds in Biological Systems, 50(9), 1052-1063. https://doi.org/10.1080/00498254.2020.1737890
Cho, H., Mu, J., Kim, J. K., Thorvaldsen, J. L., Chu, Q., Crenshaw, E. B., Kaestner, K. H., Bartolomei, M. S., Shulman, G. I., & Birnbaum, M. J. (2001). Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science, 292(5522), 1728-1731. https://doi.org/10.1126/science.292.5522.1728
Chojnacki, C., Błońska, A., & Chojnacki, J. (2017). The effects of melatonin on elevated liver enzymes during statin treatment. BioMed Research International, 2017, 3204504. https://doi.org/10.1155/2017/3204504
Claustrat, B., & Leston, J. (2015). Melatonin: Physiological effects in humans. Neuro-Chirurgie, 61(2-3), 77-84. https://doi.org/10.1016/j.neuchi.2015.03.002
Cornelissen, G. (2014). Cosinor-based rhythmometry. Theoretical Biology & Medical Modelling, 11, 16. https://doi.org/10.1186/1742-4682-11-16
Dimsdale, J. E., Norman, D., DeJardin, D., & Wallace, M. S. (2007). The effect of opioids on sleep architecture. Journal of Clinical Sleep Medicine, 3(1), 33-36.
Dlugosz, P. J., Billen, L. P., Annis, M. G., Zhu, W., Zhang, Z., Lin, J., Leber, B., & Andrews, D. W. (2006). Bcl-2 changes conformation to inhibit Bax oligomerization. The EMBO Journal, 25(11), 2287-2296. https://doi.org/10.1038/sj.emboj.7601126
El-Hennamy, R., Mateju, K., Bendová, Z., Sosniyenko, S., & Sumová, A. (2008). Maternal control of the fetal and neonatal rat suprachiasmatic nucleus. Journal of Biological Rhythms, 23(5), 435-444. https://doi.org/10.1177/0748730408322635
Evert, M., Calvisi, D. F., Evert, K., De Murtas, V., Gasparetti, G., Mattu, S., Destefanis, G., Ladu, S., Zimmermann, A., Delogu, S., Thiel, S., Thiele, A., Ribback, S., & Dombrowski, F. (2012). V-AKT murine thymoma viral oncogene homolog/mammalian target of rapamycin activation induces a module of metabolic changes contributing to growth in insulin-induced hepatocarcinogenesis. Hepatology, 55(5), 1473-1484. https://doi.org/10.1002/hep.25600
Fareed, A., Casarella, J., Amar, R., Vayalapalli, S., & Drexler, K. (2010). Methadone maintenance dosing guideline for opioid dependence, a literature review. Journal of Addictive Diseases, 29(1), 1-14. https://doi.org/10.1080/10550880903436010
Fontaine, C., Dubois, G., Duguay, Y., Helledie, T., Vu-Dac, N., Gervois, P., Soncin, F., Mandrup, S., Fruchart, J. C., Fruchart-Najib, J., & Staels, B. (2003). The orphan nuclear receptor Rev-Erbalpha is a peroxisome proliferator-activated receptor (PPAR) gamma target gene and promotes PPARgamma-induced adipocyte differentiation. The Journal of Biological Chemistry, 278(39), 37672-37680. https://doi.org/10.1074/jbc.M304664200
Gallerani, M., Manfredini, R., Dal Monte, D., Calò, G., Brunaldi, V., & Simonato, M. (2001). Circadian differences in the individual sensitivity to opiate overdose. Critical Care Medicine, 29(1), 96-101. https://doi.org/10.1097/00003246-200101000-00021
Glatstein, M. M., Garcia-Bournissen, F., Finkelstein, Y., & Koren, G. (2008). Methadone exposure during lactation. Canadian Family Physician Medecin de Famille Canadien, 54(12), 1689-1690.
Gomes, P. R. L., Motta-Teixeira, L. C., Gallo, C. C., Carmo Buonfiglio, D. D., Camargo, L. S., Quintela, T., Reiter, R. J., Amaral, F. G. D., & Cipolla-Neto, J. (2021). Maternal pineal melatonin in gestation and lactation physiology, and in fetal development and programming. General and Comparative Endocrinology, 300, 113633. https://doi.org/10.1016/j.ygcen.2020.113633
Govitrapong, P., Jitaijamjang, W., Chetsawang, B., Phansuwan-Pujito, P., & Ebadi, M. (1998). Existence and function of opioid receptors on mammalian pinealocytes. Journal of Pineal Research, 24(4), 201-208. https://doi.org/10.1111/j.1600-079x.1998.tb00533.x
Govitrapong, P., Pariyanonth, M., & Ebadi, M. (1992). The presence and actions of opioid receptors in bovine pineal gland. Journal of Pineal Research, 13(3), 124-132. https://doi.org/10.1111/j.1600-079x.1992.tb00066.x
Grippo, R. M., Purohit, A. M., Zhang, Q., Zweifel, L. S., & Güler, A. D. (2017). Direct midbrain dopamine input to the suprachiasmatic nucleus accelerates circadian entrainment. Current Biology: CB, 27(16), 2465-2475.e3. https://doi.org/10.1016/j.cub.2017.06.084
Guo, H. Z., Enters, E. K., McDowell, K. P., & Robinson, S. E. (1990). The effect of prenatal exposure to methadone on neurotransmitters in neonatal rats. Brain Research. Developmental Brain Research, 57(2), 296-298. https://doi.org/10.1016/0165-3806(90)90056-5
Haas, B., Ciftcioglu, J., Jermar, S., Weickhardt, S., Eckstein, N., & Kaina, B. (2021). Methadone-mediated sensitization of glioblastoma cells is drug and cell line dependent. Journal of Cancer Research and Clinical Oncology, 147(3), 779-792. https://doi.org/10.1007/s00432-020-03485-3
Henry-Edwards, S., & National Drug Strategy (Australia), & Department of Health and Ageing. (2003). Clinical guidelines and procedures for the use of methadone in the maintenance treatment of opioid dependence: Abbreviated version. Publications Production Unit, Australian Government Dept. of Health and Ageing.
Herrlin, K., Segerdahl, M., Gustafsson, L. L., & Kalso, E. (2000). Methadone, ciprofloxacin, and adverse drug reactions. Lancet, 356(9247), 2069-2070. https://doi.org/10.1016/S0140-6736(00)03409-7
Hutchings, D. E. (1982). Methadone and heroin during pregnancy: A review of behavioral effects in human and animal offspring. Neurobehavioral Toxicology and Teratology, 4(4), 429-434.
Javadi, S., Ejtemaeimehr, S., Keyvanfar, H. R., Moghaddas, P., Aminian, A., Rajabzadeh, A., Mani, A. R., & Dehpour, A. R. (2013). Pioglitazone potentiates development of morphine-dependence in mice: Possible role of NO/cGMP pathway. Brain Research, 1510, 22-37. https://doi.org/10.1016/j.brainres.2012.12.035
Junker, U., & Wirz, S. (2010). Review article: Chronobiology: Influence of circadian rhythms on the therapy of severe pain. Journal of Oncology Pharmacy Practice, 16(2), 81-87. https://doi.org/10.1177/1078155209337665
Kandall, S. R., Doberczak, T. M., Jantunen, M., & Stein, J. (1999). The methadone-maintained pregnancy. Clinics in Perinatology, 26(1), 173-183.
Klein, D. C., Coon, S. L., Roseboom, P. H., Weller, J. L., Bernard, M., Gastel, J. A., Zatz, M., Iuvone, P. M., Rodriguez, I. R., Bégay, V., Falcón, J., Cahill, G. M., Cassone, V. M., & Baler, R. (1997). The melatonin rhythm-generating enzyme: Molecular regulation of serotonin N-acetyltransferase in the pineal gland. Recent Progress in Hormone Research, 52, 307-357; discussion 357-358.
Ko, J. Y., D'Angelo, D. V., Haight, S. C., Morrow, B., Cox, S., Salvesen von Essen, B., Strahan, A. E., Harrison, L., Tevendale, H. D., Warner, L., Kroelinger, C. D., & Barfield, W. D. (2020). Vital signs: Prescription opioid pain reliever use during pregnancy-34 U.S. jurisdictions, 2019. MMWR. Morbidity and Mortality Weekly Report, 69(28), 897-903. doi:10.15585/mmwr.mm6928a1
Kongstorp, M., Bogen, I. L., Stiris, T., & Andersen, J. M. (2020). Prenatal exposure to methadone or buprenorphine impairs cognitive performance in young adult rats. Drug and Alcohol Dependence, 212, 108008. https://doi.org/10.1016/j.drugalcdep.2020.108008
Kubištová, A., Spišská, V., Petrželková, L., Hrubcová, L., Moravcová, S., Maierová, L., & Bendová, Z. (2020). Constant light in critical postnatal days affects circadian rhythms in locomotion and gene expression in the Suprachiasmatic nucleus, retina, and pineal gland later in life. Biomedicine, 8(12), E579. https://doi.org/10.3390/biomedicines8120579
Kubová, H., Bendová, Z., Moravcová, S., Pačesová, D., Rocha, L. L., & Mareš, P. (2018). Neonatal clonazepam administration induces long-lasting changes in glutamate receptors. Frontiers in Molecular Neuroscience, 11, 382. https://doi.org/10.3389/fnmol.2018.00382
Letelier, M. E., Jara-Sandoval, J., Molina-Berríos, A., Faúndez, M., Aracena-Parks, P., & Aguilera, F. (2010). Melatonin protects the cytochrome P450 system through a novel antioxidant mechanism. Chemico-Biological Interactions, 185(3), 208-214. https://doi.org/10.1016/j.cbi.2010.03.020
Li, H., Tao, R., Wang, J., & Xia, L. (2017). Upregulation of miR-375 level ameliorates morphine analgesic tolerance in mouse dorsal root ganglia by inhibiting the JAK2/STAT3 pathway. Journal of Pain Research, 10, 1279-1287. https://doi.org/10.2147/JPR.S125264
Lin, M., Deng, K., Li, Y., & Wan, J. (2021). Morphine enhances LPS-induced macrophage apoptosis through a PPARγ-dependent mechanism. Experimental and Therapeutic Medicine, 22(1), 1-8. https://doi.org/10.3892/etm.2021.10146
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262
Marchant, E. G., & Mistlberger, R. E. (1995). Morphine phase-shifts circadian rhythms in mice: Role of behavioural activation. Neuroreport, 7(1), 209-212.
Maywood, E. S., Mrosovsky, N., Field, M. D., & Hastings, M. H. (1999). Rapid down-regulation of mammalian period genes during behavioral resetting of the circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 96(26), 15211-15216. https://doi.org/10.1073/pnas.96.26.15211
Maywood, E. S. (2020). Synchronization and maintenance of circadian timing in the mammalian clockwork. The European Journal of Neuroscience, 51(1), 229-240. https://doi.org/10.1111/ejn.14279
McGinty, J. F., & Ford, D. H. (1980). Effects of prenatal methadone on rat brain catecholamines. Developmental Neuroscience, 3(4-6), 224-234. https://doi.org/10.1159/000112395
Meijer, J. H., Ruijs, A. C., Albus, H., van de Geest, B., Duindam, H., Zwinderman, A. H., & Dahan, A. (2000). Fentanyl, a upsilon-opioid receptor agonist, phase shifts the hamster circadian pacemaker. Brain Research, 868(1), 135-140. https://doi.org/10.1016/s0006-8993(00)02317-9
Moore, R. Y., & Bernstein, M. E. (1989). Synaptogenesis in the rat suprachiasmatic nucleus demonstrated by electron microscopy and synapsin I immunoreactivity. The Journal of Neuroscience, 9(6), 2151-2162.
Moravcová, S., Červená, K., Pačesová, D., & Bendová, Z. (2016). Identification of STAT3 and STAT5 proteins in the rat suprachiasmatic nucleus and the day/night difference in astrocytic STAT3 phosphorylation in response to lipopolysaccharide. Journal of Neuroscience Research, 94(1), 99-108. https://doi.org/10.1002/jnr.23673
Moravcová, S., Filipovská, E., Spišská, V., Svobodová, I., Novotný, J., & Bendová, Z. (2021). The circadian rhythms of STAT3 in the rat pineal gland and its involvement in arylalkylamine-N-acetyltransferase regulation. Life, 11(10), 1105. https://doi.org/10.3390/life11101105
Morris, R. W., & Lutsch, E. F. (1967). Susceptibility to morphine-induced analgesia in mice. Nature, 216(5114), 494-495. https://doi.org/10.1038/216494a0
Motahari, A. A., Sahraei, H., & Meftahi, G. H. (2016). Role of nitric oxide on dopamine release and morphine-dependency. Basic and Clinical Neuroscience, 7(4), 283-290. https://doi.org/10.15412/J.BCN.03070401
Murayama, Y., Yahagi, N., Takeuchi, Y., Aita, Y., Mehrazad Saber, Z., Wada, N., Li, E., Piao, X., Sawada, Y., Shikama, A., Masuda, Y., Nishi-Tatsumi, M., Kubota, M., Izumida, Y., Miyamoto, T., Sekiya, M., Matsuzaka, T., Nakagawa, Y., Sugano, Y., … Shimano, H. (2019). Glucocorticoid receptor suppresses gene expression of Rev-erbα (Nr1d1) through interaction with the CLOCK complex. FEBS Letters, 593(4), 423-432. https://doi.org/10.1002/1873-3468.13328
Nahmias, Y., & Androulakis, I. P. (2021). Circadian effects of drug responses. Annual Review of Biomedical Engineering, 23, 203-224. https://doi.org/10.1146/annurev-bioeng-082120-034725
Nair, A. B., & Jacob, S. (2016). A simple practice guide for dose conversion between animals and human. Journal of Basic and Clinical Pharmacy, 7(2), 27-31. https://doi.org/10.4103/0976-0105.177703
Narita, M., Imai, S., Narita, M., Kasukawa, A., Yajima, Y., & Suzuki, T. (2004). Increased level of neuronal phosphoinositide 3-kinase gamma by the activation of mu-opioid receptor in the mouse periaqueductal gray matter: Further evidence for the implication in morphine-induced antinociception. Neuroscience, 124(3), 515-521. https://doi.org/10.1016/j.neuroscience.2003.11.023
Nasiraei-Moghadam, S., Kazeminezhad, B., Dargahi, L., & Ahmadiani, A. (2010). Maternal oral consumption of morphine increases Bax/Bcl-2 ratio and caspase 3 activity during early neural system development in rat embryos. Journal of Molecular Neuroscience: MN, 41(1), 156-164. https://doi.org/10.1007/s12031-009-9312-6
Natsubori, A., Honma, K., & Honma, S. (2014). Dual regulation of clock gene Per2 expression in discrete brain areas by the circadian pacemaker and methamphetamine-induced oscillator in rats. The European Journal of Neuroscience, 39(2), 229-240. https://doi.org/10.1111/ejn.12400
Nekhayeva, I. A., Nanovskaya, T. N., Deshmukh, S. V., Zharikova, O. L., Hankins, G. D. V., & Ahmed, M. S. (2005). Bidirectional transfer of methadone across human placenta. Biochemical Pharmacology, 69(1), 187-197. https://doi.org/10.1016/j.bcp.2004.09.008
Okerman, T., Jurgenson, T., Moore, M., & Klein, A. H. (2021). Inhibition of the phosphoinositide 3-kinase-AKT-cyclic GMP-c-Jun N-terminal kinase signaling pathway attenuates the development of morphine tolerance in a mouse model of neuropathic pain. Molecular Pain, 17, 17448069211003376. https://doi.org/10.1177/17448069211003375
Owino, S., Sánchez-Bretaño, A., Tchio, C., Cecon, E., Karamitri, A., Dam, J., Jockers, R., Piccione, G., Noh, H. L., Kim, T., Kim, J. K., Baba, K., & Tosini, G. (2018). Nocturnal activation of melatonin receptor type 1 signaling modulates diurnal insulin sensitivity via regulation of PI3K activity. Journal of Pineal Research, 64(3). https://doi.org/10.1111/jpi.12462
Pačesová, D., Novotný, J., & Bendová, Z. (2016). The effect of chronic morphine or methadone exposure and withdrawal on clock gene expression in the rat suprachiasmatic nucleus and AA-NAT activity in the pineal gland. Physiological Research, 65(3), 517-525. https://doi.org/10.33549/physiolres.933183
Pačesová, D., Spišská, V., Novotný, J., & Bendová, Z. (2021). Maternal morphine intake during pregnancy and lactation affects the circadian clock of rat pups. Brain Research Bulletin, 177, 143-154. https://doi.org/10.1016/j.brainresbull.2021.09.016
Pačesová, D., Volfová, B., Červená, K., Hejnová, L., Novotný, J., & Bendová, Z. (2015). Acute morphine affects the rat circadian clock via rhythms of phosphorylated ERK1/2 and GSK3β kinases and Per1 expression in the rat suprachiasmatic nucleus. British Journal of Pharmacology, 172(14), 3638-3649. https://doi.org/10.1111/bph.13152
Pjrek, E., Frey, R., Naderi-Heiden, A., Strnad, A., Kowarik, A., Kasper, S., & Winkler, D. (2012). Actigraphic measurements in opioid detoxification with methadone or buprenorphine. Journal of Clinical Psychopharmacology, 32(1), 75-82. https://doi.org/10.1097/JCP.0b013e31823f91d1
Quiroga, C., Barberena, J. J., Alcaraz-Silva, J., Machado, S., Imperatori, C., Yadollahpour, A., Budde, H., Yamamoto, T., Telles-Correia, D., & Murillo-Rodríguez, E. (2021). The role of peroxisome proliferator-activated receptor in addiction: A novel drug target. Current Topics in Medicinal Chemistry, 21(11), 964-975. https://doi.org/10.2174/1568026621666210521165532
Rane, A., Liu, Z., Henderson, C. J., & Wolf, C. R. (1995). Divergent regulation of cytochrome P450 enzymes by morphine and pethidine: A neuroendocrine mechanism? Molecular Pharmacology, 47(1), 57-64.
Robinson, S. E., Maher, J. R., Wallace, M. J., & Kunko, P. M. (1997). Perinatal methadone exposure affects dopamine, norepinephrine, and serotonin in the weanling rat. Neurotoxicology and Teratology, 19(4), 295-303. https://doi.org/10.1016/s0892-0362(97)00018-4
Serafini, R. A., Pryce, K. D., & Zachariou, V. (2020). The mesolimbic dopamine system in chronic pain and associated affective comorbidities. Biological Psychiatry, 87(1), 64-73. https://doi.org/10.1016/j.biopsych.2019.10.018
Simonneaux, V., Sinitskaya, N., Salingre, A., Garidou, M. L., & Pévet, P. (2006). Rat and Syrian hamster: Two models for the regulation of AANAT gene expression. Chronobiology International, 23(1-2), 351-359. https://doi.org/10.1080/07420520500521962
Skene, D. J., Papagiannidou, E., Hashemi, E., Snelling, J., Lewis, D. F., Fernandez, M., & Ioannides, C. (2001). Contribution of CYP1A2 in the hepatic metabolism of melatonin: Studies with isolated microsomal preparations and liver slices. Journal of Pineal Research, 31(4), 333-342. https://doi.org/10.1034/j.1600-079x.2001.310408.x
Sládek, M., Sumová, A., Kováciková, Z., Bendová, Z., Laurinová, K., & Illnerová, H. (2004). Insight into molecular core clock mechanism of embryonic and early postnatal rat suprachiasmatic nucleus. Proceedings of the National Academy of Sciences of the United States of America, 101(16), 6231-6236. https://doi.org/10.1073/pnas.0401149101
Smyllie, N. J., Chesham, J. E., Hamnett, R., Maywood, E. S., & Hastings, M. H. (2016). Temporally chimeric mice reveal flexibility of circadian period-setting in the suprachiasmatic nucleus. Proceedings of the National Academy of Sciences of the United States of America, 113(13), 3657-3662. https://doi.org/10.1073/pnas.1511351113
Speh, J. C., & Moore, R. Y. (1993). Retinohypothalamic tract development in the hamster and rat. Brain Research. Developmental Brain Research, 76(2), 171-181. https://doi.org/10.1016/0165-3806(93)90205-o
Tahergorabi, Z., Rahmani, H., Williams, J., & Moodi, M. (2020). The effect of methadone on blood glucose, lipids and glucose-modulating hormones in methadone-dependent Wistar rats. Toxicological Research, 36(3), 221-226. https://doi.org/10.1007/s43188-019-00019-z
Tan, C., Dlugosz, P. J., Peng, J., Zhang, Z., Lapolla, S. M., Plafker, S. M., Andrews, D. W., & Lin, J. (2006). Auto-activation of the apoptosis protein Bax increases mitochondrial membrane permeability and is inhibited by Bcl-2. The Journal of Biological Chemistry, 281(21), 14764-14775. https://doi.org/10.1074/jbc.M602374200
Torra, I. P., Tsibulsky, V., Delaunay, F., Saladin, R., Laudet, V., Fruchart, J. C., Kosykh, V., & Staels, B. (2000). Circadian and glucocorticoid regulation of Rev-erbalpha expression in liver. Endocrinology, 141(10), 3799-3806. https://doi.org/10.1210/endo.141.10.7708
Trávnícková, Z., & Illnerová, H. (1997). Melatonin entrainment of the circadian N-acetyltransferase rhythm in the newborn rat pineal gland. Journal of Pineal Research, 23(3), 136-141. https://doi.org/10.1111/j.1600-079x.1997.tb00346.x
Vansteensel, M. J., Magnone, M. C., van Oosterhout, F., Baeriswyl, S., Albrecht, U., Albus, H., Dahan, A., & Meijer, J. H. (2005). The opioid fentanyl affects light input, electrical activity and Per gene expression in the hamster suprachiasmatic nuclei. The European Journal of Neuroscience, 21(11), 2958-2966. https://doi.org/10.1111/j.1460-9568.2005.04131.x
Vestal-Laborde, A. A., Eschenroeder, A. C., Bigbee, J. W., Robinson, S. E., & Sato-Bigbee, C. (2014). The opioid system and brain development: Effects of methadone on the oligodendrocyte lineage and the early stages of myelination. Developmental Neuroscience, 36(5), 409-421. https://doi.org/10.1159/000365074
Viswanathan, N., Weaver, D. R., Reppert, S. M., & Davis, F. C. (1994). Entrainment of the fetal hamster circadian pacemaker by prenatal injections of the dopamine agonist SKF 38393. The Journal of Neuroscience, 14(9), 5393-5398.
Walhovd, K. B., Moe, V., Slinning, K., Due-Tønnessen, P., Bjørnerud, A., Dale, A. M., van der Kouwe, A., Quinn, B. T., Kosofsky, B., Greve, D., & Fischl, B. (2007). Volumetric cerebral characteristics of children exposed to opiates and other substances in utero. NeuroImage, 36(4), 1331-1344. https://doi.org/10.1016/j.neuroimage.2007.03.070
Weaver, D. R., Rivkees, S. A., & Reppert, S. M. (1992). D1-dopamine receptors activate c-fos expression in the fetal suprachiasmatic nuclei. Proceedings of the National Academy of Sciences of the United States of America, 89(19), 9201-9204. https://doi.org/10.1073/pnas.89.19.9201
Wouldes, T. A., & Woodward, L. J. (2010). Maternal methadone dose during pregnancy and infant clinical outcome. Neurotoxicology and Teratology, 32(3), 406-413. https://doi.org/10.1016/j.ntt.2010.01.007
Yao, L.-L., Wang, Y.-G., Cai, W.-J., Yao, T., & Zhu, Y.-C. (2007). Survivin mediates the anti-apoptotic effect of delta-opioid receptor stimulation in cardiomyocytes. Journal of Cell Science, 120(Pt 5), 895-907. https://doi.org/10.1242/jcs.03393
Yeh, M. C., Chen, L.-J., Niu, H.-S., Yang, T.-T., Lin, K.-C., & Cheng, J.-T. (2014). Signals for increase of μ-opioid receptor expression in muscle by hyperglycemia. Neuroscience Letters, 582, 109-114. https://doi.org/10.1016/j.neulet.2014.09.008
Zhang, C., Shi, X., Su, Z., Hu, C., Mu, X., Pan, J., Li, M., Teng, F., Ling, T., Zhao, T., Xu, C., Ji, G., & You, Q. (2021). CD36 deficiency ameliorates drug-induced acute liver injury in mice. Molecular Medicine, 27(1), 57. https://doi.org/10.1186/s10020-021-00325-z
Zhang, C., Yu, Z., Li, X., Xu, Y., & Liu, D. (2014). Chronopharmacodynamics and chronopharmacokinetics of pethidine in mice. PLoS One, 9(7), e102054. https://doi.org/10.1371/journal.pone.0102054
Zhang, T., Guo, L., Yu, F., Chen, M., & Wu, B. (2019). The nuclear receptor Rev-erbα participates in circadian regulation of Ugt2b enzymes in mice. Biochemical Pharmacology, 161, 89-97. https://doi.org/10.1016/j.bcp.2019.01.010
Zhu, J. L., Hjollund, N. H., Andersen, A.-M. N., & Olsen, J. (2004). Shift work, job stress, and late fetal loss: The National Birth Cohort in Denmark. Journal of Occupational and Environmental Medicine, 46(11), 1144-1149. https://doi.org/10.1097/01.jom.0000145168.21614.21